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ABSTRACT
Data are presented on the hiomagnification rates, accumulation and concentrations of metals in 
cetacean species. Concentrations of metals predominantly occur in the soft tissues, although zinc 
and lead concentrate in the skin and bones. Rates of uptake are dependent upon metal availability, 
the species' dietary preference and chemical reactions between contaminants. Differences in 
concentrations occur according to the sex and age of the animal, with certain metals displaying 
age-related trends. Mercury is the only metal which shows both biomagnification at all levels of 
the food chain and a positive correlation with age at all stages during a cetacean's life. Differences 
in concentrations occur between baleen species and toothed cetaceans. Levels tend to be lower in 
baleen whales, primarily due to a shorter food chain (resulting in lower bioconcentration factors) 
and as the principal prey species are taken from lower parts of the food chain. A number of storage 
and detoxifying mechanisms have been recorded in many species that may alter the effects of high 
metal concentrations. Data on the effects of metal toxicity in cetacean species are sparse, but 
tolerance limits have been proposed for mercury and cadmium. These are compared with high 
concentrations recorded in certain species and possible effects extrapolated. Effects of toxicity 
may alter depending on the species, age and sex of the animal, but indications of toxic effects have 
been reported. Finally, the possibility of determining regional hot-spots, where background 
pollution levels are high, from concentrations of mercury reported in cetacean species, are 
examined.
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INTRODUCTION

This paper is a review of the literature on the incidence of metals in cetacean species, and is 
intended to provide a focused addition to previous reviews by Wagemann and Muir (1984) 
and Law (1996) on metals in all species of marine mammals. The paper is intended to provide 
an overview of bioaccumulation rates, concentrations and effects of metals in cetacean 
species. Firstly, the major routes of uptake and site specificity of metal concentrations will 
be examined. A comparison will then be made between concentrations of metals on three 
levels: at an individual animal level; an intra-species level; and at the sub-order level between 
Odontoceti and Mysticeti. Known associated physiological effects of these concentrations on 
cetaceans will then be analysed following a review of the reported detoxification 
mechanisms.

However, difficulties arise in attempting to interpret data, particularly regarding the 
significance and possible effects of levels recorded. Firstly, data tend to be limited to certain 
species and certain metals. Although data are presented on levels of lead, cadmium, zinc, 
selenium, manganese, iron and copper, the majority of research has focused on mercury (see

1 A version of this paper was presented to the IWC Scientific Committee as SC/46/O 20.



126 DAVID BOWLES: EFFECTS OF METALS IN CETACEAN SPECIES

Appendix 1). Moreover, research has concentrated on particular species, such as toothed 
cetaceans, and in particular regions, for instance the Northwest Pacific and North Atlantic 
Oceans (Appendix 1). Secondly, it is problematic to compare data which have used different 
sampling, measuring and analytical techniques, and whose results are presented in different 
formats, such as wet or dry weight, original data, ranges, means or medians. Moreover, data 
may originate from samples of both freshly killed and stranded cetaceans, the latter likely to 
present altered levels of metal burdens. Thirdly, differences may occur in concentrations of 
metals due to factors such as the species' diet, age and sex, but this information is often 
lacking, particularly on the age of the sampled animal. Finally, as research on the effects of 
metal burdens on cetacean species is fairly recent, there are few long-term databases that can 
be used to depict trends and effects of metals on cetaceans.

As top predators, cetaceans can be affected by metals in two distinct ways. Firstly, they 
may suffer the direct effects from bioaccumulation through the marine food chain and, 
secondly, they may be indirectly affected by a reduction in prey availability caused by metal 
toxicity in species at lower trophic levels. This study will consider only the former.

Finally, the pattern of geographical variation in the metal levels found in cetaceans from 
different regions is examined.

OVERVIEW OF METALS
Two broad groups of metals are recognised: 'essential' and 'non-essential' metals. Essential 
metals are those which have a clearly documented and defined function in the body and life 
of a species. Species require relatively low levels of these metals as an integral part of certain 
biological and biochemical processes, and a deficiency in them will result in negative effects. 
Disease and other negative effects may also develop if the concentration of the metal exceeds 
the level that the species requires or is able to store. Essential metals tend to show less 
variation in concentrations and burdens within and between species because organisms are 
able to regulate them. Research has established that copper, iron, selenium and zinc all fulfil 
vital functions and can therefore be defined as essential metals (Thompson, 1990; Law, 
1996).

Non-essential metals are those which have little or no known recorded biological function 
in a species. These metals, which include mercury, lead and cadmium, are often toxic even 
at relatively low concentrations.

Metal contamination occurs from natural and anthropogenic sources. The former include 
geological weathering and volcanic activity, e.g. high levels of mercury are expelled from 
sub-marine volcanic activities (Piotrowski and Coleman, 1980). Man-made sources of 
metals are predominantly from waste disposal, leakage from mining operations, the 
production, use and disposal of chemicals including pesticides, the burning of fossil fuels and 
the use of anti-fouling paints on shipping.

CONCENTRATION DIFFERENCES AT INTRA- AND INTER-SPECIES LEVELS
Levels of metals in cetaceans are the net difference between uptake of the metal and any 
subsequent loss, such as excretion of the metal. A number of factors affect rates of uptake and 
bioaccumulation. These include: the subject metal, its specification, inter-metal competition 
for available body sites, inter-metal synergistic effects; and the subject organism and its 
biological characteristics, particularly sex, age and diet.

There are three routes for the uptake of metals into cetacean bodies. The principal one is 
dietary, but accumulation has also been reported through the skin and into the lungs (Augier 
et al.. 1993; Law, 1996). The skin is probably of little importance as cetacean skin is an 
effective barrier and direct bioaccumulation by the cutaneous route probably only occurs
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when lesions are present (Andre etal., 1990). The pulmonary route is also not that significant 
although direct incorporation of metals may also occur from those present in the atmosphere 
(Andre et al., 1990; Augieretal., 1993). The bioaccumulation and biomagnification of metal 
compounds in cetaceans primarily occurs through diet, and will vary on a species-specific 
and metal-specific basis.

Bioaccumulation rates
Muir et al. (1992) calculated bioaccumulation rates for mercury and cadmium from a 
relatively simple food web in the Arctic as shown in Table 1.

The data displayed in Table 1 show that only mercury has a consistently high 
biomagnification factor (BMP) throughout the marine food chain. BMFs from seawater to 
cetaceans for mercury have been reported in only two cases. These are from seawater to the 
liver of minke whales (4.3 X 104 ) in the Antarctic (Honda et al., 1987), and from seawater 
to the livers of narwhals (3.5 X 10s ) from the Arctic (Muir et al., 1992). However, Viale 
(1974) and Augier et al. ( 1993) calculated a lower mercury BMP of between 100-1,000 times 
in aquatic food chains, and their figure of a BMP of 4-8 times between fish and cetaceans is 
also considerably lower than that reported by Muir et al. ( 1992) who quote a value of 305 for 
fish to narwhal. The majority of mercury concentrations reported in marine species are of the 
organic form, methylmercury (Lindberg et al., 1987; Andre et al., 1990), which is highly 
lipophilic, therefore readily accumulated in the fatty tissues offish and cetacean species, and 
consequently easily transferred along the food chain.

Cadmium BMFs have been reported from seawater to the liver of minke whales in 
Antarctica (5.5 X 105 ; Honda etal., 1987) and to the liver of narwhals in the Arctic (4 X 106 ; 
Muir et al., 1992). These high values are due to the species' reliance on prey which are rich 
in cadmium. However, as Table 1 shows, a high BMP does not occur at every stage in the 
food chain. This confirms other reports that the highest concentrations of cadmium are 
recorded at the phyto- and zooplankton trophic level (Furness and Rainbow, 1990).

There are few published BMFs for other metals, although Muir et al. ( 1992) stated that the 
BMP for lead was low between fish and small cetaceans (Table 1).

Table 1
Biomagnification factors for certain metals in the Arctic food chain as calculated by 

Muir et al., 1992.

Water-algae Algae-copepods Amphipods-fish Fish-small cetacean

Cadmium 2.4x10! 1.1 0.04 80
Mercury - - 163.0 305
Lead - - - 0.07

Site specificity of burden levels
As diet is the main source of uptake of metals in cetaceans, this will affect the pattern of site 
distribution of these concentrations recorded in the cetacean body. Metals ingested will be 
transported via the blood system to the soft tissues, so it is expected that these tissues would 
contain higher concentrations (Andre et al., 1990).

Table 2 presents data recording the tissue or organ for fourteen species where the highest 
mean concentration of a particular metal was recorded. It shows that in the majority of baleen 
and toothed species, the liver consistently contained the highest concentrations of mercury,
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Table 2
Tissue specificity for seven metals and thirteen species, showing the tissue containing the highest mean 

concentration. Li: Liver, Ki: Kidney, Sk: Skin, Bo: Bones, Bl: Blood, Mus: Muscle, ND: No data reported.

Species

Spotted dolphin
Stenel/a attenuate!
Striped dolphin
Stenella coeruleoalba
White whale
Delphinapterus leucas
Narwhal
Monodon monoceros
Fransiscana
Pontopuria blainvillei
Ganges river dolphin
Platanista gangetica
DalPs porpoise
Phocoenoides dalli
Long-finned pilot whale
Globicephala melas
White-beaked dolphin
Lagenorhynchus albirostris
Pygmy sperm whale
Kogia breviceps
Minke whale
Balaenoptera acutorostrata
Cuvier's beaked whale
Ziphius cavirostris
Fin whale
Balaenoptera physalus
Harbour porpoise
Phocoena phocoena

Hg

Li 1

Lr"

Li9' 14

Li3 ' 14

Li 4

ND

Li 10

L, 8

Li 8

Li 4

Li 14

ND

Li 7

Li 15' 16

Cd

ND

KiM3

Ki' 4J "

Ki»' 14

Ki4

Ki 5

Ki 10

Ki 8 -' 2

Ki 8

Ki 4

Ki 14

Li/Ki 18

ND

Ki 15 - 16

Se

ND

Ki"

Li 14' 19

Li 3 ' 14

ND

ND

ND

Li s12

Li 8

ND
Ki' 4

ND

ND

Sk 16

Zn

ND

Li 6' 13
Sk/Bo 17
Mus' 4
Ki 19
Ki 14

Li 4

Li 5

Sk 10

Li8 ' 12

Li8

Ki4

Li 14

Li/Ki' 8

ND

Sk"

Cu

ND

Li6

Li 19

Li 3

Li4

Li5

Li 10

Li 12
Ki/Li8
Li 8

Li 4

ND

Li 18

ND

Li 16

Fe

ND

Li 6

ND

ND

ND

Li 5

BI'°

ND

ND

ND

ND

Li 18

ND

ND

Pb

ND

Li6

Ki' 9

Li"

ND

Ki5

Sk/Bo'°

Li8

Li/Ki8

ND

ND

ND

ND

ND

'Andrew a/., 1990. 2Augier eta!., 1993. 'Wagemann eta/., 1983. "Marcovecchio eta!., 1990. 5 Kannan etal., 
1993. 'Honda el al, 1983. 7 Sanpera et al, 1993. 8 Muir et al, 1988. "Wagemann et al., 1984. '"Fujise el al., 
1988."ltanorta/., 1984a. "Caurant etal., 1993. "Honda and Tatsukawa, 1983. ' 4Hansen et a!., 1990. 
"Teigen et a!., 1992. "Paludan-Mullere/a/., 1993. "Honda etal., 1986a. ' 8Knap & Jickells, 1983. 
"Wagemann et al., 1990.

iron and copper. In many of these species the second highest concentration was reported in 
the kidney.

Andre et al. (1990) and Augier et al. (1993) report that mercury concentrations in the 
striped dolphin (Stenella coeruleoalba) declined in the following order: liver > spleen > 
blubber, kidney, pancreas > stomach, lungs > skeletal muscles, intestine, heart, brain, skin 
S: melon fat, blood.

Differences in concentrations between tissues can be high. In a study of mercury levels in 
spotted dolphins (Stenella attenuata) in the Pacific Ocean, Andre etal. (1990) reported that 
95% of the burden analysed in 18 different tissues and organs was in the liver, skeletal 
muscle and blubber; levels in the liver (62 u,g.g- ' the highest concentrations) were 1 70 times 
higher than those in the blood, which contained the lowest concentrations (0.36 ng.g-') and 
were six times higher than those in the spleen (which contained the second highest 
concentration). Similar differences have been reported for other species. In long-finned pilot 
whales (Globicephala melas) hepatic concentrations were ten times higher than those in the 
kidney, which contained the second highest concentration, and in white-beaked dolphins
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(Lagenorhynchus albirostris) the concentations were three times higher than those in the 
kidney (Muir et al., 1988). Similar differences in concentrations have been recorded between 
other body sites. For instance, mercury concentrations were 25 times lower in the melon than 
in the muscle of striped dolphins from the Mediterranean (Andre et al., 1991).

The kidney contained the highest cadmium concentrations in all species recorded in Table 
2. These concentrations were also significantly higher than those reported in the liver, which 
generally contained the second highest concentrations. For instance, mean renal cadmium 
concentrations were four times higher than those in the liver in striped dolphins from the west 
Pacific Ocean (Honda et al., 1983), four times higher in harbour porpoises (Phocoena 
phocoena) from Greenland (Paludan-Muller et al., 1993) and three times higher in narwhals 
(Monodon monoceros} from Greenland (Hansen et al., 1990). The high concentration of 
cadmium in the kidney may be connected to the presence of certain storage mechanisms 
using cadmium metallothionein protein (Fujise etal., 1988; Marcovecchio et al., 1990). This 
will be discussed further under the section on detoxifying strategies.

Table 2 also shows that high concentrations of certain metals are reported in the skin, 
blood and bones. Zinc concentrations were highest in the skin and bones in studies where all 
the organs and tissues were analysed, and highest in the liver where only soft tissues were 
analysed. Only in white whales (Delphinapterus leucas) sampled around Greenland were the 
highest concentrations found in the muscle (Hansen et al., 1990). Large differences were also 
reported between the organ or tissue containing the highest and second highest 
concentrations. In two Dall's porpoises (Phocoenoides dalli) from the western Pacific 
Ocean, over half the total body burdens of zinc recorded were in the skin and similarly zinc 
concentrations in the skin of harbour porpoises from Greenland were seven times higher than 
those found in the liver (Paludan-Muller et al., 1993).

There are few comparative data between tissues for other metals (Table 2). High lead 
concentrations (40% of total burdens) were recorded in the skin and bones of Dall's 
porpoises (Fujise et al., 1988), and high iron concentrations were reported in the blood and 
lungs of the same species. Selenium accumulation varies. Only one study has analysed 
selenium concentrations in all organs and tissues (Paludan-Muller et al., 1993), and this 
found that the highest concentration occurred in the skin, five times greater than those in the 
kidney. Other studies, solely of soft tissues, recorded the highest concentrations to be in the 
liver, unsurprising in view of the strong correlation selenium displays with mercury 
concentrations.

Intra-species differences in concentrations
Two examples of intra-species differences in concentrations are given in Tables 3 and 4. 
Hepatic concentrations of mercury are several factors higher in minke whales from the Arctic 
than the Antarctic, the maximum concentrations in minke whales from the former region 
being 20 times higher than the maximum recorded in the Antarctic region. However, 
cadmium concentrations showed the reverse relationship. Maximum concentrations in 
Antarctic minke whales were about 20 times those recorded in the Arctic (Table 3).

The major difference between minke whale populations in the Arctic and Antarctic is their 
diet. Arctic minke whales feed principally on sand eels, Ammodytes, (Hansen et al., 1990) 
whereas those in the Antarctic feed primarily on krill, Euphasia spp. (Honda et al., 1987). 
Higher concentrations of cadmium and lower ones of mercury are found in krill when 
compared to fish (Honda et al., 1987) and these differences are reflected in the 
concentrations outlined in Table 3. Honda et al. (1987) also stated that differences in the 
length of the food chain between the two regions may be relevant. The food chain in the 
Antarctic is short, providing less opportunity for biomagnification.
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Table 3
Range and means of hepatic concentrations of cadmium and mercury in the minke

whale population from three different areas (ng g" 1 wet weight). ND: No data recorded.
'The figure is the median, not the mean.

Greenland 1 Arctic2 Antarctic 3

Cadmium

Mercury

ND

70-410
180

500-1,450900'

140-2,680390'

2,200-33,000

20-129
46.5*

'Johansene/a/., 1980(«:6). 2Hansen«o/., 1990 (n: 24). 'llonda et al, 1987 (n: 135).

Table 4
Cadmium and mercury concentrations in the livers of harbour porpoises from two 

different areas (ng g"' wet weight).

Greenland 1 UK coast2

Mercury 

Cadmium

'Paludan-Muller et al,

range=0.48-20.7 
mean=6.23 

range=0.06-11.7 
mean=4.29

1993 (n: 43). 2 Law et a/., 1991 (n: 20).

range=0.6-150 
mean=13.8 

range=0.03-1.2 
mean=0.18

Table 4 shows differences in mercury and cadmium concentrations in two discrete 
populations of harbour porpoises. Cadmium levels in those from Greenland were 
significantly higher than those found around the UK (by more than 20 times) but mercury 
concentrations were about half those from UK porpoises. The reason for this is less apparent 
than the minke whale example shown above, but may be due to higher mercury levels found 
in the environment around the UK and the fact that porpoises from Greenland feed on fish 
which contain higher cadmium levels than fish species found around UK coasts 
(Paludan-Muller et al., 1993).

Differences in concentration levels between toothed and baleen cetaceans
Table 5 shows differences in the cadmium and mercury bioconcentration factors between 
odontocetes and mysticetes. Both in the Arctic and Antarctic they were higher in odontocetes 
than in mysticetes. This is clearly reflected in the concentration of metals in tissues. Honda 
et al. (1983) recorded a range of mercury concentrations in the liver of striped dolphins from 
the western Pacific Ocean (Table 6) of 1.7 (ig-' to 485 [xg.g ' (mean: 205 ^g.g-') whereas 
Honda et al. (1987) reported concentrations in the livers of minke whales in the Antarctic 
from 0.02 (ig.g-' to 1.3 (Ag.g~' (mean: 0.4 (ig.g- 1 ), a difference of over 500 times. Other 
baleen whales, such as bowhead whales sampled in the Arctic, show similarly low mercury 
levels (Byrne ct al., 1985). Indeed generally, the minimum concentration of mercury in the 
liver of toothed cetaceans is higher than the maximum concentration recorded in baleen 
whales.

Three principal reasons explain these differences (Honda ct al., 1987): (1) diet: toothed 
cetaceans' greater reliance on fish as a prey species; (2) geography: toothed cetaceans' 
predominance in coastal areas; and (3) length of food chain: toothed cetaceans' position as 
a top predator in longer food chains than those found in baleen whales.
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Table 5
Bioconcemration factors for three metals from sea water to cetaceans (concentrations 

measured in the livers of narwhals and minke whales). ND: No data recorded.

Cadmium Mercury Lead

Odontoceti 1 4.0x10" 3.0x10' 1.9xl03 
Mysticctr 5.5x10' 4.3xl04 ND

'Arctic ecosystem: Muireta/., 1992. Antarctic ecosystem: Honda et al., 1987.

Table 6
Tentative trends in the relationship of the concentrations of nine metals with age category in the liver of

striped dolphins from the west Pacific Ocean, (data taken from Honda el al., 1983.) +ve: increase in
concentration in this age bracket; -ve: decrease in concentration in this age bracket; -: no discernible change in

concentration recorded; ND: no data recorded.

Age of cetacean

Gestation period
Suckling (calf)
Up to 8 years
Adult

Fe

+\e
-ve
+ve

-

Zn

+ve
+ve
-ve

-

Pb

+ve
+ve

-
+ve

Mn

+ve
+ve
-ve

-

Ni

ND
+ve

-
+VC

Cd

_
+ve

-
+ve

"8

+ve
+VC

+ve
+ve

Se

ND
ND
+ve
+ve

Cu

+ve
+ve
-ve

-

Focardi et al. (1992) reported levels of mercury in baleen and toothed cetaceans from the 
Mediterranean Sea, the geographical region where the highest burden of mercury in a small 
cetacean has been recorded. Levels of mercury and cadmium were on average 5-20 times 
lower in baleen whales and three times lower than those recorded in toothed cetacean species 
in the same locality (Focardi et al., 1992). Indeed small cetaceans have recorded levels of 
mercury and selenium which are higher than in any other organism (Koeman et al., 1973; 
Andre et al., 1991).

Although accumulation rates and concentration levels for most metals are generally lower 
in baleen whales, as reported earlier, species-specific differences can occur as a result of diet. 
Cadmium levels are usually higher in krill than in fish (Thompson, 1990; Hapke, 1991) and 
this explains the comparatively higher cadmium levels present in the krill-eating minke 
whales from the Antarctic than in the fish-eating cetaceans from the Pacific Ocean (Honda 
etal., 1987).

However, when cephalopod-eating odontocetes are compared with krill-eating mysticetes, 
concentrations are much higher in the former, again reflecting dissimilar cadmium richness 
in their diets. Caurant et al. (1993) recorded cadmium concentrations in the kidney of long- 
finned pilot whales in the North Atlantic to be up to 30 times higher than those recorded for 
minke whales. They reported a range of concentrations in the kidney from one school of pilot 
whales 1.4-158 pig.g-' (mean: 93.1 ng.g" 1 ) which compares with a range of 1.7-5.6 ng.g- 1 
(median: 3.7 uj>.g~') for cadmium concentrations in the kidneys of minke whales in the 
Arctic (Hansen et al., 1990) and 2.2-33 ng.g~' m hepatic tissues of minke whales from the 
Antarctic (Honda etal., 1987).

The greater reliance of baleen whales on krill may also be responsible for higher levels of 
nickel found in these species than in toothed whales (Honda et al., 1987), although data on 
nickel levels in toothed cetaceans are sparse, making comparison difficult.
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PHYSIOLOGICAL EFFECTS
Toxicity occurs in a species when the accumulation of a metal is not matched by the body's 
storage, excretory, metabolic and detoxification mechanisms (Underwood, 1977; Piotrowski 
and Coleman, 1980). Once this stage is reached, spill-over of the metal occurs to other cells, 
particularly in soft tissues such as the liver and kidney (Underwood, 1977; Piotrowski and 
Coleman, 1980).

A number of factors will determine the actual toxic effects on a species. These will include 
the levels of metal ingested; the period of ingestion; any storage, metabolic, excretory or 
detoxifying mechanisms; synergistic interactions with concentrations of other metals; the 
tissue site; relationships and effects resulting from failure at other different tissue sites 
(Langston, 1990). Synergistic effects from high concentrations of other pollutants such as 
polyaromatic hydrocarbons have also been reported (George, 1990).

Little research has been undertaken on the effects of metals in cetacean species. The 
capacity for excretion of mercury appears to be low, so most ingested mercury remains in the 
animal (Nigro and Leonzio, 1993). Probably because mercury occurs naturally in the 
environment, to compensate for poor excretory mechanisms, storage and detoxifying 
strategies have evolved in many cetaceans. These allow metals to be stored in an inert state 
in tissues. Thus, the presence of high concentrations of a metal is not necessarily correlated 
with toxicity.

Detoxifying strategies
In many cetacean species, correlations have been reported between metal concentrations in 
the tissues and organs analysed (Table 7). Some of these relate to detoxification 
mechanisms.
Mercury
Most mercury available in the ecosystem is inorganic, but is converted by micro-organisms 
present in freshwater and marine sediments to methylmercury, a more toxic and readily 
bioaccumulative form (Law, 1996). The effect of detoxification can be seen in the high 
values of inorganic mercury recorded in cetaceans, despite the fact that most mercury is 
ingested in its organic form.

A decline in the ratio of methylmercury to total mercury has been recorded in the soft 
tissues of harbour porpoises (Joiris ef al., 1991), pilot whales (Julshamnetal., 1987; Caurant 
et al., 1993), narwhals (Wagemann et al., 1984), striped dolphins (Itano et al., 1984b) and 
common dolphins (Joiris et al., 1992b) and in the hard tissues of striped dolphins (Honda ct 
al., 1986b), confirming that a de-methylating process occurs within the tissues of the animal. 
In one adult narwhal examined by Wagemann et al. (1984), methylmercury only represented 
7% of total mercury values in the liver and 11% in the kidney.

Joiris et al. (1992b) interpreted mercury detoxification in common dolphins as follows: 
methylmercury concentrates in the fatty areas of the animal, where it is mineralised and 
re-mobilised to accumulate as inorganic mercury in the liver. Here it is detoxified by binding 
to selenium or metallothionein proteins.

The binding of mercury to selenium can be seen in the high levels of selenium that have 
been widely reported in conjunction with high levels of mercury in a number of cetacean 
species (Table 6), but appears to only occur on specific tissues in certain species and only 
after a certain age. It has been reported in the bone, kidney, liver and muscle of striped 
dolphins (Itano et al., I984b; Honda et al., 1986b; Leonzio et al., 1992), and the livers of 
pilot whales (Muhetal., 1988; Caurant et al., 1993), narwhals (Wagemann et al., 1990) and 
harbour porpoises (Paludan-Muller et al., 1993). However, no relationship was found in the
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Table 7
Inter-metal correlations reported in cetaceans. Key = Ki: Kidney, Li: Liver, Mu: Muscle, Bo: Bone, Blu: 

Blubber; +ve: positive correlation recorded; -ve: negative correlation recorded.

Tissue Species Reference

Mercury-selenium +ve

Cadmium-selenium +ve

Cadmium-mercury -ve
Cadmium-mercury +ve

Cadmium-zinc +ve

Lead-cadmium +ve
Zinc -mercury -ve
Zinc-mercury +ve

Zinc-selenium +ve
Silver-mercury +ve

Li; Ki; Mu
Li;Ki
Li
Li
Li;Bo

Li
Li
Li:Ki
Li
Ki
Li;Mu
Li

Ki
Li; Blu
Li; Ki; Mu
Li;Ki
Li;Ki
Li;Ki
Ki
Li
Li;Ki
Ki
Ki
Mu
Li
Ki
Ki
Li

White whale
Narwhal
Common dolphin
Bottlenose dolphin
Striped dolphin

Harbour porpoise
Minke whale
Pilot whale
Cuvier's beaked whale
Beluga
Pilot whale
White whale
Minke whale
Narwhal
Beluga
Narwhal
Pilot whale
Striped dolphin
Beluga
Narwhal
Harbour porpoise
Minke whale
Pilot whale
Narwhal
Beluga
Beluga
Minke whale
Pilot whale
Beluga
Beluga
Pilot whale

Wagemann eta!., 1990
Wagemann et al., 1983
Joiris eta!., 1992b
Nigro & Leonzio, 1993
Nigro & Leonzio, 1993
Honda et al., 1986a
JeigenetaL, 1992
Hansene(a/., 1990
Caurant era/., 1993
Martoja & Viale, 1977
Wagemann et al., 1990
Caurant el al., 1993

Hansen^a/., 1990

Wagemann et al., 1990
Wagemann el al., 1983
Caurant et al, 1993
Honda & Tatsukawa, 1983
Wagemann etal., 1990
Wagemann etal., 1983
Paludan-Muller et al., 1993
Honda et al., \ 987
Caurant et al., 1993
Wagemann et al., 1983
Wagemann ef al., 1990

Honda<?(a/., 1986b
Caurant et al., 1993
Wagemann et al., 1 990
Becker et al., 1995

muscle of harbour porpoises (Schnapp, 1993) or in the liver of long-finned pilot whale 
foetuses (Caurant and Navarro, 1994).

The interactions between selenium and mercury are still poorly understood. Detoxification 
could occur due to competition for binding sites, or a formation of a less toxic and more 
easily storable complex such as mercury selenide (Koeman etal., 1973; Augieref a/., 1993). 
The occurrence of mercury selenide granules within phagocytic cells reported by Nigro and 
Leonzio (1993) in bottlenose dolphins suggests that the production of mercury selenide, and 
thus the detoxification of methylmercury, is performed by phagocytosis. As mercury 
selenide granules have been reported in the liver (Martoja and Viale, 1977; Nigro and 
Leonzio, 1993), lungs (Augier et al., 1993) brain and muscle (Nigro and Leonzio, 1993) of 
cetacean species, it appears that storage and detoxification of mercury occurs at different 
sites. However, cetaceans cannot excrete mercury selenide (Martoja and Berry, 1980; 
Caurant et al., 1994), so particles will accumulate in their cells.

By binding mercury to metal-binding proteins, damage is reduced and the storage of 
certain metals regulated. The actual toxic effects of the metal will only occur once the 
binding capacity of the metallothionein becomes saturated and a spillover of excess ions
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occurs to other cells (Langston, 1990). Metallothioneins have been found in long-finned pilot 
whales (Caurant et al., 1993), narwhals (Wagemann et a!., 1984) and common dolphins 
(Joiris et al., 1992b).
Other metals
The sequestration of free ions of metals by metallothionein has been recorded in a number 
of species for other metals, including, in descending order of binding affinity, copper, 
cadmium and zinc; no sequestration of lead has yet been reported (Eisler, 1984; Quarterman, 
1986; Tohyama et al., 1986; Law, 1996).

Paludan-Muller et al. (1993) reported that the relationship between zinc and cadmium 
concentrations in the kidneys of harbour porpoises was due to cadmium binding to 
zinc-metallothionein. This correlation has also been recorded in the liver of narwhals and 
white whales (Hansen et al., 1990) and in the liver and kidney of other marine mammals 
(Wagemann and Stewart, 1994). Wagemann et al. (1984) reported that in the liver of a 
narwhal, a high percentage of both cadmium and copper were thionein-bound, whereas for 
mercury it was lower. Similarly, in the livers of common dolphins, Joiris et al. (1992b) 
reported that 50% of inorganic mercury was not thionein or selenium-bound and was thus 
potentially toxic.

Other synergistic effects have been reported. A deficiency in levels of iron and zinc, for 
example, can increase the absorption rate of lead in certain species (Honda and Tatsukawa, 
1983; Kostial, 1986; Quarterman, 1986). Honda and Tatsukawa (1983) also reported that 
cadmium accumulation may inhibit detoxification rates for zinc and copper in striped 
dolphins. Other variables can increase the toxic potential of a metal. High water temperature 
and low salinity have been reported to react with metals such as cadmium, mercury and zinc 
to result in an increase in the metal's toxic potential (Langston, 1990).

Effects of metals in cetacean species
Mercury
The high toxicity, long biological half-life, lipophilicity and biomagnification of mercury in 
the food chain make this metal one of the most threatening. In their review, Wagemann and 
Muir (1984) proposed that tolerance limits for mercury in mammals may be in the range of 
100-400 ^g.g~' in hepatic tissue, although the evidence for this is unclear. Table 8 shows 
that seven studies of three species have reported concentrations above this limit.

Despite the assertion in Wagemann and Muir (1984), studies to ascertain the effects of 
these concentrations in cetaceans are rare, although in certain non-cetacean species, mercury 
poisoning has resulted in serious disorders in the liver, kidney and brain, and methylmercury 
poisoning resulted in behavioural defects, loss of coordination and loss of vision. In other 
marine mammal species, high hepatic and renal mercury concentrations have caused liver 
and kidney failure (Law, 1996). Samples of six of the seven case studies of cetaceans shown 
in Table 8 were taken from stranded dolphins, suggesting a possible causal link with high 
mercury concentrations (Augier et al., 1993).

Rawson et al. (1993) reported toxic effects of mercury in a pod of bottlenose dolphins 
stranded off the USA coast. Nine of the 18 animals sampled had extensive deposits of a 
granular pigment within the livers' portal areas. These animals also contained the highest 
mercury liver concentrations which ranged from 61-433 (ig.g~'. Furthermore, four of the 
nine animals with pigmentation deposits also had active liver disease, including necrosis and 
fat globules among the hepatocytes adjacent to the portal areas. The presence of fat globules 
revealed that the animals' fat metabolism had been affected, and may have led to cell death. 
In the absence of any correlation with age, Rawson et al. (1993) suggested that the pigment 
accumulation was related to the toxic effect of mercury.
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Table 8
Concentrations of mercury recorded in the liver of cetaceans which exceed the proposed tolerence limits 

suggested by Wagcmann & Muir, 1984 (100-400ng.g"'). All figures are Hg.g"' wet weight except *=dry wt.

Range of Mean/median 
concentrations concentration Geographical area Reference

White whale
(«: 30)
False killer whale
(n:38)
Bottlenose dolphin
(n: 12)
(n:4)
Striped dolphin
(n: 45)
(n: 25)
(n. 13)
(n: 19)

1.42-756'

41-479

0.1-443
12.2-13,155.6'

1.7-475
1.2-1.544

48-1,613
324.4-4,400'

126'

249

134.6
med: 270.4'

205
346.1

med: 327
474

med: 324.4*

St Lawrence, Canada2

New South Wales, Australia2

US-
Mediterranean 2

West Pacific'
Mediterranean 2

Mediterranean 7
Mediterranean 2

Wagemann et al., 1990

Kempere(o/., 1994

Rawson et al., 1 993
Lconzio eta!., 1992

Honda et al, 1983
Andreer al., 1991

Augierefa/., 1993
Leonzioe/a/., 1992

'Samples taken from freshly killed animal. "Samples taken from dead animal.

The effects of anthropogenic pollutants have also been studied extensively over a nine 
year period on the population of white whales in the St Lawrence River, Canada. 
Pathological abnormalities such as bladder cancer, severe lesions and tumours have been 
reported (Martineau et al., 1985; 1988; 1994). Twenty-four neoplasms were found in 18 of 
the 45 animals necropsied in the nine year study, eight neoplasms being malignant (Beland 
et al., 1993). The population has a high level of bacterial infections, pneumonia and tooth 
loss, about 27t have spinal deformities and its reproductive rate is only half that found in 
other white whale populations (Martineau et al., 1988; Beland et al., 1993). Although 
mercury levels are extremely high in white whales from the St Lawrence (Table 8), it is 
difficult to attribute specific effects to mercury poisoning as the concentrations of lead 
(Wagemann et al., 1990) and other anthropogenic pollutants, notably organochlorines 
(Beland et al., 1992; 1993), are also high. Wagemann et al. (1990) believed that the adverse 
effects reported in this population are likely to be a combination of all the toxic elements 
acting over a long time period (see also the review by Martineau et al. in the present 
volume).

So, for certain species, there is some evidence that high levels of mercury may have 
resulted or contributed to chronic illness in disease and mortality in die-offs (Wagemann et 
al., 1990; Beland et al., 1992; Augier et al., 1993; Law, 1996). However, equally high 
mercury levels in mature striped dolphins from the North Pacific have apparently not 
resulted in any side effects (Itano et al., 1984a). This difference may be due to interspecific 
differences in susceptibility to the effects of metals or that the rate of bioaccumulation of 
mercury is more important than its actual burden level.

Other metals
Wagemann and Muir (1984) were unable to suggest tolerance limits for metals other than 
mercury. In the absence of any specific marine mammal values for cadmium tolerance limits 
in the kidney, Law (1996) has used the figures suggested for humans where renal damage 
occurs above concentrations of 200-400 M-g.g~' (Piotrowski and Coleman, 1980). From 
research on the association of cadmium concentrations in the kidney and liver, Fujise et al. 
(1988) proposed that concentrations of cadmium higher than 20 |xg.g~' in the liver would
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result in renal dysfunction. Taking the tolerance figure for the kidney, Law (1996) proposed 
that this corresponded to a liver tolerance figure in the range of 40-200 ng.g~'. Maximum 
and mean concentrations reported in cetaceans above these proposed tolerance limits are 
shown in Table 9.

According to Caurant et al. (1994), renal cadmium levels varied considerably among 
schools of Faroese long-finned pilot whales, with several having levels higher than 100 
^g.g^ 1 , possibly approaching critical levels. Cadmium concentrations in the blood were also 
higher than the minimum levels established for adverse effects in humans. Caurant et al. 
(1993), whilst suggesting that high levels might reflect an adaptive response of pilot whales, 
qualified this by noting that those animals which contained high cadmium concentrations 
had less efficient regulation of copper and zinc (cadmium is bound to available 
metallothionein thus reducing its function of ensuring homeostasis of copper and zinc). 
Wagemann et al. (1983) also reported high cadmium concentrations in narwhals from the 
Arctic. They did not examine metal damage in the narwhals' kidneys but reported that 
concentrations were high enough to cause renal dysfunction. In non-cetacean species, 
cadmium poisoning has resulted in adverse effects on reproduction, growth and bone 
structure (Kostial, 1986), but to date no causal relationship between cadmium and physical 
effects have been reported in cetaceans, although Caurant et al. (1994) associated gastric 
erosion and ulcers in pilot whales with high cadmium levels.

Little work has been done on the effects of the other metals in cetaceans. Levels of lead 
tend to be low although Wagemann et al, (\ 990) reported that the St Lawrence River white 
whale population had very high levels, reaching 2.13 ^g.g~' dry weight in the liver (mean: 
0.59 ng.g" 1 dry weight; n:30). These concentrations, about 10 times higher than those found 
in Arctic white whales, were attributed to high aquatic levels of lead resulting from 
anthropogenic sources (Wagemann et al., 1990). A young bottlenose dolphin stranded along 
the South Australian coast had levels of 61 [ig.g~ ! in the bone, which Kemper et al. (1994)

Table 9
Concentrations of cadmium in the liver and kidney which exceed the range of tolerance limits proposed by 

Piotrowski & Coleman (1980), Fujise et al. (1988) and Law (1996) (200-400 \ig g' in the kidney and 20-200 
' in the liver), x: mean value. All concentrations are wet weight except ' converted from dry weight 

(Law, in press) and ; dry weight. All samples analysed from freshly killed animals.

Narwhal

White whale

Minke whale
False killer whale

Pilot whale

(n: 98)
(n:38;Li)
(n: 55; Ki)
(n: 55)

(n: 109)

(«:27)
(«:27)

(n: 52)

Hepatic 
concentration 
>20-200ng g- 1

0.02-73.7
1.28-130.8

x:34.1
2.44-137

x:29.7
0.03-97 2
x: 12.5 2
2.2-33

14.3-75. 82
40.42
0.1-94
\:4I

0.74-125

Renal 
concentration 

>200-400u-g g' 1

_
1.0-205.4
x: 63.5

-

0.05-277-
x:48.2 :

.
-

-

.

Geographical 
region

Greenland
Canadian Arctic

Canadian Arctic

Canadian Arctic

Antarctic
Australia

Atlantic Ocean

Reference

Hansenf/fl/., 1990
Wagemann et al., 1983

Wagemann et al., 1996

Wagemann et al., 1990

Honda et al, 1987
Kemper ct al., 1994

Caurant et al., 1993
Julshamne/u/., 1987

1.4-962 
x: 78

(«: 13) 0.03-118.9' 
x: 54.2'

Canada

Caurant & Amiard-Triquet, 
1995
Muirf/a/., 1988 
Law, 1996
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attributed to contamination from a lead smelter in the area. In non-cetacean species, lead 
poisoning is associated with the inhibition of enzyme systems, renal damage and cardiac 
disease (Quarterman, 1986).

REGIONAL DIFFERENCES IN BIOCONCENTRATIONS

The regional concentration of a metal, and thus its availability to marine biota, is dependent 
on the source of the metal and its method of transportation to and within the marine 
environment. Any localised high concentrations of metals will be important in determining 
levels of transfer to species whose range includes such regions. Thus, metals derived from 
anthropogenic sources in the form of fossil fuel combustion emissions (e.g. lead) show 
higher concentrations in areas close to the shoreline source (Davis, 1993; Herut et al., 1993). 
Coastal concentrations are also high for those metals deposited by riverine transportation 
(e.g. manganese, aluminium and copper), which tend to show high levels close to and a rapid 
decrease away from the source.

Only a comparison of metal concentrations from the same tissues or organs and from 
similar species and comparable habitats, can provide data for a preliminary analysis of 
geographical differences in metal levels. Even attempts to identify 'hot spots' from metal 
concentrations in cetaceans can only be tentative due to the other, often uncontrolled, factors 
that affect concentration levels, particularly the influence of diet. For instance, cadmium 
concentrations in narwhals from Baffin Bay were 100 times higher than those for 
white-beaked dolphins from Newfoundland, whilst lead concentrations were 40 times lower; 
dietary rather than higher background pollution levels were considered responsible for these 
differences (Muir et al., 1988). Lima and Sequeira (1993) also showed that mercury 
concentrations in common dolphins from the Portuguese coast were lower than those found 
in the Mediterranean, where the main prey species, sardines (Sardinus pilchardus), 
contained very low mercury levels.

Differences have also been reported in concentrations of mercury from species caught in 
the same place. As Table 10 shows, mean liver concentrations of mercury in adult 
long-finned pilot whales (Globicephala melas) caught in the Faroe Islands in 1977 was 280.2 
[ig.g~' but data from animals caught in 1978 showed a decline to a fifth of the previous years 
figure, 53.4 ^g.g~' (Julshamn et al., 1987). This decline is also reflected in the mean muscle 
levels of mercury which in 1978 averaged 1.8 Hg.g~', almost half the mean of 3.3 fAg.g" 1 
recorded in the previous year. The cause of this discrepancy may be due to discrete 
populations of pilot whales feeding on different prey items rather than a change in the 
background pollutant levels of mercury (Julshamn et al., 1987). Further differences were 
reported by Caurant et al. (1993) on two schools of pilot whales caught in the same place 
both in 1986. These showed large differences in mean mercury concentrations in the liver 
(52.1 ^g.g~' compared to 84.1 |^g.g-1 ). Differences in mercury concentrations from the 
same geographical area have also been reported for striped dolphins (Itano et al., 1984b).

Despite recognising these sources of variation, Table 10 presents data on the hepatic 
concentrations of mercury in seven cetacean species from eight regions in an attempt to 
tentatively identify certain 'hot spots' where reported concentrations of mercury are 
significantly higher.

Extremely high levels of mercury have been recorded in stranded striped (1,544 ng.g~' 
ww) and bottlenose (3,828 |^g.g~' ww) dolphins from the Mediterranean Sea (Andre et al., 
1991; Leonzio<??a/., 1992; Law, 1996). The reasons for the high levels recorded in cetaceans 
from the Mediterranean Sea is likely to be a combination of anthropogenic causes and the 
high level of background geological mercury levels present in the area (Augier et al., 
1993).
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Table 10
A geographical comparison of mercury concentrations in the liver of eight toothed cetacean species (ng.g"')- 

'= median value, ND: no data reported. All values are dry weight except' which has been converted from dry
weight and 2 which is dry weight.

Species
Range 

Region (where known) Mean Study

Striped dolphin
(«: 35)
Striped dolphin
(«: 45)
Pantropical spotted dolphin
(n: 44)
Long-finned pilot whale
(n: 14)
Narwhal
(«: 98)
Harbour porpoise
(«: 36)
Bottlenose dolphin

White-beaked dolphin
(n: 27)

Mediterranean

NW Pacific

ET Pacific

Faroe islands

Arctic

Irish Sea

SW Atlantic

NW Atlantic

48-1,613

1.7-485

0.18-218

ND

0.01-42.8

0.6-190

ND

0.13-1.6

474.0'

205.0

62.7

280.0

5.26*

20.5

86.0

3.02

Augiere/a/., 1993

Honda et al., 1983

Andre etal, 1990

Julshamn et al, 1987

Hansene(a/., 1990

Law etal, 1992

Marcovecchio et al, 1990

Mwetal., 1988

Similarly there appears to be a relationship between the high levels recorded and 
anthropogenic sources in the western North Pacific. Mercury input into the ocean from 
Japanese chlor-alkali production in 1970 alone amounted to 650 tons, and a correlation has 
been reported between the increasing amount of industrial waste inputs into the marine 
environment and the levels of metals present in the sediments (Goto, 1973; Andre et al., 
1991).

Law et al. (1992) have identified another 'hot spot' in the Irish Sea. Inputs from a variety 
of industrial sources, particularly from local phosphate plants, raised levels of cadmium in 
seawater in the area to about 50 times higher than that found in the open ocean, and levels 
of zinc and lead to ten times higher (Forstner, 1980). This explains the relatively high 
concentrations of metals in cetaceans from the eastern Irish Sea, for example those found in 
harbour porpoises (Table 10), which continue to remain high despite a reduction in inputs in 
the past 10 years (Law et al., 1991; 1992).

CONCLUSIONS
In the first published overview of metals in marine mammals, Wagemann and Muir (1984) 
reviewed 16 different studies on 14 cetacean species. In the ten years subsequent to this 
review this database has increased to over 70 studies on 26 different species (the major ones 
are shown in Appendix 1). Some of the difficulties outlined at the start of this review 
continue to apply. Studies still tend to be limited to odontocetes, mercury concentrations and 
soft tissues. Comparison of concentrations between different species is still difficult because 
of the number of uncontrolled variables that can affect the levels reported. Different 
analytical techniques increase the difficulty, although there have been calls to establish a 
more standardised and coordinated approach (Kuiken and Hartmann, 1991; Kemper et al., 
1994) and several long-term studies using consistent techniques have recently been 
published (Law, 1994; Marcovecchio et al., 1994; Miyazaki, 1994).
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The increase in data has resulted in definite trends being established for the accumulation 
of many metals within the cetacean body. There is a large database on the site specificity of 
metal concentrations within the animal. Most metals accumulate in the soft tissues, 
particularly in the liver and kidney. Since 1984, new information has shown that the highest 
concentrations of zinc and lead have been found in hard tissues such as the skin and bone, 
and that concentrations of certain metals are transferred between the female and her young. 
New data have also been recorded on bioaccumulation rates throughout the food chain. 
Although this is limited to certain metals, studies to date show that only mercury 
biomagnifies at each level of the food chain.

Wagemann and Muir (1984) stated that systematic differences were not apparent in metal 
concentrations but, since then, new data have revealed both regional and species 
differentiation in concentrations of metals. Many of these are due to differences in 
background levels of metals and diet. Baleen whale species have lower concentrations of the 
majority of metals due to a shorter food chain and the fact that they feed lower in the trophic 
chain than odontocetes (O'Shea and Brownell, 1994).

In the past decade, information on detoxification has improved. It is now known that the 
positive correlation between mercury, probably the most toxic metal, and selenium results in 
a detoxification of the organic mercury into a storable compound. Metallothioneins can also 
reduce damage to cells by binding the toxic metals. Toxicity will occur in a species when the 
accumulation rate is greater than the combined detoxification, excretion or storage rates, but 
the actual levels of concentration needed for toxicity to occur are still unknown for most 
metals or species. Tentative ranges have been proposed for tolerance levels of hepatic and 
renal mercury and cadmium concentrations, and there are several examples of species which 
have concentrations exceeding these limits. A possible causal link between high mercury 
levels and liver disease has been suggested in two study groups of animals (Rawson et al., 
1993; Caurant et al., 1994). There may also be a causal link between high levels of metals 
and 'die-offs' (Andre et al., 1991; Beland etal., 1992; 1993). Although the effects of these 
concentrations according to variables such as the species, age and sex, have yet to be 
established, the available data suggests that high levels of metals have an impact on at least 
some cetacean species.
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Appendix 1

Summary of species, metals and geographical areas covered in this review.
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Species

MYSTICETI
Minke whale,
Balaenoptera acutorostrata

Sei whale,
Balaenoptera borealis
Bowhead whale,
Balaena mysticetus

Bryde's whale,
Balaenoptera edeni
Fin whale,
Balaenoptera physalus

Pygmy right whale,
Caperea marginata
Gray whale,
Eschrichtius robustus

ODONTOCET1
Sperm whale,
Physeter macrocephalus

Pygmy sperm whale,
Kogia breviceps
Ganges river dolphin,
Platanista gangetica
Franciscans,
Pontoporia blainvillei
White whale,
Delphinapterus leucas

Metal

Hg, Cd, Zn, Cu, Pb, Fe, Mn
Hg, Cd, Se, Zn
Cd
Hg
Hg
Hg, Cd, Zn, Cu, Pb, Cr
Hg
Hg
Hg
Hg
Hg, Cd, Se, Zn, Cu, Pb, Ni, Ag
Hg
Hg, Cd, Se, Zn, Cu, Pb, Fe
Ag
Hg

Hg
Hg, Cd, Pb
Hg
Hg, Cd, Pb

Hg, Cd, Se, Zn, Cu, Pb, Fe, Ni, Ag

Hg
Hg
Hg
Hg
Hg
Hg, Cd
Hg, Cd, Pb
Hg
Hg,Cd, Se, Zn, Cu, Pb, As, Ni, Cr
Hg, Cd, Zn, Cu
Hg, Cd, Pb
Hg, Cd, Zn, Cu, Pb, Fe, Ni, Cr

Hg, Cd, Zn, Cu

Hg, Cd, Se, Zn
Hg, Cd, Pb
Hg
Hg
Hg
Hg, Cd, Se
Hg
Hg, Cd, Se, Zn, Cu, Pb
Hg, Se, Ag
Hg, Cd, Se, Zn, Cu, Pb

Tissue/Organ

Li
Li, Ki, Mu
Li, Ki, Blu
Li, Mu
Li, Ki, Mu
Li
Mu
Mu
Mu
Mu
Li, Ki, Mu, Blu
Li, Ki, Mu, Blu
Li, Ki, Mu, Blu
Li
Mu

Li, Ki, Mu
Sk
Mu
Li, Mu, Blu, Bo

Li, Ki, Sto, Br

Mu
Mu
Li, Mu
Mu
Mu
Li
Li, Ki, Mu, Blu
Mu
Li
Li, Ki, Mu.Blu
Li, Mu, Blu, Bo
Li, Ki, Mu

Li, Ki, Mu, Blu

Li, Ki, Mu
Li, Ki, Mu
Li, Ki, Mu
Li, Ki, Mu
Li, Mu, Blu
Li
Li, Ki, Mu
Li, Ki, Mu
Li
Li, Ki, Mu, Sk

Area

Ant
GD
GD
GD
GD
UK
NWP
NWP
SP
NWP
AS
AS
AS
AS
NWP

NBA
Med
SP
Aust

AS,
ETP

Sp
Ant
NS
NWP
NWP
NWP
Aust
Aust
UK
SWA
Aust
ID

SWA

GD
GD
CA
CA
CA
SLA
SLA
SLA/C
A
AS
CA

No.

1
2

32
6

34
11
49
50

5
49
17
62
71
75
50

3
4
5

69

71

5
5

25
49
50
63
72
73
76

8
72

7

8

2
34
32
42
44
27
60
33
75
78
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Species

Narwhal,
Monodon monoceros

Harbour porpoise,
Phocoena phocoena

Dall's porpoise,
Phocoenoides dalli
White beaked dolphin.
Lagenorhynchus albirostris

White sided dolphin,
Lagenorhynchus acutus
Bottlenose dolphin,
Tursiops truncatus
Tursiops gephyreus

Pantropical spotted dolphin.
Stenella attenuata
Striped dolphin,
Stenella coeruleoalba

Metal

Hg, Cd, Se, Zn,
Hg
Hg, Cd, Se, Zn, Cu, Pb, As
Hg
Hg, Cd, Zn, Cu
Hg, Cd, Se, Zn, Cu, Pb
Hg
Hg
Hg, Cd, Se, Zn, Cu
Hg, Cd, Zn, Cu, Pb, Cr
Hg, Cd, Zn, Cu, Pb, Ni, Cr
Hg, Cd, Se, Zn, Cu, Pb, Ni
Hg, Cd, Zn, Cu, Pb
Hg, Cd, Zn, Cu, Pb, Ni, Cr
Hg, Cd, Pb
Hg.Se
Hg
Hg
Hg, Cu, Pb, Zn
Hg, Cd, Zn, Cu, Pb
Hg, Cd, Zn
Hg,Se
Ag
Hg,Cd
Hg
Hg, Cd, Se, Zn, As
Hg
Hg, Cd, Cu, Zn, Pb, Ni, Mn
Hg, Cd, Zn, Cu, Pb, Fe, Mn

Hg, Cd, Se, Zn, Cu, Pb, Cr
Hg, Cd, Zn, Cu, Pb, Cr
Hg, Cd, Se, Zn, Cu, Pb
Hg, Cd, Se, Zn, Cu, Pb, Cr

Hg, Cd, Se, Zn, Cu, Pb, Cr
Hg, Cd, Zn, Cu, Pb, Cr
Hg, Cd, Zn, Cu
Hg
Hg
Cu
Hg, Cd, Zn, Cu, Pb
Hg, Cd, Zn, Cu, Pb, Ni, Cr
Hg, Cd, Se, Zn, Pb
Hg,Se
Hg, Cd, Pb
Hg
Hg.Se
Hg.Cd
Zn, Cu, Pb, Fe, Mn
Hg, Se
Cd, Zn
Hg, Se, Zn, Cu, Pb, Fe, Mn
Hg,Se
Hg, Se

Tissue/Organ

Li, Ki, Mu
Li, Ki, Mu
Li, Ki, Mu, Blu
Li, Ki, Mu
Li, Ki
Li, Ki, Mu, Sk
Li, Mu
Li, Ki, Mu
Li, Ki, Mu, Sk
Li
Li
Li,Ki
Li, Ki, Br
Li, Mu, Blu
Li, Ki, He, Sp, Br
Mu
Li, Ki, Mu
Li, Mu
Li, Mu,Blu
Li, Ki, Mu
Li, Ki, Blu
Li, Ki
Li
Ki
Li, Ki
Li. Br
Li, Ki, Mu, Blu, Br
Li
Li, Ki, Mu, Sk, Bl

Li, Ki
Li
Li, Ki, Mu
Li

Li, Ki
Li
Li, Mu, Blu
Li, Ki, Mu
Li
Li. Ki, Mu
Bo
Li, Ki, Mu, Blu
Li, Ki, Mu
Li, Ki, Mu, Br
Li, Ki, Mu, Blu, Bo
Li, Ki, Mu, Sk, Bo, Blu
Mu
Li, Ki, Mu
Li, Ki, Mu, Sk, Bo
Li, Ki, Mu
Bo
Li, Mu, Blu
Li, Ki, Mu
Li

Area

GD
GD
CA
CA
CA
CA
CA
CA
GD
UK
UK
UK
UK
UK
UK
UK
NS
NS
NS
NS
NS
NY
AS
NEA
NEA
NEA
UK
UK
NWP

UK
UK
AC
UK

UK
UK
UK
NS
WA
WA
WA
SWA
Med
Med
Aust
ETP
NWP
NWP
NWP
NWP
NWP
NWP
NWP
UK

No.

2
34
20
42
64
78
19
24
10
11
15
66
18
35
22
53
25
43
45
46
54
14
75
79
80
81
82
83
13

66
11
9

66

66
11
35
25
26
57
59

8
37
51
72
39
41
12
30
21
29
31
41
66
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Species

Striped dolphin,
Stenella coeruleoalba
(com.)

Common dolphin,
Delphinus delphis

Risso's dolphin,
Grampus griseus
Long-finned pilot whale,
Globicephala melas

Short-finned pilot whale,
Globicephala macrorhynchus

Killer whale,
Orcinus area
False killer whale,
Pseudorca crassidens
Cuvier's beaked whale,
Ziphius cavirostris

Beaked whale,
Mesoplodon spp
Bottlenose whale,
Hyperoodon ampullatus

Metal

Hg, Cd, Se, Zn, Cu, Pb, Cr

Hg, Cd, Zn, Cu, Pb, Fe, Mn
Hg
Hg
Hg, Cd, Pb
Hg, Cd, Se, Zn, Pb
Hg.Se
Hg,Se
Hg, Cd, Pb
Hg, Cd, Zn, Cu, Pb, Cr
Hg, Cd, Se, Zn, Cu, Pb, Cr
Hg
Hg
Hg
Hg, Cd, Zn, Cu
Cd,Zn
Hg,Cd,Pb
Hg, Cd, Zn, Cu, Pb, Cr

Hg, Cd, Se, Zn, Cu, Pb
Hg, Cd, Se, Zn, Cu
Hg, Cd, Se, Zn, Cu
Hg
Cd
Hg,Se
Hg, Cd, Se, Zn, Cu, Pb, Cr
Hg, Cd, Se
Hg
Hg,Pb
Hg, Cd, Pb

Hg, Cd, Pb

Hg,Se
Hg,Cd
Hg, Zn, Cu, Pb,, Fe, Mn, Ni
Hg, Cd, Pb

Hg

Tissue/Organ

Li

Li
Li, Ki, Mu, Sk, Blu
Sk
Li, Ki, Mu
Li,Ki
Li, Ki, Mu, Br
Li, Ki, Mu, Sk
Li, Ki, Mu, Blu
Li
Li, Ki, Sto
Li, Ki, Mu
Li, Mu, Blu
Li, Ki, Mu, Blu, Br
Li, Ki, Mu, Blu
Li, Ki, Mu
Li, Ki, Mu, Blu, Bo
Li

Li, Ki, Mu
Li, Ki, Mu
Li, Ki, Mu
Blu
Li, Ki, Mu, Bl
Mu
Li
Li, Ki
Li, Ki
Li, Ki, Mu
Li, Ki

Li, Ki, Mu, Blu

Li
Li, Ki, Mu, Blu
Li, Ki, Mu
Li, Ki, Mu, Blu, Bo

Li,Mu

Area

UK

Med
Med
Med
Med
Med
Med
Med
Aust
UK
UK
NS
NS
EA
EA
SWA
Aust
UK

CA
NEA
NEA
NEA
NEA
NWP
UK
USA
WI
Aust
Aust

Aust

NEA
WA
SWA
Aust

NS

No.

11

16
23
4

37
47
51
55
72
11
66
25
65
52
59
58
72
66

9
28
38
41
74
41
66
32
40
72
72

72

67
36
68
72

43

SITES
Li: Liver; Ki: Kidney; Mu: Muscle; Blu: Blubber; Bl: Blood; Sk: Skin; Bo: Bone; Br: Brain; Sp: Spleen;
He: Heart; Sto: Stomach

GEOGRAPHICAL AREAS
Ant: Antarctic; AS: Alaska; Aust: Australia; CA: Canada; EA: East Atlantic Ocean; ETP: Eastern Tropical 
Pacific Ocean; GD: Greenland; ID: India; Med: Mediterranean Sea; NEA: North East Atlantic Ocean; 
NS: North and Baltic Seas; NWP: North West Pacific Ocean; NY: Norwegian coast; SLA: St Lawrence 
Seaway, Canada; SP: South Pacific Ocean; SWA: South West Atlantic Ocean; UK: UK coastline; 
WA: West Atlantic Ocean; WI: West Indies



148 DAVID BOWLES: EFFECTS OF METALS IN CETACEAN SPECIES

STUDIES
1. Honda et al. 1987; 2. Hansen et al., 1990; 3. Sanpera et al, 1993; 4. Focardi et al, 1992; 5. Nagakura et 
al, 1974; 6. Johansen et al., 1980; 7. Kannan e/ a/., 1993; 8. Marcovecchio et al, 1990; 9. Muir et al, 1988; 
10. Paludan-Muller et al, 1993; 11. Law et al, 1991; 12. Honda et al, 1983; 13. Fujise et al, 1988; 14. 
Teigen et al, 1992; 15. Law et al, 1992; 16. Andre et al, 1991; 17. Byme ef a/., 1985; 18. Falconer et al, 
1983; 19. Gaskin et al, 1972; 20. Wagemann et al, 1983; 21. Honda and Tatsukawa, 1983; 22. Falconer ef 
a/., 1980; 23. Augier el al, 1993; 24. Gaskin et al, 1979; 25. Joiris el al, 1991; 26. Rawson e; a/., 1993; 27. 
Beland el al, 1992; 28. Julshamn et al, 1987; 29. Honda et al, 1986b; 30. Itano et al, 1984a; 31. Itano et al, 
1984b; 32. Stonebumer, 1978; 33. Wagemann et al, 1990; 34 Dietz et al. 1990; 35. Morris et al, 1989; 36. 
Knap and Jickells, 1983; 37. Leonzio et al, 1992; 38. Caurant et al, 1993; 39. Andre et al, 1990; 40. Gaskin 
et al, 1974; 41. Arima and Nagakura, 1979; 42. Bligh and Armstrong, 1971; 43. Huschenbeth, 1977; 44. 
Imperial Oil, 1978; 45. Andersen and Rebsdorff, 1976; 46. Harms et al, 1977; 47. Capelli et al, 1989; 48. 
Carlini and Fabbri., 1989; 49. Tornita and Nishimura, 1973; 50. Taguchi et al, 1980; 51. Nigro and Leonzio, 
1993; 52. Lima and Sequeira, 1993; 53. Schnapp, D. 1993; 54. Joiris et al., 1992a; 55. Marsili etal., 1992; 56. 
Simmonds et al, 1994; 57. Jensen and Reynolds, 1993; 58. Gerpe et al, 1993; 59. Haubold et al, 1993; 60. 
Sergeant, 1980; 61. Joiris et al, 1992b; 62. Overton et al, 1983; 63. Ridlington et al, 1981; 64. Wagemann 
et al, 1984; 65. Joiris et al, 1987; 66. Law, 1994; 67. Martoja and Viale, 1977; 68. Marcovecchio et al, 
1992; 69. Munday, 1985; 70. Bratton et al. 1993; 71. Varanasi et al, 1994; 72. Kemper et al, 1994; 73. 
Cannella and Kitchener, 1992; 74. Caurant and Amiard-Triquet, 1995; 75. Becker et al, 1995; 76. Law et al, 
1996; 77. Meador et al, 1993; 78. Wagemann et al, 1996; 79. Clausen and Andersen, 1988; 80. Larsen, 1995; 
81 Koeman et al, 1972; 82. Thibaud and Duguy, 1973; 83. Borrell and Aguilar, 1999; 84. Szefer et al, 1994.




