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ABSTRACT

Counts of southbound migrating whales off California form the basis of abundance estimation for the eastern North Pacific stock of gray whales
(Eschrichtius robustus). Previous assessments (1967–2007) have estimated detection probability (p) from the detection-non detection of pods by
two independent observers. However, tracking distinct pods in the field can be difficult for single observers; resulting in biased estimates of pod
sizes that needed correcting, and matching observations of the same pod by both observers involved key assumptions. Due to these limitations, a
new observation approach has been adopted wherein a paired team of observers work together and use a computerised mapping application to
better track and enumerate distinct pods and tally the number of whales passing during watch periods. This approach has produced consistent counts
over four recently monitored migrations (2006/7, 2007/8, 2009/10 and 2010/11), with an apparent increase in p compared to the previous method.
To evaluate p and estimate abundance in these four years, counts from two independent stations of paired observers operating simultaneously were
compared using a hierarchical Bayesian ‘N-mixture’ model to jointly estimate p and abundance without the challenge of matching pods between
stations. The baseline detectability powas estimated as 0.80 (95% Highest Posterior Density Interval [HPDI] = 0.75–0.85), which varied with
observation conditions, observer effects and changes in whale abundance during the migration. Abundance changes were described using Bayesian
model selection between a parametric model for a normally distributed common migration trend and a semi-parametric model that estimated the
time trends independently for each year; the resultant migration curve was a weighted compromise between models, allowing for key departures
from the common trend. The summed estimates of migration abundance ranged from 17,820 (95% HPDI = 16,150–19,920) in 2007/08 to 21,210
(95% HPDI = 19,420–23,230) in 2009/10, consistent with previous estimates and indicative of a stable population. 
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et al. 2008), particularly for a single observer using just
hand-recorded entries onto a paper data form. As a result,
matching observations of the same pod by both observers
involved key (and untestable) assumptions and limited
observations of a given pod required corrections for bias in
pod size estimation (Rugh et al. 2008; Laake et al., 2012).
Due to these limitations, a new observation approach has
been developed wherein a paired team of observers work
together and use a computerised mapping application to help
better track distinct pods and tally the number of whales
passing during watch periods (Durban et al., 2010). This
approach has a number of advantages, including open
communication between observers, enabling observers to
search for whales continually without the distraction of
looking down to record data, and easier separation and
tracking of distinct pods due to the precise computerised data
recording and visualisation. As a result, this approach
enables more repeated observations of each pod, leading to
larger (and presumably less biased) estimates of pod size
(Durban et al., 2010) and has produced consistent counts
over four recently monitored migrations (2006/07, 2007/08,
2009/10 and 2010/11), with an apparent increase in p
compared to the previous method (Durban et al., 2011). 

To evaluate p for this new approach, watch period counts
from two independent stations of paired observers operating
simultaneously were compared during two of the four years
(2009/10 and 2010/11), using a hierarchical Bayesian ‘N-
mixture’ model (Royle, 2004) to jointly estimate the
probability of detection and abundance in all four years,
without the challenge of matching pods between stations.
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INTRODUCTION
The eastern North Pacific stock of gray whales migrates
annually along the west coast of North America from high
latitude feeding grounds to winter breeding grounds in the
lagoons and adjacent ocean areas off Baja California, Mexico
(Rugh et al., 2001). This nearshore migration pattern has
enabled repeated abundance estimates from shore-based
counts off Granite Canyon, central California. In 23 years,
between 1967 and 2007, counts of the number of observed
pods travelling southbound have been rescaled using
estimates of pods undetected during watch periods, pods
passing outside watch periods, and night travel rate (Buckland
and Breiwick, 2002; Buckland et al., 1993; Hobbs et al.,
2004; Laake et al., 2012; Laake et al., 1994; Rugh et al.,
2005). Population models based on these estimates indicate
that gray whales have increased substantially in population
size, recovering from whaling operations in the 19th and 20th

centuries, and are now close to carrying capacity and likely
pre-exploitation levels (Punt and Wade, 2012). The most
recent population estimate from abundance counts in 2006/07
was approximately 19,000 whales (Laake et al., 2012).

To facilitate continued population monitoring, the
abundance estimation approach has seen continual evolution
throughout this time series to more realistically estimate
detection probability (p) to link observed counts to true
abundance; this paper describes the latest modification.
Notably, previous assessments have estimated p from the
detection and non-detection of pods by independent
observers using an analytical mark-recapture approach.
However, tracking distinct pods in the field is difficult (Rugh



This ‘N-mixture’ approach has been successfully used to
estimate abundance and detectability from replicate count
data for a range of wildlife species where it has not been
possible to match repeat sightings of individuals (e.g.
Chelgren et al., 2011; Joseph et al., 2009; Kery et al., 2005).
The untility of this approach to extend the time series of
abundance estimates for eastern North Pacific gray whales
is demonstrated in this paper.

METHODS
Data samples
Counts of gray whales were conducted from shore-based
watch stations at Granite Canyon, California, during the
2006/07, 2007/08, 2009/10 and 2010/11 southbound
migrations (see Table 1). Counts were made by rotating
teams of observer pairs using naked eye aided by 7×50
binoculars; the primary observer in the pair kept continual
visual watch while the secondary observer served as a data
recorder but also kept watch and assisted with tracking
already identified pods whenever possible. Each observer
had one 90 minute shift as primary observer, followed by a
second 90 minute shift as secondary observer and then a 90
minute break. Sightings were entered into a real-time data
logging PC program, which had a mapping screen to help
track repeated sightings of the same pod. The map projected
the likely movement tracks (and error ellipses) of the pods
using predicted swimming speeds (1.44–1.95 ms–1), allowing
re-sightings and new sightings to be queried. Up to six lots
of 1.5 hour watch periods were used to cover daylight hours
from 07:30 to 16:30 local time, during which the observers
recorded passing whales and environmental conditions,
specifically visibility (subjectively categorised from 1–6 for
excellent to unusable) and sea state (Beaufort scale). To
control for weather conditions and for consistency with
previous abundance estimations, only counts during watch
periods with acceptable weather conditions throughout their
entire duration were used, specifically visibility code <5
(excellent to fair) and Beaufort Scale <5.

Estimating detection probability
The ‘N-mixture’ approach was used (Royle, 2004) to
simultaneously estimate detection probability pijt and
abundance Njt for each watch period j in each year t, based
on the total aggregated counts nijt of passing whales recorded
by each of i = 1:2 watch stations in each period. The
observed counts nijt were modelled as a binomial outcome
conditional on the unknown true number of whales passing
Njt and the detection probability pijt with hierarchical models
assumed to describe variability in both N and p (e.g.

Chelgren et al., 2011). The power to estimate detectability
was achieved by comparing gray whale counts from two
independent stations of paired observers operating
simultaneously during two years (2009/10 and 2010/11)
from watch stations that were positioned 35m apart at the
same elevation (22.5m) above sea level. In 2009/10 counts
were compared from the two watch stations operating
simultaneously during 70 lots of 1.5 hour watch periods with
acceptable weather conditions, covering 20 different days of
the migration; in 2010/11 simultaneous counts were
available from 94 watch periods over 24 different days (see
Table 1). However, detectability was extrapolated for all
monitored watch periods in each of the four years based on
the fitted model for detectability. In order to accomplish this,
the counts for the south watch station were treated as zero-
inflated binomial outcomes, with the binomial probability
specified as a function uijt pijt where u = 1 or 0 to indicate
whether or not count data were actually collected from that
station, thus ensuring that structural zero counts from periods
without a second watch did not contribute to the likelihood
for estimation of p or N. 

Consistent with Laake et al. (2012), the model for
detectability incorporated fixed effects β for visibility (VS)
and Beaufort Scale (BF), as well as random effects
associated with each observer o in 1:OB observers. These
were modelled as additive effects on a general intercept so
that the direction and magnitude of the estimated effects
away from zero (no effect) could be assessed. The selection
for the inclusion of these effects using Bayesian model
selection with stochastic binary indicator variables g to
switch each of the three possible effects either in or out of
the model depending on their relevance to the observed data
(Kuo and Mallick, 1998):

logit (pijt) = logit(po) + gbf βbf BFjt + gvsβvs VSjt+ gob βob
ijt = o

where the intercept po was the base detection probability in
the absence of covariate effects, assigned a Uniform(0,1)
prior distribution, and logit(po) = ln(po/1–po). Centred around
this base detectability, each of the fixed effects βbf and βvs

was assigned a Normal prior distribution with mean zero and
large standard deviation of 10; this prior value was smaller
than the corresponding posterior estimates of standard
deviation, and as such this was vague prior distribution that
allowed any non-zero effects to emerge if supported. The
random effect for each observer was drawn from a Normal
distribution with mean zero and standard deviation
σob~Uniform(0,10). Each of the binary indicator variables,
g, was assigned a Bernoulli(0.5) distribution to specify equal
probability of inclusion or not of the effect in the model.
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Table 1 

The number of whales recorded during the southbound gray whale surveys from 2006/07 to 2010/11. Data are the total counts, 
hours and distinct days for watches during acceptable observation conditions. 

 North Station  South Station 

Migration Dates Whales Hours (days) Dates Whales Hours (days) 

2006/07 02/01–03/02 2,691 204 (34) – – – 
2007/08 02/01–09/02 2,079 202.5 (34) – – – 
2009/10 30/12–19/02 2,034 246 (43) 11/01–06/02 1,551 105 (20) 
2010/11 03/01–18/02 2,885 265 (45) 10/01–04/02 1,754 141 (24) 



Fitting migration curves
The N-mixture approach also accounted for variation in p
relative to changes in N (latent watch period abundances)
during the migration. So, some power to estimate
detectability was achieved by assuming a model for changes
in watch period abundance over the course of the migration.
A Poisson distribution Njt ~ Poisson(λjt) was adopted as a
hierarchical prior for the distribution of abundances, and a
model was specified for the Poisson mean λ in terms of the
number of whales passing each day (d), with an offset for
the effort duration of each watch period, Ejt in decimal days
(e.g. Laake et al., 2012):

log(λjt) = log(Ejt) + modeld(j)t

modeldt = zdtCommondt + (1–zdt) Specificdt

Days were specified as d = 0 to Dt. In all four years t we used
Dt = 90, where days were counted from 12:00am on 1
December, and we added an abundance of 0 whales passing
for day 0 and Dt to anchor the fitted model when we assumed
whales did not pass (following Buckland et al., 1993).
Estimates from the remaining days were derived from a
mixture (or compromise) of two competing models
(‘Common’ and ‘Specific’, e.g. Li et al., 2012) describing
changes in abundance across each annual migration. The
model contributing each daily estimate was indicated using
stochastic binary indicator variables zdt, each assigned a non-
informative Bernoulli(0.5) prior distribution. As such, each
zdt indicated the probability of a daily estimate conforming
to the common trend, allowing flexibility for departures from
this trend that may only exist on certain days in certain years
to be identified and modelled (rather than assuming all
counts from an entire year conform to or depart from a
common trend, which would be represented by zt). The total
number of whales passing during each migration was then
estimated by summing the expected value from the model-
averaged number of whales passing each day from time 0 to
Dt (e.g. Laake et al., 2012). These estimates were then
rescaled to account for the differential passage rate at night
(Perryman et al., 1999), based on the nine hour day
multiplicative correction factor of Rugh et al. (2005).
Specifically, we applied a constant night time correction
factor that was assumed to be a Normally distributed fixed
effect with mean of 1.0875 and standard deviation of 0.037.

For the ‘Common model’, we assumed a typical trend in
abundance throughout each annual migration (e.g. Buckland
et al., 1993), with abundance changes assumed Normally
distributed around a migration mid-point, with a Normal
distribution specified as a quadratic function of days, on the
log scale: 

Commondt = at + btdt + ctd2
t

where the mid-point of the migration curve for each year t
was derived by –bt/2at. This assumed common migration
curve allowed information to be ‘borrowed’ across years
when needed, specifying association across years to
strengthen inference about migration curves in years with
relatively sparse counts. However, we specified each of the
curve parameters at, bt and ct to be drawn from hierarchical
Normal distributions with means µa, µb, µc~ N(0, 10) and
standard deviations σa, σb, σc ~Uniform(0,10); hyper-

parameters that were common across years, rather than
assuming that the parameters themselves were constant. This
random effects formulation allowed the timing, level and
extent of the Normal migration curve to vary annually
around the general pattern, if supported by the data. 

Although it is likely that there is a typical pattern to the
migration, it was acknowledged that abrupt departures may
occur at any time in any particular year. To incorporate
unusual patterns, the selection of an alternative ‘Specific’
migration model was allowed; a semi-parametric model that
estimated the time trends independently for each year (e.g.
Laake et al., 2012). A method in which the shape of the
relationship of abundance across days was determined by the
data was adopted without making any prior assumptions
about its form, by using penalised splines (Ruppert, 2002).
Following Crainiceanu et al. (2005) a linear (on the log
scale) penalised spline was used to describe this relationship:

Specificdt = S0t + S1tdt + Σm
k = 1 λkt (dt – κkt)

Where S0t, S1t, 1t,…,kt were regression coefficients to be
estimated separately for each year and κ1t <κ2t < … <κkt
were fixed knots. We used m = 15 knots, a relatively large
number to ensure the desired flexibility, and let κkt be the
sample quantile of ’s corresponding to probability k/(m + 1).
To avoid overfitting, the λ’s were penalised by assuming 
that these coefficients were Normally distributed random
variables with mean 0 and standard deviation
~Uniform(0,10). The parameters S0t, S1t were modeled as
fixed effects with Normal(0, 10) prior distributions.

Bayesian inference using MCMC
The multi-level model was fit using Markov Chain Monte
Carlo (MCMC) sampling using the WinBUGS software
(Lunn et al., 2000). Inference was based on 15,000 repeated
draws from the posterior distribution of each model
parameter conditional on the observed data, following 5,000
iterations that were discarded as burn-in. Convergence of
parameters within these initial 5,000 iterations was
determined based on Gelman-Rubin statistics below 1.05
(Brooks and Gelman, 1998) calculated from three
independent chains begun from over-dispersed starting
values. To gauge the adequacy of the model for each annual
set of count data, Bayesian P-values were computed (Gelman
et al., 1996) by using the same MCMC sampler to predict a
distribution for each watch-period count from the posterior
estimates of model parameters and comparing the total
predicted and observed counts. For each year, there was good
agreement between the model predictions and observed
counts, with Bayesian P-values ranging from 0.45 to 0.53;
values close to 0.5 would indicate that the data was
consistent with replications under the model, with the
distribution of the predicted count symmetrically
overlapping the observed count (Gelman et al., 1996).

The MCMC sampling approach allowed uncertainty to be
propagated across levels of the model. Notably, estimates of
parameter values across MCMC iterations were used to
estimate the probability of inclusion of covariate effects in
the model for detectability, given by the posterior probability
p(g = 1) of each indicator variable g. Fitting and selection of
the two competing migration models was achieved within
the same MCMC run using the ‘cut’ function in WinBUGS
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to ensure that estimation of the two models was not affected
by the selection of the model indicator (e.g. Li et al., 2012).
The posterior probability of conforming to the common trend
model was then calculated by the relative frequency that each
model was selected by the indicator zdt in the overarching
mixture model, and inference about abundance on each day
was based on a weighted compromise between the
competing models by sampling across the posterior
distribution of zdt. 

RESULTS
The base detectability was estimated as po = 0.80 (95%
Highest Posterior Density Interval [HPDI] = 0.75–0.85),
which was modified by observation conditions and observer
effects (see Table 2). The posterior distribution for the effect
of sea state βbf, measured using the Beaufort scale, largely
overlapped with zero and there was therefore low support
for including this effect in the model with p(gbf = 1) = 0.004.
In contrast, there was a relatively strong negative effect of
visibility on detectability (higher visibility code = lower
visibility = lower detectability), with the entire distribution
for βvs falling below zero [p(gvs = 1) = 1]. There was also
support for inclusion of observer effects [p(gbs = 1) = 1], with
both positive and negative effects reflecting relatively high
and low counts by different observers. A total of 35 different
observers were used over 4 years between North and South
stations; 15/35 counted in multiple years (2 years = 7, 3 years
= 4, 4 years = 4). The Posterior medians for observers’ effects
ranged from –0.59 to 0.80, but only five observer effects (all
positive) had posterior distributions that did not include zero.

Detectability also varied with changes in whale abundance
during the migration, as shown by the extent of extrapolation
from the daily summed counts (effort adjusted) to the

estimated daily abundances (Fig. 1). Detectability declined
with increasing abundance, with a greater proportion of
whales estimated to be missed as more whales passed during
busy watch periods. In general, changes in abundance during
the migrations were adequately described by a Normal curve
over time, but there was greater uncertainty in the tails of the
distribution resulting from generally sparse coverage. The
Normal trend was useful for comparing migration timing:
the median of the curve midpoints was 53.5 days since
December 01 (23–24 January), ranging between 49–57 days.
However, there were some notable deviations from the
Normal trend, with estimates from the year-specific non-
parametric trend model being favoured for some days in each
of the four years. In particular, there was a high probability
in favour of the Specific model [p(z = 0) >0.75] on 9 days in
2006/07, 9 days in 2007/08, 16 days in 2009/10 and 11 days
in 2010/11, representing key departures from the Normal
migration trend. The summed (model-averaged) estimates of
migration abundance ranged from a posterior median of
17,820 (95% HPD = 16,150–19,920) in 2007/08 to 21,210
(95% HPDI = 19,420–23,230) in 2009/10, consistent with
previous estimates (Fig. 2). These new estimates were also
relatively precise with coefficients of variation (CV =
Posterior Standard Deviation/Posterior Median) ranging
from 0.04 to 0.06 (median = 0.05), but nonetheless the 95%
HDPI’s of all four estimates overlapped. 

DISCUSSION
The new counting method adopted here was intended to
reduce reliance on the ability of single observers acting
independently to record and track distinct whale groups. By
adopting teams of paired observers working together, with
the benefit of a real-time computerised tracking and
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Table 2 
Parameters of models for detectability, p. All estimates are presented as the 2.5%, 50%, 97.5% highest density posterior probability intervals, plus the 
probability of inclusion in a model (if tested), given by the posterior probability p(g = 1) of each indicator variable g. Observers are arbitrarily numbered, 
differently for each year. 

Detection model 2006/07 2007/08 2009/10 2010/11 

po 0.75, 0.80, 0.85 0.75, 0.80,0.85 0.75, 0.80,0.85 0.75, 0.80,0.85 
bf [p(gbf = 1)] –19.34, –0.003, 19.98 [0.004] –19.34, –0.003, 19.98 [0.004] –19.34, –0.003, 19.98 [0.004] –19.34, –0.003, 19.98 [0.004] 
vs [p(gvs = 1)] –0.38, –0.30, –0.20 [1] –0.38, –0.30, –0.20 [1] –0.38, –0.30, –0.20 [1] –0.38, –0.30, –0.20 [1] 
ob [p(gbs = 1)] 0.26, 0.37, 0.54 [1] 0.26, 0.37, 0.54 [1] 0.26, 0.37, 0.54 [1] 0.26, 0.37, 0.54 [1] 

Observer 1  –0.36, 0.02, 0.49 0.03, 0.37, 0.81 –0.42,–0.24, 0.06 –0.13, 0.08, 0.30 
Observer 2 0.03, 0.37, 0.81 –0.78, –0.03, 0.70 –0.09, 0.30, 0.81 –0.36, 0.02, 0.46 
Observer 3 –0.24, –0.07, 0.11 –0.24, –0.07, 0.11 0.03, 0.37, 0.81 –0.42, –0.24, 0.06 
Observer 4 –0.42, –0.01, 0.49 –0.42, –0.24, 0.06 –0.13, 0.08, 0.30 –0.25, 0.01, 0.29 
Observer 5 –0.04, 0.14, 0.35 –0.13, 0.08, 0.30 –0.24, –0.07, 0.11 0.16, 0.43, 0.73 
Observer 6 0.06, 0.42, 0.83 –0.04, 0.14, 0.35 –0.27, –0.06, 0.18 –0.04, 0.14, 0.35 
Observer 7 –0.17, 0.11, 0.46 –0.18, 0.19, 0.61 –0.04, 0.14, 0.35 –0.50, –0.13, 0.26 
Observer 8 –0.39, –0.16, 0.07 –0.17, 0.11, 0.46 0.12, 0.33, 0.59 –0.39, –0.16, 0.07 
Observer 9 0.12, 0.33, 0.59 0.12, 0.33, 0.59 –0.25, 0.01, 0.29 –0.09, 0.23, 0.60 
Observer 10 – –0.39, –0.16, 0.07 –0.08, 0.26, 0.64 –0.27, –0.06, 0.18 
Observer 11 – – –0.71, –0.43, 0.13 0.31, 0.80, 1.46 
Observer 12 – – –0.66, –0.37, 0.07 –0.54, –0.29, 0.04 
Observer 13 – – –0.42, 0.00, 0.49 –0.75, –0.22, 0.33 
Observer 14 – – –0.63, –0.13, 0.40 0.12, 0.33, 0.59 
Observer 15 – – 0.31, 0.80, 1.46 –0.73, –0.29, 0.14 
Observer 16 – – –0.18, 0.19, 0.61 –0.18, 0.19, 0.61 
Observer 17 – – 0.16, 0.43,0.72 –0.70, 0.02, 0.76 
Observer 18 – – –0.39, –0.16, 0.07 –0.63, –0.13, 0.40 
Observer 19 – – –0.22, 0.22, 0.72 –0.83, –0.59, 0.36 
Observer 20 – – –0.28, 0.14, 0.59 –0.24, –0.07, 0.11 
Observer 21 – – –0.18, 0.28, 0.83 –0.21, 0.11, 0.47 
Observer 22 – – – –1.05, –0.49, 0.06 
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Fig. 2. Gray whale abundance estimates for each of 23 southbound migrations with an end year between 1967 and 2007 (open circles, with 95% confidence
intervals; from Laake et al., 2012) together with the four recent migrations reported here (closed circles show posterior medians, lines are 95% highest
posterior density intervals). 

Fig. 1. Observed whale passage rates expressed as total counts per day/ proportion of day observed (circles) and fitted migrations models (lines) for the four
southbound gray whale migration counts from 2006/07 to 2010/11. Solid circles represent counts from a second watch station, when operating. The broken
line represents the median estimates from a hierarchical Normal model for migration and the solid line represents a semi-parametric model of penalised
splines; the abundance estimate for each day (95% highest posterior density interval shown by vertical lines) is a model averaged compromise between the
migration models, and these were summed to estimate the overall abundance for the migrations.



visualisation tool, this approach has proved successful in
increasing detection probability (Durban et al., 2011) and
also reducing variability in detections due to observer effects.
Although still present, the magnitude of observer effects
estimated from the new counts (see Table 2) was generally
not as great as those apparent with the traditional counting
approach (see Laake et al., 2012, table 7).

Furthermore, our method for estimating detectability
departed from the mark-recapture approach of matching
detections and non-detections of specific pods by
independent observers. Instead, inference was based on total
watch period counts that were not sensitive to differential
lumping and splitting of pods by observers, and avoided the
assumptions required to match observed pods between pairs
of observers. As an alternative to the mark-recapture analytic
approach, we have shown how tallied watch period counts
from two observer pairs counting simultaneously can lead to
similar inference when analysed using with the N-mixture
approach (Royle, 2004). 

The N-mixture approach is conceptually simple: multiple
observations of watch period counts, n, from the different
observer teams represented different samples from an
unknown binomial distribution with total population size N
and detection probability p. A binomial likelihood function
could then be easily used to estimate N and p from the
sample of n’s. Although there were only a maximum of two
samples of N during any specific watch period, a large
sample of n’s was built up across many watch periods,
allowing the estimation of the parameters. Layered on top of
this core estimation process were both a trend model for true
daily abundance through time based on the migration pattern
and a model for how detection varied according to
environmental conditions and different observers.
Specifically, a hierarchical model fit to the replicate count
samples allowed us to link detectability to key covariates, as
in previous gray whale assessments (e.g. Laake et al., 2012),
and also extrapolate detectability based on these covariate
relationships for watch periods without replicate counts.
Similarly, by assuming a common underlying model for the
migration pattern, this approach notably accounted for
variation in p relative to changes in abundance N during the
migration. Furthermore, this joint modelling of data from
multiple years allowed the borrowing of strength across
years to better parameterise the migration during years with
sparse data. 

Previously, two contrasting approaches have been used to
model changes in abundance over the course of the annual
gray whale migration: either by assuming a parametric model
to determine the shape of the migration curve (Buckland et
al., 1993) or by fitting a non-parametric smoother to allow
the data to determine the trend in abundance over time
(Laake et al., 2012). Here we drew on elements of both these
approaches in a flexible framework using Bayesian model
selection between a parametric model for a common
migration trend and a semi-parametric model that estimated
the time trends independently for each year; the resultant
migration curve was a weighted compromise between
models, allowing for key departures from the common trend.

The abundance estimates produced for 2006/07, 2007/08,
2009/10 and 2010/11 were internally consistent, consistent
with previous estimates and indicative of a stable population

(Fig. 2). The 95% HDPI’s of all four estimates overlapped,
and there was substantial overlap between the 95% HDPI
from the 2006/7 estimate with the 95% confidence intervals
of the estimate for the same migration produced using the
previous counting and estimation approach (Laake et al.
2012). Further, our estimates are very similar to the
predictions of Punt and Wade (2012) based on assessment
models for the full time series; their baseline model
prediction for 2009/10 had 90% posterior density intervals
ranging from 17,726 to 23,247; the posterior distribution for
our 2009/10 estimate was centered within these intervals at
21,210 (95% HPDI = 19,420–23,250). It is noteworthy that
the estimates produced using our approach were relatively
precise with CVs ranging from 0.04 to 0.06 (median = 0.05)
in contrast to CVs ranging from 0.06 to 0.09 (median = 0.08)
for the 23 previous estimates.

This consistency provides a level of confidence in our
approach and resultant estimates, but nonetheless there are
limitations to address. Our approach makes a number of
important modelling assumptions, both in terms of
distributional forms and model structure. It was assumed that
the detectability relationships described by modelling
repeated counts during two years were also applicable in the
remaining two years with no replicate counts. We also
assumed observer effects remained constant, although in
reality this may change with experience. Additionally, the
definition of what constituted the common migration trend
was dependent on the joint modelling of just four years of
data, and precise inference about the shape of the migration
curve relies on count data being collected from throughout
the migration time span. During at least 3/4 of the years
reported here, count data were sparse (or non-existent)
during the tails of the migration, resulting in uncertainty over
the shape of the abundance curve. While this uncertainty was
propagated into inference about overall abundance in our
Bayesian inference using MCMC sampling, the resulting
imprecision will ultimately constrain power to detect
between-year changes in migration patterns and abundance.
Data collected during further migrations will be incorporated
into this hierarchical model and therefore used to refine
parameter estimates; this will benefit from replicate counting
experiments, repeated when possible. As the time series
grows, specific goodness-of-fit tests should be adopted to
investigate aspects of model structure and suggested changes
as necessary.

There are also practical considerations as well as
modelling assumptions. Previous work has shown that the
new counting approach produces estimates of pod size that
are typically larger (and presumably less biased) than the
traditional counting approach (Durban et al., 2010), likely
because the computerised tracking software facilitates more
repeated observations of the same groups. In fact, it has been
assumed that estimates of pod size using this observation
approach are effectively unbiased and have not been rescaled
to tally watch period counts. This is an assumption that
remains to be tested, but suitable calibration experiments are
difficult to design and implement, particularly due to the
inherently subjective differences between observers in
lumping and splitting whales to define groups. Similarly,
although observer effects have been accommodated in the
model for detectability, it is clear that too many observers
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(35 in total) counted too infrequently to allow precise
parameterisation of their relative effects on detectability in
many cases. This will have resulted in further imprecision.

Although there may be field protocols that could be
adapted to address these limitations within the current
approach, further modernisation of the observation process
is recommended. Specifically, more accurate information
could be gleaned from observations recorded with high-
definition video files to allow subsequent review and re-
review, rather than relying on instantaneous assessment by
visual observers. The use of infra-red sensors would further
allow for 24 hour monitoring (e.g. Perryman et al., 1999)
and provide greater coverage of the entire migration during
acceptable weather conditions; automated blow detectors
(e.g. Santhaseelan et al., 2012) can be developed to eliminate
observer effects and standardise detectability to provide
counts with minimal (and quantifiable) bias. These
extensions would further serve to build a more robust and
automated observation model to combine with the flexible
abundance model for the migration process described in this
paper.
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