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Simulation studies on the properties of estimates from statistical catch at age models. 
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Abstract 
An age-structured population dynamics model is used to generate simulated data on abundance and catch-at-age at times and with sample 
sizes approximately corresponding to the data available for Southern Hemisphere minke whales. A model from the same family is fitted to 
these data using the methods of statistical catch at age analysis (SCAA). The results show that estimates have rather poor properties and are 
quite uninformative about maximum sustainable yield rate (MSYR) and at best only weakly informative about any trends in carrying 
capacity (K). The results suggest that the historical contrast in the data is relatively uninformative about the management parameters of 
interest. The more recent and future data are from a period when even less contrast in population characteristics exists or can be expected. 
For this reason the recent data are not informative about trends in K or MSYR and the collection of further data has little effect on improving 
precision of such estimates.  

 
Introduction 
Statistical catch at age analysis models (SCAA) have become a mainstay of a number of analyses seeking to 
estimate a range of parameters of management interest by fitting population models to a range of data types, 
typically combining catch-at-age data with time series of abundance data. The important developments in this 
space have been driven by Punt and Polacheck (2005. 2006, 2007 and 2008) and in a series of update and model 
improvements (Punt; 2011, Punt et al. 2014). Much of this development was originally to address the issue of 
whether catch-at-age data from southern hemisphere minke whales carried a signature of population trends that 
pre-date their exploitation and that may have arisen from the depletion of other baleen whales – particularly blue 
whales earlier last century; the much discussed ‘krill surplus’. This question was addressed by using SCAA 
models to fit population models that allow for changes in carrying capacity (K) over time. SCAA models 
generally need to estimate tens to hundreds of parameters and to be computationally tractable they rely on 
maximisation of log-likelihood functions by numerical methods that make use of auto-differentiation. 
    These models are beginning to be relied upon to utilise the catch-age-data from JARPA, JARPAII and 
NEWREP-A to meet those programs’ objectives of providing information relevant to management and the 
development of ecosystem models. Therefore it is timely to use simulation methods to improve our knowledge 
of the reliability of estimates arising from these models and to develop methods for the prospective evaluation of 
the likely outcomes from collecting further abundance and age-data. 
    A second issue is that if the models are to be used for the derivation of management related information, the 
SC should follow its normal practice and have them independently validated. The model presented here has 
been developed independently and makes no use of any code used in the existing SCAAA model. Consequently 
inter-comparison of the two model implementations using simulated data could be used to assist in their 
validation. 
    The model used in the simulations here is built using an object oriented class template library written in C++ 
originally developed for stock-assessment and management strategy evaluations (Logan et al. 2005). The class 
template models can be instantiated with variables declared as double precision or as auto-differentiable while 
using identical source code for model implementation. This readily allows for multiple instances of the model so 
that for simulation testing it is easy to set up one instance of the model for data generation and an entirely 
independent instance to be used for fitting to data. The details of the model are given in the Appendix.  
    The fitted model uses an auto-differentiation class template library developed by Justin Cooke. Testing 
showed that the fitted model with auto-differentiation produces identical numerical results to the data-generating 
simulation model when the same parameter values are used. The fitting procedure recovers the ‘true’ values of 
the data generating model parameters when fitted using perfect information. Although the model presented here 
has the sexes pooled, the class library also contains two sex versions of the model and so the model can be 
readily extended. However, for the purposes of this paper which is to begin to define the issues relevant for 
SCAA modelling, a pooled sex model is sufficient.  
    The model presented here provides for more flexible estimation of some of the relationships included in the 
existing SCAA models. In particular Punt et al. (2014) used piece-wise linear functions to describe changes in K 
and the shape of age-dependent natural mortality as well as a discontinuous function for ‘dome shaped’ 
commercial age-specific catch selectivity. The difficulty with piece-wise linear and other discontinuous 
functions is that they do not have continuous derivatives at the joints, which makes it difficult to estimate the 
position of the joints using auto-differentiation. The positions of the joints are not included in the estimation 
procedure in the existing SCAA models.  
    In the models used in this study that time variations in K are modelled using a dome-shaped curve derived 
from multiplying a logistic function with a reversed logistic function. This combined function has continuous 
differentials (see Appendix for definition). The same functional form is used for dome-shaped selectivities. Age 
dependence in natural mortality is modelled using a continuous function of the general form due to Siler (1979), 
but with an additional parameter to defer increasing mortality with age (see Appendix). Here, as in the existing 
SCAA the value of MSYL is kept fixed. 
    A more subtle difficulty arises in the existing SCAA and other models that use a Pella-Tomlinson (P-T) 
stock-recruitment relationship. With a P-T model, population levels somewhat above K lead to negative 
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recruitment. The existing SCAA includes the usual practice of resetting negative recruitment values to zero and 
penalising the likelihood function. However, this also destroys the continuity of the function. In the models 
presented here all of the functions to be fitted, including the stock-recruitment relationship, are continuous and 
so estimating all of their parameters is feasible when using auto-differentiation. The population dynamics 
model, the functional forms for model components and other variable functions and the likelihood functions 
used in fitting are all given in the Appendix.  
    The scenarios tested here are based on plausible hypotheses relating to southern hemisphere minke whales 
and the types of data collected under JARPA, JARPA II and prospectively under NEWREP-A. These initial 
tests are idealised because all animals in the catch are aged without error and the catch-at-age distributions 
represent random samples from the selected population. Age-specific selectivities are also constant over time for 
both commercial and special permit catches. There are two series of absolute abundance estimates, one 
corresponding to the IDCR/SOWER  surveys (generously assuming that there were three comparable surveys) 
and the second to the JARPA, JARPA II and prospectively NEWREP-A at two year intervals. Neither series is 
assumed to be unbiased, each has its own correction factor estimated during minimisation as a time-invariant 
constant.  
    All the simulated data conform to the assumptions used in fitting the model. Consequently the performance of 
the estimation procedure is evaluated under ideal circumstances. The list of all the estimated parameters is given 
in Table 1. However, recruitment multipliers are not estimated in scenarios where there is no variability in K, 
thus correctly assuming that there is negligible recruitment variability. The numerical search makes two passes, 
the first initialises the nuisance harvest rate parameters into roughly the correct starting values. There are 
multiple restarts for the search with randomly dithered starting values for the parameters, centred in these trials 
on their true values, with increasing stringency for the convergence criteria. This is to reduce the possibility of 
landing on a local minimum. This is particularly important for multiple replicates in simulation testing because 
it is not feasible to examine the fit of every estimate in the same way as one would do for fitting a model to a 
single dataset. With complex multi-parameter likelihood functions it is likely that the morphology of the surface 
may exhibit local minima or twisting valleys, both of which make it possible for searches to converge even 
though there is a different set of parameter values that have a better minimum.  
 
Table 1. Parameters estimated during fitting of model to simulated data. The searches for parameters are all 
constrained to a range by using a logit function to transform the parameters. In this way the transformed 
parameters are unbounded during the numerical search, but after the inverse transform the estimated values 
will lie in the bounded region. The column Order refers to the order in which the parameters are estimated in 
the fitting procedure. Generally the harvest rate nuisance parameters and stock size are estimated first with the 
other parameters held at their starting values. After the first pass all the parameters are estimated together. 
This is more efficient because it gives the nuisance parameters roughly correct values before searching over the 
entire parameter space. 
 

Parameter Lower bound Upper bound Order 
Initial total biomass (tonnes) 200 000 1 600 000 1 
Stock recruit compensation 2.001 5.0 2 
Density dependence in natural mortality 0.0 1.0 2 
Siler coefficient 1 0.03 0.2 2 
Siler coefficient 2 0.5 4.0 2 
Siler coefficient 3 (floor on M) 0.02 0.12 2 
Siler coefficient 4 0.1 0.5 2 
Siler coefficient 5 40 65 2 
Peak value for difference in K (as multiple of K) -0.8 5.0 2 
First inflection year for K scaling 1930 1955 2 
Number of years to first 95% point on K scaling 0. 10. 2 
Extra years to second 95% point on K scaling 1. 30. 2 
Extra years to second inflection for K scaling  1. 30. 2 
First inflection for commercial age selectivity 1 12 2 
Additional age to lower 95% commercial age selectivity 1 12 2 
Additional age to upper 95% commercial age selectivity 1 40 2 
Additional age to second inflection commercial selectivity 1 20 2 
Inflection for special permit age selectivity 0.2 4.0 2 
Additional age for 95% point for special permit selectivity 0.2 5.0 2 
Survey bias for IDCR/SOWER 0.5 5.0 2 
Survey bias for special permit surveys 0.2 5.0 2 
Harvest rates (for every year with a non-zero catch 0. 0.1 1 
Year class multipliers (from 1940 – 2004) 0.1 2. 2 
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    The basic test scenarios examine different historical patterns of changes in carrying capacity and different 
strengths of density dependence in relation to natural mortality and births. A further set of scenarios examine the 
effect of adding additional years of age-data (every year) and surveys every two years. In these latter scenarios 
the amount of data available is probably greater than will occur in practice. 

Test 1 – K increases and then declines, with variability = 0.3 – all density dependence is in births 
This scenario is roughly similar to the “base case” reported in Punt et al. (2014.) Minimisation in each trial 
either starts from a low MSYR = 1% or a high MSYR = 5%. The true MSYR = 3.64%. As will be demonstrated 
across all the scenarios, there is little information about MSYR from the data available for Southern hemisphere 
minke whales. This is consistent with the results of Punt et al. that the estimates of MSYR are not reliable. As 
will be seen the estimates of MSYR are influenced by the starting values used in the search. So results will be 
shown for high and low MSYR starts for all scenarios. 
 
Summary statistics of the results are shown in Table 2. The most important feature to note is the effect of the 
starting point for MSYR on the results. The estimated values of MSYR are biased high or low depending on the 
starting point and thus the coefficients of variation do not represent the full uncertainty in the estimates. The 
estimates of delta K are also biased although they are more consistent between the high and low MSYR starting 
points. 
    Fig 1 shows the observed and expected total catches are very close – these plots are virtually identical in 
every test scenario and so this figure will not be shown again. Similarly for Figs 3 and 4 the fits to the two 
sources of catch-at-age data are very close and this is also consistent across scenarios. These plots will only be 
shown again in the first scenario where density dependence acts on both births and natural mortality. Fig 6 
shows the fit to the two types of survey data. These results are also comparable across all scenarios and this 
figure will also be omitted hereafter.  
    Figs 5 and 9 show that the trend in K is poorly estimated, but they are consistent in that all of the estimated 
values of delta K are positive. Figs 6, 7, 8 and Figs 9, 10 and 11 show that there can be substantial biases in 
estimating trends in recruitment and that these biases are different for the high and low MSYR starts. The lower 
two sections of Table 2 show that although the marginal likelihoods for MSYR and delta K are fairly flat, there 
is an indication that the data and model in this scenario provide some discrimination against the lowest MSYR 
tested and delta K = 0. 
   Figs 8 and 11 show that there are trends in the estimates of the means of the recruitment multipliers and these 
depart substantially from the theoretical mean of unity. This indicates that the recruitment multipliers are 
absorbing some lack of fit in the model arising from the stock recruitment relationship. 
 
Table 2. Properties of estimates from Test 1. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates 
with identical data for each fixed value of Delta K, and also subdivided for the different data sources. The third 
sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates with identical data for 
each fixed value of MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.048 0.0102 0.210 1.330 2.16 0.629 0.291 1.082 
Low 0.019 0.0039 0.208 0.522 2.36 0.712 0.302 1.179 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4374.536 35.06530 125.6548 1734.667 2224.925 
1.0 4370.670 35.05068 125.3368 1731.878 2224.555 
2.0 4369.641 35.05427 124.9275 1734.423 2221.915 
3.0 4370.946 35.25407 125.4597 1734.064 2221.679 
4.0 4368.948 35.42701 125.2958 1733.000 2220.737 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4385.431 35.07727 125.2926 1739.193 2231.972 
0.02 4377.205 35.05811 125.3936 1736.063 2226.812 
0.03 4377.815 35.04081 125.3418 1736.279 2227.334 
0.04 4378.595 35.03605 125.3981 1736.242 2228.040 
0.05 4378.760 35.08902 125.6623 1736.013 2227.864 
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Fig 1 Comparison of observed and expected catches from high MSYR fit of model in Test scenario 1

 
Fig 2. Mean of the expected commercial catches-at-age high MSYR fit of model (dashed line) compared with 
the true mean catch-at-age (solid line) from Test scenario 1. 
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Fig 3. Mean of the special permit expected catches-at-age from high MSYR fit of model (dashed line) compared 
with the true mean catch-at-age (solid line) from Test scenario 1 

 
Fig 4. Observed and expected survey results from high MSYR fit of model replicates in Test scenario 1. 
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Fig 5. The trends in K from high MSYR fit of model for Test Scenario 1. 

 
Fig 6. The mean estimated recruitment trajectory (dashed line) from the high MSYR fit of model compared with 
mean true trajectory for Test scenario 1. 
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Fig 7. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 1. 

 
Fig 8. The means of the recruitment multiplier estimates from high MSYR fit of model under Test scenario 1.
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Fig 9. The trends in K from low MSYR fit of model for Test Scenario 1. 

  
Fig 10. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 1. 
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Fig 11. The means of the recruitment multiplier estimates from low MSYR fit of model under Test scenario 1. 
 
Test 2 K increases and then declines with variability = 0.3 – all density dependence is in births – data 
extended to 2027 
This is the same as Test 1 but with data extended to 2027 with catch-at-age in every year with a sample size of 
330 and surveys every second year. This is more age data than is projected to be collected in a single sector 
under NEWREP-A. The main claim for SCAA in relation to NEWREP-A is that more years of age data will 
improve estimates from the method. Comparing tables 2 and 3 show that there the overall statistics for MSYR 
and delta K are virtually unchanged despite the extra years of data. Figs 12 and 15 with Figs 5 and 9 show that 
there has been no discernable improvements in the estimates of time trends in K. The patterns and magnitudes of 
bias in the estimates of recruitment also show little change (Figs 13 and 16 with Figs 7 and 10). The trends in 
the recruitment multipliers also are little changed. This is not surprising because these trends are primarily 
driven by the historical commercial catch-at-age data, which of course remains the same between Tests 1 and 2. 
 
Table 3 shows the results from 100 replicates from both the high and low MSYR starts. Comparing these results 
with the corresponding rows in Table 2 shows that there is negligible improvement in the estimates of MSYR 
and delta K with the addition of more years of data. Figures 12 through 17 show that there are negligible 
improvements in the estimation of relative recruitment and recruitment multipliers with the extra years of data. 
 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.049 0.0098 0.199 1.353 2.27 0.656 0.288 1.137 
Low 0.019 0.0043 0.231 0.508 2.37 0.685 0.289 1.184 
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Fig 12. The trends in K from high MSYR fit of model for Test Scenario 2. 
 
 

 
Fig 13. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 2. 
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Fig 14. The means of the recruitment multiplier estimates from high MSYR fit of model under Test scenario 2. 
 

 
Fig 15. The trends in K from low MSYR fit of model for Test Scenario 2. 
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Fig 16. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 2. 
 

 
Fig 17. The means of the recruitment multiplier estimates from low MSYR fit of model under Test scenario 2. 
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Test 3 K increases and then declines with variability = 0.0 – density dependence is 75% in natural 
mortality and 25% in births 
In this scenario density dependence in natural mortality is substantially greater than it is for births. This is 
consistent with the emergent properties of the energetics based models reported in de la Mare and Miller (this 
meeting). One of the consequences of this form of density dependence is that the signature of a trend in carrying 
capacity is different from that obtained when all density dependence occurs in births. This is easily seen by 
comparing Figs 3 and 19. Fig 3 shows a distinct bump caused by the set of stronger year classes arising from the 
trend in K. However in Fig 19 the bump is virtually absent because the variation in year class strength is much 
less, and the density dependent variation in natural mortality affects all the year classes together so that there is a 
smaller transient effect on the age-structure. 
    Table 4 shows that the estimates of MSYR have roughly the same statistics as for Test 1, with similar bias 
dependency on the starting values and similar coefficients of variation. However, the estimates of delta K are 
substantially different, with this scenario Figs 20 and 23 show that not all the estimates of delta K are positive, 
which leads to substantial downward bias in the estimates and consequently greater CVs. Figs 21 and 24 show 
that the estimates of recruitment are of the correct general shape but Figs 22 and 25 show a time varying bias of 
25 to 35%. Recruitment multipliers are not estimated in this case because they are correctly assumed to be all 
equal to unity. The marginal likelihoods in Table 4 for delta K and MSYR again suggest that there is some 
discrimination for the lowest values. 
 
Table 4. Properties of estimates from Test 3. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates 
with identical data for each fixed value of Delta K, and also subdivided for the different data sources. The third 
sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates with identical data for 
each fixed value of MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.045 0.0099 0.221 1.222 0.843 0.682 0.808 0.422 
Low 0.019 0.0078 0.404 0.527 0.907 0.701 0.773 0.453 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4363.798    35.60212 127.0312    1791.733    2152.299 
1.0 4351.236    35.49600    126.9508    1781.513    2150.478 
2.0 4351.268    35.51740    126.9786    1781.411    2150.478 
3.0 4350.620    35.55955    127.0513    1780.998    2150.036 
4.0 4350.462    35.52077    127.0990    1782.080    2149.031 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4362.278    35.62042    126.9568    1790.608    2151.966 
0.02 4358.832    35.51127    126.8748    1787.649    2152.069 
0.03 4357.894    35.47051    126.9108    1786.520    2152.533 
0.04 4354.302    35.44665    126.9296    1783.198    2152.089 
0.05 4355.549    35.46102    126.9633    1784.077    2152.338 
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Fig 18. Mean of the expected commercial catches-at-age high MSYR fit of model (dashed line) compared with 
the true mean catch-at-age (solid line) from Test scenario 3. 

 
Fig 19. Mean of the special permit expected catches-at-age from high MSYR fit of model (dashed line) 
compared with the true mean catch-at-age (solid line) from Test scenario 3 



SC/66b/IA 

15 
 

 
Fig 20. The trends in K from high MSYR fit of model for Test Scenario 3. 

 
Fig 21. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 3. 
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Fig 22. The trends in K from low MSYR fit of model for Test Scenario 3. 

 
Fig 23. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 3. 
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Test 4 K increases and then declines with variability = 0.3 – density dependence is 75% in natural 
mortality and 25% in births 
This scenario includes the random variability in K = 0.3 and thus these results can be compared with Test 
scenario 1. Table 5 shows that the estimates of MSYR have roughly the same statistics as for Tests 1, 2 and 3, 
with similar bias dependency on the starting values and similar coefficients of variation. The estimates for delta 
K are biased lower than in Test 3 and consequently even more biased compared with Test 1. Figs 24 and 27 
show that a substantial proportion of the estimates of delta K are negative, which leads to substantial downward 
bias in the estimates and consequently greater CVs. Figs 25 and 26 show a time varying bias of 25 to 35% at 
similar levels to Test 3. In this case recruitment multipliers are estimated. The recruitment multipliers in Figs 26 
and 29 show similar trends to the Test 1 case (Figs 8 and 11), but in this scenario the magnitudes of the mean 
multipliers are generally closer to unity, which is where they should be. The marginal likelihoods in Table 5 for 
delta K and MSYR now suggest that there is no virtually no information about MSYR or delta K in the range 
tested. 
 
Table 5. Properties of estimates from Test 4. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 trials with 
identical data for fixed values of Delta K, and also subdivided for the different data sources. The third sub-table 
is the mean marginal total negative log-likelihood profiles from 25 trials with identical data for fixed values of 
MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.046 0.0099 0.218 1.250 0.40 0.734 0.199 1.179 
Low 0.018 0.0052 0.293 0.489 0.30 0.491 1.653 0.149 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4322.475    35.24713    126.0430    1765.808    2140.228 
1.0 4322.008 35.21260    125.8410    1765.774    2140.406 
2.0 4323.116    35.23657    125.9003    1767.099    2139.898 
3.0 4323.027    35.14972    125.6036    1767.761    2140.135 
4.0 4322.623    35.29910    125.9246    1765.826    2140.471 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4321.992    35.22781    125.9430    1765.510    2140.313 
0.02 4322.058    35.21850    125.9030    1765.648    2140.356 
0.03 4322.178    35.20571    125.8400    1765.823    2140.495 
0.04 4322.337    35.21456    125.8978    1765.749    2140.586 
0.05 4322.125    35.19206    125.9052    1765.646    2140.578 
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Fig 24. The trends in K from high MSYR fit of model for Test Scenario 4. 
 

 
Fig 25. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 4. 
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Fig 26. The means of the recruitment multiplier estimates from high MSYR fit of model under Test scenario 4. 

 
Fig 27. The mean estimated recruitment trajectory (dashed line) from the low MSYR fit of model compared 
with mean trajectory for Test scenario 4. 
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Fig 28. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 4. 
 

 
Fig 29. The means of the recruitment multiplier estimates from low MSYR fit of model under Test scenario 4. 
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Test 5 No trend or variability in K, 75% density dependence in natural mortality 25% in births (1) 
A possible scenario for Southern hemisphere minke whales is that there has been no substantial trend in K. This 
test examines the properties of fitting the model that attempts to estimate a single increase in K even though it is 
in fact absent. The scenario assumes that no decline in K occurs during the period for which the data are 
available. Table 6 shows that the estimates of MSYR have similar properties to the previous scenarios. The 
mean of the estimated trends in K are on average reasonably close to the true value zero. The estimates of 
MSYR are similar to the previous scenarios with biases that depend on the start value. The marginal likelihoods 
in Table 6 again suggest that there is little information about MSYR. There appears to be some possibility of 
discriminating against erroneous large changes in K. 
 
Table 6. Properties of estimates from Test 5. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates 
with identical data for each fixed value of Delta K, and also subdivided for the different data sources. The third 
sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates with identical data for 
each fixed value of MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.050 0.0070 0.140 1.358 -0.001 0.119 - - 
Low 0.018 0.0036 0.199 0.492 0.0443 0.184 4.144 - 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4314.222    34.42292    124.1987    1783.714    2121.087 
1.0 4310.988    34.47086    124.2342    1781.681    2119.838 
2.0 4311.863    34.52216    124.1976    1782.858    2120.512 
3.0 4312.852    34.40360    124.2058    1786.446    2125.290 
4.0 4318.044    36.15476    126.8764    1795.228    2131.685 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4311.999    34.46292    124.3046    1782.022    2120.156 
0.02 4312.028    34.46822    124.2426    1782.087    2120.221 
0.03 4311.993    34.46041    124.2288    1782.124    2120.219 
0.04 4312.244    34.44576    124.2229    1782.830    2120.360 
0.05 4312.239    34.46099    124.2082    1782.279    2120.349 
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Fig 30. The trends in K from high MSYR fit of model for Test Scenario 5. 
 

 
Fig 31. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 5. 
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Fig 32. The trends in K from low MSYR fit of model for Test Scenario 5. 
 

 
 
Fig 33. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 5. 
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Test 6 K increases during the 1930s with delta K = 2 and remains constant thereafter 
Another plausible scenario for Southern hemisphere minke whales is that there has been a trend in K beginning 
in the 1930s and given that some whale stocks remain depleted that K will remain high for some years to come. 
This test examines the properties of fitting the model that attempts to estimate a single increase in K and 
assumes that no decline in K occurs during the period for which the data are available. Table 7 shows that the 
estimates of MSYR have similar properties to the previous scenarios. The mean of the estimated trends in K are 
substantially below their true value of two. The marginal likelihoods in Table 7 again suggest that there is little 
information about MSYR or delta K. Estimated trends in recruitment bias shown in (Figs 35 and 37) show that 
the estimates of recruitment trends are unreliable. 
 
Table 7. Properties of estimates from Test 6. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates 
with identical data for each fixed value of Delta K, and also subdivided for the different data sources. The third 
sub-table is the mean marginal total negative log-likelihood profiles from 25 replicates with identical data for 
each fixed value of MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.049 0.0115 0.235 1.345 0.0860 0.235 2.731 0.043 
Low 0.025 0.0142 0.578 0.672 0.1079 0.284 2.632 0.054 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4328.034    37.63392    136.4373    1774.898    2106.374 
1.0 4328.171    37.72100    136.4184    1774.633    2106.505 
2.0 4327.287    37.65029    136.4207    1774.457    2106.655 
3.0 4327.133    37.63953    136.3484    1773.927    2106.614 
4.0 4328.010    37.53304    136.1609    1774.156    2108.049 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4327.125    37.66591    136.4815    1773.955    2106.260 
0.02 4327.451    37.66359    136.4614    1774.226    2106.356 
0.03 4327.541    37.65710    136.4498    1774.287    2106.378 
0.04 4327.620    37.65046    136.4349    1774.390    2106.512 
0.05 4327.789    37.65149    136.4335    1774.608    2106.436 
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Fig 34. The trends in K from high MSYR fit of model for Test Scenario 6. 
 
 

 
Fig 35. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 6. 
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Fig 36. The trends in K from low MSYR fit of model for Test Scenario 6. 
 
 

 
Fig 37. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 6. 
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Test 7 K increases during the 1930s with delta K = 2 but the fitted model allows for both an increase and 
decrease in K 
This scenario for Southern hemisphere minke whales is the same as the preceding one that there has been a trend 
in K beginning in the 1930s and that K will remain high for some years to come. This test examines the 
properties of fitting the model that allows for K to change in both directions during the period for which the data 
are available, i.e. similar to the other models where trends in K are estimated using a dome shaped function. 
Table 8 shows that the estimates of MSYR have similar properties to the previous scenarios. Figs 38 and 40 
show that a dome shaped function is fitted to the data even though there is no downward trend in K. The mean 
of the estimated values of delta K are substantially below their true value of two. The marginal likelihoods in 
Table 8 again suggest that there is little information about MSYR or delta K. Estimated trends in recruitment 
bias shown in (Figs 39 and 41) show that the estimates of recruitment trends are unreliable. 
 
Table 8. Properties of estimates from Test 7. The first sub-table are the estimates of MSYR and Delta K from 
100 trials. The second sub-table is the mean marginal total negative log-likelihood profiles from 25 trials with 
identical data for fixed values of Delta K, and also subdivided for the different data sources. The third sub-table 
is the mean marginal total negative log-likelihood profiles from 25 trials with identical data for fixed values of 
MSYR, and also subdivided for the different data sources. 
 

Start 
MSYR estimates (true = 0.0364) Delta K estimates (true = 2.0) 

Mean SD CV Bias Mean SD CV Bias 
High 0.051 0.0100 0.195 1.405 -0.008 0.477 - -0.004 
Low 0.025 0.0142 0.578 0.672 0.1079 0.284 2.632 0.054 

 
Delta K Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.0 4322.243    37.58487    135.8363    1774.10    2102.805 
1.0 4322.117    37.60627    135.9541    1774.12    2102.504 
2.0 4322.652    37.62167    135.9796    1774.45    2102.620 
3.0 4323.325    37.64382    135.7619    1775.44    2103.164 
4.0 4322.538    37.69553    136.0076    1775.08    2101.973 

 
MSYR  Total Survey 1 Survey 2 Comm. Ages S. permit Ages 
0.01 4322.511    37.59491    135.8737    1773.86    2103.219 
0.02 4322.686    37.58510    135.8621    1773.96    2103.347 
0.03 4322.146    37.55094    135.8218    1773.67    2103.275 
0.04 4321.756    37.57662    135.7887    1773.59    2102.929 
0.05 4321.617    37.56715    135.7940    1773.52    2102.923 
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Fig 38. The trends in K from high MSYR fit of model for Test Scenario 7. 
 

 
Fig 39. The estimated bias in recruitment from high MSYR fit of model under Test Scenario 7. 
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Fig 40. The trends in K from low MSYR fit of model for Test Scenario 7. 

 
Fig 41. The estimated bias in recruitment from low MSYR fit of model under Test Scenario 7. 
 
Conclusion 
SCAA methods are not of course unsound in principle, however, reliable results depend on choosing an 
appropriate form of model to fit to the data. The existing SCAA can be improved by using (continuous) 
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functions with parameters that can be estimated for describing trends in K, natural mortality, recruitment and 
selectivity.  
    The poor properties of the estimates demonstrated here arise primarily from the amount and type of data not 
being sufficient. In particular the historical data is where the contrast in stock size occurs that makes if feasible 
in principle to estimate some of the parameters of interest. However, the test reported here suggest that the 
historical contrast is relatively uninformative given the amount of data available. The more recent and future 
data are from a period when even less contrast exists or can be expected in relation to population changes. For 
this reason the recent data are not informative about trends in K or MSYR and the collection of further data has 
little effect on improving precision of such estimates. Moreover the estimation of trends in recruitment are 
subject to biases that are sensitive to both model formulation and assumptions about suitable starting points for 
the estimation of MSYR. 
    These trials show that interpreting the results of SCAA models may not be straightforward. The sensitivity of 
the estimates of MSYR to the starting values used in the search is a property of the search algorithm. When the 
data are uninformative for a given parameter the derivative of the objective function with respect to that 
parameter is zero (or very close to it). This means that the search algorithm will not shift that parameter by any 
appreciable amount during the search because it is in effect already at the minimum. Thus the final value tends 
to be anchored to the start value. The variability shown in the results is probably the result of the dithering 
applied when selecting the start values for each replicate, and hence not a proper reflection of the uncertainty of 
the parameter estimate. A similar effect is probably driving the estimated decline in K in Test 7 where no such 
decline should be estimated. If Bayesian methods were to be applied, the posterior distribution of the parameters 
for which there was little or no information would be little changed from the prior distribution, which is a 
potential diagnostic for this issue. Similarly distributions of parameters derived from Monte Carlo Markov 
Chain methods may be adversely affected if the selected proposal distribution does not properly reflect the lack 
of information for some of the parameters. 
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APPENDIX A:  POPULATION DYNAMICS MODEL 
 
Age-Structured Dynamics 
The dynamics model an age-structured model derived from a class library written in C++. A list of the 
parameters used in the model is given in Table E.1. The basic dynamic equations are given by: 

    1, 1 , , , max0 1a t a t a t a tN N C S a a           (A.1) 

with: 

,a tN  number in age class a in year t, 

,a tC   catch in number from age class a in year t, 

 ,a tS   proportion of fish that survive after natural mortality from age a to a+1 in year t 

    ,

, e a tM
a tS         (A.2) 

with: 

,a tM   natural mortality rate at age a in year t. Natural mortality is age dependent and denoted as depending 

and time because it can be specified as being density dependent. The age-dependence is given by a modified 
Siler age-dependent mortality function (an extra parameter is used to defer the onset of higher mortality for the 
older age classes): 

    , 1 2 3, 4 5exp expa t tM a a              (A.3) 

Density dependence in natural mortality arises from: 

   3, 3, 3,0 3, 1
z

t
t K K

B

K
   

          
          (A.4) 

where: 
 3,t   natural mortality at stock biomass Bt, 

 3,K   natural mortality at carrying capacity K 

3,0   natural mortality at negligible stock size 

tB   biomass in year t 

K   biomass at carrying capacity 
 Z density dependent exponent 

 
There is a pooled age class (plus class) at a = amax . For this class: 

    
max max max max max max max, 1 , , , 1, 1, 1,a t a t a t a t a t a t a tN N C S N C S          (A.5) 

Catch-at-age by operation j in year t is estimated (and fitted to observed catch-at-age) using: 

, , , , ,j a t j t j a a tC H s N         (A.6) 

with: 

,j as   age-specific selectivity for operation j, i.e. the proportion of age class a vulnerable to the fishery.  

,j tH   is the proportional harvest rate of operation j in year t, specifically: 
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,
,

, ,
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j t
j t a

a t j a
a
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        (A.7) 

with: 

,j tC   total catch in number by operation j over all ages in year t 

The model is coded so that time can be advanced in arbitrary increments, including zero. Catches can be 
removed at any time step and at as many time steps as required. Different catch series can be removed from the 
population at the same time step, or at different times if required. In the current application the time step used is 
one year. 
The age-specific selectivity can be specified arbitrarily. In this current application two parametric forms of 
selectivity are applied, either a logistic function, or a ‘dome’ shape derived from the product of two logistic 
functions. The logistic function is given by: 

 , 50
,

1

1 j j s
j a g a a

s
e
 




       (A.8) 
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with: 

50sa   age at which 50% of a cohort is vulnerable to fishing from operation j, and  

jg   a constant which determines the rate at which selectivity changes with age. Specifically: 

  
 

95 50, ,

ln(19)
j

j s j s

g
a a




       (A.9) 

with: 

95,j sa    age at which 95% of a cohort is vulnerable to fishing from operation j. 

The ‘dome shaped’ selection function is the product of a logistic and a reverse logistic function:  

     , ,50 50
,

1

1 1j j s j j u
j a g a a h a a

s
e e
  


 

     (A.10) 

Masses at age are calculated using a growth curve and a mass length relationship, that is: 
 2

, , , ,0.5 ( 1) V[ ]B B
a t a t a t a tw AL AB B L L           (A.11) 

with: 
 constants A and B  

,a tL   length at age from the growth curve. This can depend on t because the growth curve can be specified to 

be density dependent 

,V a tL      variance of length at age a in year t. 

It is assumed that 
,V a tL     is well approximated by  2,, LtaL  , where 

L is a constant coefficient of variation 

applicable to the variability of length at age for all ages. Consequently: 

   2
,,,, )1(5.01 L

B
tata BBALw       (A.12) 

The second terms in equations E.9 and E.10 are a “delta method” corrections required because an animal of 
mean length (i.e. from a growth curve) is not an animal whose mass is equal to the mean mass at age. However, 
in this application, in accordance with the common practice, 

,V a tL     is assumed to be zero. 

Length at age is given by a von Bertalanffy growth curve: 

     01 e k a a
aL L  

        (A.13) 

with: 
L   asymptotic mean length at age 

k   rate constant 

0a   intercept 

The proportion of animals sexually mature at each age is given by an ogive  

     50

1

1
a a a

m
e  




      (A.14) 

with: 

50
a   age at which 50% of a cohort is mature and  

   a constant which determines the rate at which maturity changes with age. Specifically: 
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       (A.15) 

with: 

95,j sa    age at which 95% of a cohort is vulnerable to fishing from operation j. 

Stock Recruitment Relationships 
Logistic stock-recruit relationship 
The number of recruits into age-class zero in year t is given by: 

0,
501 exp( ( ))

t
t

t

B
N

B B





 

      (A.16) 

Where tB  is the mature female component of the population and 50B  is the inflexion point of the reversed 

logistic. This model thus has density dependence in fecundity depending on mature biomass. Approximate yield 
curve due to changes in recruitment (given recruits per mature female at K ( K  )) is given by: 
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  (A.17) 

BMSYL is the solution to the following equation: 
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      (A.18) 

where 
 501 exp( ( ))D B B     (A.19) 

MSYR is close to directly proportional to alpha, which is effectively proportional to the recruits per mature 
female at negligible stock size. MSYL is determined by the value of beta, which can be determined by finding 
the root of (equation 0.4) with B fixed at MSYL. Thus the SRR is fully described by the two parameters   and

 . If K is to be varied by a multiple (during minimisation), say K K   then 



  . This preserves MSYR, 

and MSYL retains the same value as a proportion of K  . Given the values of alpha and beta, B50 is given by: 

 50

log 1
KB K





 
 

     (A.20) 

This SRR has the advantage that MSYL can take a wide range of values, similarly to the Pella-Tomlinson, but 
with the further advantage that recruitment does not become negative at stock sizes somewhat above K. This is 
an advantage when fitting models using auto-differentiation because there are no negative recruitments that need 
to be set to zero, which thus avoids discontinuous derivatives that disrupt the minimisation algorithm. 
The model can be specified with a choice of three other commonly used stock recruitment relationships (SRRs); 
Beverton and Holt, Ricker and Pella-Tomlinson. An additional SRR is available that allows depensation in the 
Beverton and Holt model. In this application only the logistic form is used. Fig A1 shows two examples of yield 
curves from the logistic SRR. These are very similar to the shapes of the corresponding yield curves from a 
Pella-Tomlinson model. 
 

 
Fig A1. Two yield curves from the logistic model, with MSYLs of 0.5 and 0.6. 
 
Variability in recruitment 
When required, the effects of recruitment variability can be included by multiplying the numbers of recruits by a 
random lognormal number ρ with an expected value of 1.0 and a specified coefficient of variation (ξR). The 
same random multiplier is used for both males and females at the same age, so that the total recruitment is 
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variable but the sex ratio at each age is not. Recruitment variability can also be driven by multiplying Kt by a 
random number from log-normal distribution. 
Fitting the Model to Data 
The first data to be fitted is the total catch. Although in principle the catches could be taken as given and simply 
removed from the population, it is helpful instead to estimate an annual exploitation rate (as a proportion of the 
vulnerable population). This helps in the minimisation because for some trial values of population size some 
age-classes will go extinct, which leads to discontinuous derivatives and the failure of the search algorithm. The 
total catch in a given year is given by: 

 
max

, , ,
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t j t j a a t
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C h s N


    (A.21) 

Where ,
ˆ

j th  is the estimated exploitation rate in year t for operation (fleet) j. These are essentially a nuisance 

parameters. The observed catches are assumed to have a log normal distribution with a very small, constant CV 
so that in the final estimates the differences between the observed and expected total catches are small. This 
portion of the overall likelihood function is given by: 

       
   

2
2

0

2

1ˆln ln
21

L ln ln 2
2

t

t

t t C
C

C
C

C C

n


 




   
    


Θ C   (A.22) 

 
Where n is the number of non-zero catches, c  is a small number essentially the artificial coefficient of 

variation of the observed catch tC . The other terms represent an additive constant, which could normally be 

ignored, but they are included here so that the relative contributions to the total likelihood have appropriate 
magnitudes. This is the same method as used in the existing SCAA. Fig 1 shows that the catches are estimated 
using this function with negligible error. 
The variants of the model are fitted to the time series of surveys using a log-likelihood function based on the 
assumption that the survey estimates have log-normal distributions with an estimated coefficient of variation. 
The log-likelihood is given by: 

      
    

2
2

1 1 1

1
ln ln E1 2L( ) ln ln 2 ln

2 2

n n n i i i

i i
i i i i

x xn
x


 

  

   
       

 
 

  Θ x   (A.23) 

where: 
 n number of surveys in the series 
 ix    is the ith survey estimate 

 i    estimated standard deviation of the log-transformed survey estimate 

and   ˆE i j ix q N  where jq  is the survey bias correction for survey series j and ˆ
tN  is the modelled 

abundance of the 1+ population in the corresponding survey year t. 
 
The fitting to the catch-at-age data assumes that the data have multinomial distributions, with Log-likelihood 
given by: 
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     Θ n   (A.24) 

Where n is a vector of catches at age in a given year, N is the total sample size of catch-at-age in that year, na is 
catch in age-class a and pa is the modelled probability of catching an animal at that age as determined by the 
modelled age-structure in the given year and the relevant selectivity function. 
The parameter vector Θ ,  is estimated by minimising the sum over the various data types of the negative log 
likelihood functions using a conjugate gradient method (frpmin from the numerical recipes library, Press et al 
1992.) using derivatives calculated by auto-differentiation.  
 
 
 
 
 
 
 
 
 


