
INTRODUCTION
In June 1978, a proposed oil and gas lease sale in the
Beaufort Sea prompted the US Bureau of Land Management
and subsequently the Minerals Management Service (MMS)
to study the possible effects of industrial activity on the
marine and coastal environment in this region. In response,
from 1979-2007 annual aerial surveys of marine mammals
were conducted in the Bering, Chukchi, and Beaufort Seas
(B-C-B). These aerial surveys were named the Bowhead
Whale Annual Survey Program (BWASP) and were carried
out by the MMS, the Naval Ocean Systems Center and
affiliated MMS contractors. Particular interest focused on
the spatio-temporal distribution of bowhead whales (Balaena
mysticetus) and the effects - if any - of industrial activity on
this distribution. The primary types of industrial activities of
concern included the exploration and development of
petroleum resources, including seismic exploration. Industry
impacts would have important implications for resource
conservation and utilisation as well as for industrial
regulation. The B-C-B bowhead whale population is utilised
by native Inupiat and Yupik communities in northern and
western Alaska, who conduct limited aboriginal hunting to
satisfy subsistence and cultural needs as permitted by the
International Whaling Commission. Bowhead whale
avoidance of industrial activity could reduce availability of
whales to the hunters and require villagers to venture greater
distances at greater risk to hunt.
During the period of the surveys, the abundance of B-C-B

bowhead whales has at least tripled from point estimates of
2,264 (with a ‘range of uncertainty’ of 1,082) in 1978
(Braham et al., 1979) to 10,470 (95% confidence interval
8,100 to 13,500) in 2001 (George et al., 2004). Even if
bowhead whales avoided sites of industrial activity, counts of
whales at such sites might increase over time merely due to
increased total abundance. Therefore, indices of relative
abundance would better detect spatio-temporal changes in
migratory patterns in response to the growth of industrial
activity in various locations over time. Although modelling

the bowhead migration over time will be a key element of
upcoming efforts to gauge potential industry impacts or other
migratory changes, the goal here is more modest; to estimate
an appropriate detection function for these surveys to better
understand the impact of possible covariates on detection.
There are several reasons for this limited focus. The

BWASP data have been statistically analysed only rarely
and merit greater study. Organising the BWASP data for this
analysis was in itself an enormous task and documenting
this effort will aid future work while providing a common
corrected database for analysis. Second, there are presently
opportunities to improve the BWASP protocol. The results
presented here can inform this process by identifying
changes to survey design and more focused choice of
covariates, thereby enabling a more efficient and effective
survey. For example, there is discussion of how block
randomisation is critical and how longitude and whale
behaviour are vastly more important than sky and ice
conditions in fall surveys. Finally, the detection function
estimation presented here could serve as a component of a
more sophisticated ongoing effort to build a spatio-temporal
characterisation of the bowhead migration using methods
similar to those of Hedley and Buckland (2004) and Hedley
et al. (2004). Such modelling is beyond the scope of this
study but it requires the careful estimation of a detection
function and its dependence on covariates described here.
The multiple covariate distance sampling analysis used in

this paper has proved useful in other situations where
important covariates (Marques and Buckland, 2003; Marques
et al., 2006) must be accounted for. In such cases, resorting to
the pooling robustness notion of Buckland et al. (2001) -
which would generally argue against fitting covariate effects
in detection functions - can be a less useful approach.
Reliance on pooling robustness is more relevant when
estimating (relative) abundance, in which case integration
over extra variation due to possible covariates is sensible.
Several authors have previously analysed subsets of the

BWASP data. For example, Manly et al. (2007) analysed the
1996-98 BWASP data to explore how human activities
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affected bowhead distribution. In their preliminary study
based on these three years of data, the authors binned the
transects into 5km long sampling units and used Poisson
regression models to infer that there is evidence that seismic
activity is associated with reduced numbers of observed
bowhead whales. They also investigated whether whale
swimming direction was impacted by marine seismic activity
and found some evidence that it was. Schick and Urban
(2000) found that bowhead whale distribution patterns were
correlated with distance to oil drilling rigs. Treacy et al.
(2006) investigated the effect of annual variation in ice
distribution on bowhead migration patterns in the BWASP
data, finding significant evidence that bowhead whales tend
to migrate further offshore during heavy ice years compared
to years with moderate or light ice.
Detailed description of BWASP survey methods is given

by Treacy (2002) and Monnett and Treacy (2005). The
analysis presented here was limited to 1982-2006, as
equipment and protocol differences before then clearly
render the earlier data incomparable. Survey methods were
comparable from year to year thereafter. The 2000 survey
described below illustrates key details of the protocol.

Survey methods
The surveys were conductedmainly in autumn between 140°W
and 157°W and south of 72°N. Fig. 1 shows that the survey
area was subdivided into 12 blocks. All survey flights began
from Deadhorse, Alaska. There is no specification of a
maximum sea state beyond which flights were cancelled;
flights were conducted ‘weather permitting’. For a given
survey block, a random transect grid was determined by
dividing the block into 30-minute of longitude sections. Minute
marks along both the northern and southern edges of each
partition were randomly chosen and connected with straight
lines to create transect legs. This procedure was repeated for all
30-minute sections within the survey block. Northern and
southern transect ends were connected alternately to form a
flight path, and the start and end points were connected to
Deadhorse. Fig. 2 shows a typical flight pattern.
During the 1982-2006 period, each year included between

23 and 93 flights. During each survey season, the pattern of
block coverage was chosen opportunistically based on

prevailing weather, a desire to investigate regions of potential
industrial impact and sometimes on suspected regions of
greater whale abundance. East of 154°W, two-week spatio-
temporal coverage was disproportionately targeted towards
areas of suspected higher relative abundance as inferred from
past surveys (1979-86). Consequently, survey coverage
yielded proportionally greater effort in near-shore regions and
therefore increased total sightings by focusing on the primary
migration corridor.
The partially opportunistic survey scheme violates one of

the key assumptions of distance sampling analysis: that the
transect lines should be randomly placed with respect to the
distribution of animals (Buckland et al., 2001). It is
important to emphasise, however, that concern about non-
random block selection is mitigated here because no
estimate of relative abundance will be produced; the
interpretation of covariates that are associated with whale
sightings here is in the context of the sampling design.
Surveys used a de Havilland Twin Otter Series 300

aircraft equipped with two medium-size bubble windows
behind the cabin bulkhead and one on the aft starboard side.

10 GIVENS etal: AERIAL LINE TRANSECT DETECTION OF B-C-B BOWHEAD

Fig. 1. Map of BWASP survey blocks [Monnett and Treacy, (2005), used with permission].

Fig. 2. Example flight path. Deadheads are ‘D’. Points on search,
connect, and transect are triangles, squares and circles, respectively.
In these cases, hollow shapes are records with no sightings and solid
shapes had sightings. Squares with ‘X’ in them are transition points
to/from on-connect segments.
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These enabled complete trackline viewing and the pilot and
co-pilot seats provided good viewing forward and to the
sides. Sighting distances were measured orthogonal from
the transect line abeam of the plane, and computed from
altitude and hand-held clinometer readings. The nominal
flight altitude was 458m (1,500ft). Observers and pilots
communicated using a common communication system.
Data were recorded on a laptop computer connected to a
Garmin III Global Positioning System with external
antenna, using a customised data-entry system.
Observers on the port side included the primary observer,

positioned at a bubble window affording view from the
trackline below the aircraft to the horizon, the pilot, and an
occasional secondary observer or visitor at an aft flat
window. On the starboard side at a bubble window sat a data
recorder-observer who partially focused on guarding the
trackline, and a team leader at an aft bubble window. The co-
pilot was also starboard.
Focus was limited to the area shown in Fig. 1 and to the

period from August 28 to October 23, which encompasses
the vast majority of the autumn bowhead migration in the
survey area while excluding most summer residents (to the
extent they may exist). Occasionally, a portion of a flight
extended beyond the boundaries of the survey region.
Therefore, a flight was deemed to be within the study area if
no more than 10% of the positions recorded during that
flight were outside the area. Only a few flights were
eliminated on this basis.
For analysis, each single flight was broken into discrete

portions, or segments, defined as a period of flight between
two recorded events such as a sighting or incidental record
of plane location taken during a lull. Each data record
corresponds to the start or end of one segment. There are
many more data records than sightings because additional
data were recorded between sightings, as described below.

Flight segments to and from Deadhorse were denoted ‘on-
search’, except that all flight portions over land were denoted
as ‘deadhead’. Segments on transect legs were denoted ‘on-
transect’, with segments on connective legs between
transects denoted ‘on-connect’. Sightings during such legs
were labelled as ‘sighting-on-transect’ and ‘sighting-on-
connect’ (referred to below as ‘sot’ and ‘soc’). Transect legs
began and ended with ‘start-transect’ and ‘end-transect’
(referred to below as ‘st’ and ‘et’). Occasionally, a possible
cue or tentative sighting of some animal was detected. To
investigate, a ‘divert-transect’ event was recorded, and the
flight continued ‘on-search’ until the plane began ‘resume-
transect’. During on-search effort, the goal was to confirm or
refute that the possible sighting was a bowhead whale.
These on-search periods were generally characterised by a

J. CETACEAN RES. MANAGE. 11(1):9–16, 2009 11

Fig. 3. Histogram of on-transect sighting distances (ft).

Fig. 4. All bowhead sightings. Contours of depth from 5m to 65m in increments of 10m are shown with light grey lines.

Table 1

Key covariates in the BWASP dataset. Counts of missing values are among only bowhead whale sightings not excluded for 
other reasons described in the text.

Observed variable Levels

Number missing for bowhead whale

sightings

Beaufort Sea State B0,...,B8 15

Visibility on side of plane corresponding 

to sighting (km)

0, <1, 1-2, 2-3, 3-5, 5-10, unlimited 1

Sky condition clear, overcast, partly cloudy 500

Percent ice (ICE) 0-100 0

Year since 1982 (YEAR) 0-24 0

Day (DAY) Aug. 28-Oct. 23 0
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limited period of circling. If at any time during the on-search
period additional whales were sighted, they were recorded as
‘sightings-on-search’. Perpendicular distances to on-search
sightings were measured in the same manner as on-transect
sightings, to the extent possible. Aside from sightings,
records of location were recorded at ‘point-on-transect’,
‘point-on-connect’, and ‘point-on-search’ at convenient
times between sightings (referred to below as ‘pot’, ‘poc’ and
‘pos’, respectively). Sightings of species were treated aside
from bowhead whales as points on segments rather than
sightings on segments. Rare circumstances required ‘abort-
flight’ events. A histogram of on-transect sighting distances
is shown in Fig. 3. Fig. 4 shows all bowhead whale sightings
in the dataset.

MATERIALS AND METHODS
The raw dataset contained 1,187 flights consisting of 84,543
records including 4,469 bowhead sightings and over
750,000km of total flight distance. The number of bowhead
whales per sighting (cluster size) was initially ignored in the
analysis because the distribution of cluster sizes was
extremely skewed. Although whale behaviour likely has
important implications for detection, it was not explicitly
included in estimation of detection probabilities because the
key behaviour, feeding, was only observed in 2.8% of cases.
For each sighting (and frequently for other types of records
during the flight), a variety of covariates were recorded. Key
covariates are listed in Table 1. It is important to note that
the ‘visibility’ variable describes the atmosphere, not some
informal combination of atmosphere, sea conditions and
other factors. Ice coverage and visibility were judged
subjectively. English units are used on occasion for
covariates for consistency with the original data records.
A variety of data coding errors and omissions were

detected during the analysis. Out of the 84,543 records, there
were 4,816 corrections to sea states, 37,757 corrections to
visibilities, 3 corrections to ice coverage, and 1 event type
correction, mostly due to inconsistent data coding. Twelve
missing visibility entries were imputed when visibilities were
discernable from long sequences of identical entries in
temporal windows surrounding the missing entry. Finally, 78
event types were altered to the most sensible alternative
because the original entry was not sensible. For example, a
sighting-on-transect (sot) entry would be changed to
sighting-on-connect (soc) if it occurred in the sequence st-
pot-pot-pot-et-poc-poc-sot-poc-poc-poc-st-pot-pot-et.

Of the available flights in this corrected dataset, 786
flights were retained for being within the time and space
limitations described above. The data for these flights
comprised 50,463 records after deleting 1,712 records with
failed or missing clinometer readings and 91 repeat

sightings. Among these data, there were 2,786 bowhead
whale sightings comprising 1,695 observations on-transect,
1,000 on-search and 91 on-connect.
From these raw data, a variety of additional covariates

were constructed (Table 2). Sea-state and visibility were
categorised. The categorisation of Beaufort Sea state was
intended to bin sea-states into glassy, intermediate, and
choppy conditions and is hereafter labelled BSS. Visibility
categories (VIS) were constructed to provide sufficient bin
counts and to maximise between-bin differences in detection
probabilities. Later, for the purposes of averaging, the
‘unlimited’ category was treated as 20km. Available GIS
data (NOAA, 2008) were used to determine the water depth
(DEPTH) at each sighting. Preliminary comparisons of the
effects of water depth and offshore distance indicated that
depth was a more effective covariate. These two variables
are very highly correlated due to the bathymetry of the
region, where depth contours closely match the shoreline
except along the west edge of the survey region in the
Barrow Canyon. In addition to providing slightly better
predictive power, depth may also be the more ecologically
sensible covariate (see Discussion).
To investigate spatial patterns, an idealised shoreline was

created, which is a straight line from Point Barrow to the
point on the coast at the Canadian border. Given this
definition, the distance along this idealised shoreline (DAS)
was calculated for each sighting. Due to the shape of the
northern Alaska coastline (Fig. 1), DAS correlates strongly
with longitude. This variable was standardised so that the
distance from Barrow to Canada was approximately three
standard deviations, with smaller values indicating greater
proximity to Barrow.
Many of the additional covariates pertain to sums or

averages accumulated along the flight path, not only at
sightings but also for most other segments along the flight
path. The ‘waiting distance’ (WAIT) was defined to be the
total distance along the flight path from the previous
sighting (or from the start of the survey) until the present
sighting. Covariates were averaged over this wait, reflecting
the possibility that conditions associated with a sighting
may be better summarised by typical conditions while
awaiting the detection rather than specifically at the moment
of detection. One justification for this approach is that it
reduces variability when measurement of conditions
includes a notable white noise component. The approach is
also useful when covariate observations at the moment of
detection are missing.
Covariate averages were computed as follows (e.g. Fig.

5). Each waiting distance comprises a collection of one or
more shorter segments determined by records of point-on-
transect, etc., as described above. A covariate average over
a waiting distance was defined to be the segment length-
weighted average of the covariate values over all non-
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Table 2

Additional covariates created for analysis, including those averaged or summed over waiting distances.

Computed variables Method of calculation 

Categorical sea state (BSS) Low (B0-B1), Medium (B2-B3), and High (B4 and above)

Categorical visibility (VIS) Low ( �5), High ( >5)

Raw Beaufort Sea state  average Average of values from 0 to 8

Categorical BSS average Average of values of 1, 2 or 3

Raw visibility average Average of midpoints of original visibility intervals

Categorical visibility average Average of VIS

Raw ice coverage average Average of values from 0% to 100%

Waiting distance until sighting, std. units (WAIT) Accumulated as described in text
Location of sighting along idealized shoreline, std. units (DAS) See text
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limited period of circling. If at any time during the on-search
period additional whales were sighted, they were recorded as
‘sightings-on-search’. Perpendicular distances to on-search
sightings were measured in the same manner as on-transect
sightings, to the extent possible. Aside from sightings,
records of location were recorded at ‘point-on-transect’,
‘point-on-connect’, and ‘point-on-search’ at convenient
times between sightings (referred to below as ‘pot’, ‘poc’ and
‘pos’, respectively). Sightings of species were treated aside
from bowhead whales as points on segments rather than
sightings on segments. Rare circumstances required ‘abort-
flight’ events. A histogram of on-transect sighting distances
is shown in Fig. 3. Fig. 4 shows all bowhead whale sightings
in the dataset.

MATERIALS AND METHODS
The raw dataset contained 1,187 flights consisting of 84,543
records including 4,469 bowhead sightings and over
750,000km of total flight distance. The number of bowhead
whales per sighting (cluster size) was initially ignored in the
analysis because the distribution of cluster sizes was
extremely skewed. Although whale behaviour likely has
important implications for detection, it was not explicitly
included in estimation of detection probabilities because the
key behaviour, feeding, was only observed in 2.8% of cases.
For each sighting (and frequently for other types of records
during the flight), a variety of covariates were recorded. Key
covariates are listed in Table 1. It is important to note that
the ‘visibility’ variable describes the atmosphere, not some
informal combination of atmosphere, sea conditions and
other factors. Ice coverage and visibility were judged
subjectively. English units are used on occasion for
covariates for consistency with the original data records.
A variety of data coding errors and omissions were

detected during the analysis. Out of the 84,543 records, there
were 4,816 corrections to sea states, 37,757 corrections to
visibilities, 3 corrections to ice coverage, and 1 event type
correction, mostly due to inconsistent data coding. Twelve
missing visibility entries were imputed when visibilities were
discernable from long sequences of identical entries in
temporal windows surrounding the missing entry. Finally, 78
event types were altered to the most sensible alternative
because the original entry was not sensible. For example, a
sighting-on-transect (sot) entry would be changed to
sighting-on-connect (soc) if it occurred in the sequence st-
pot-pot-pot-et-poc-poc-sot-poc-poc-poc-st-pot-pot-et.
Of the available flights in this corrected dataset, 786

flights were retained for being within the time and space
limitations described above. The data for these flights
comprised 50,463 records after deleting 1,712 records with
failed or missing clinometer readings and 91 repeat

sightings. Among these data, there were 2,786 bowhead
whale sightings comprising 1,695 observations on-transect,
1,000 on-search and 91 on-connect.
From these raw data, a variety of additional covariates

were constructed (Table 2). Sea-state and visibility were
categorised. The categorisation of Beaufort Sea state was
intended to bin sea-states into glassy, intermediate, and
choppy conditions and is hereafter labelled BSS. Visibility
categories (VIS) were constructed to provide sufficient bin
counts and to maximise between-bin differences in detection
probabilities. Later, for the purposes of averaging, the
‘unlimited’ category was treated as 20km. Available GIS
data (NOAA, 2008) were used to determine the water depth
(DEPTH) at each sighting. Preliminary comparisons of the
effects of water depth and offshore distance indicated that
depth was a more effective covariate. These two variables
are very highly correlated due to the bathymetry of the
region, where depth contours closely match the shoreline
except along the west edge of the survey region in the
Barrow Canyon. In addition to providing slightly better
predictive power, depth may also be the more ecologically
sensible covariate (see Discussion).
To investigate spatial patterns, an idealised shoreline was

created, which is a straight line from Point Barrow to the
point on the coast at the Canadian border. Given this
definition, the distance along this idealised shoreline (DAS)
was calculated for each sighting. Due to the shape of the
northern Alaska coastline (Fig. 1), DAS correlates strongly
with longitude. This variable was standardised so that the
distance from Barrow to Canada was approximately three
standard deviations, with smaller values indicating greater
proximity to Barrow.
Many of the additional covariates pertain to sums or

averages accumulated along the flight path, not only at
sightings but also for most other segments along the flight
path. The ‘waiting distance’ (WAIT) was defined to be the
total distance along the flight path from the previous
sighting (or from the start of the survey) until the present
sighting. Covariates were averaged over this wait, reflecting
the possibility that conditions associated with a sighting
may be better summarised by typical conditions while
awaiting the detection rather than specifically at the moment
of detection. One justification for this approach is that it
reduces variability when measurement of conditions
includes a notable white noise component. The approach is
also useful when covariate observations at the moment of
detection are missing.
Covariate averages were computed as follows (e.g. Fig.

5). Each waiting distance comprises a collection of one or
more shorter segments determined by records of point-on-
transect, etc., as described above. A covariate average over
a waiting distance was defined to be the segment length-
weighted average of the covariate values over all non-
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limited period of circling. If at any time during the on-search 
period additional whales were sighted, they were recorded as 
‘sightings-on-search’. Perpendicular distances to on-search 
sightings were measured in the same manner as on-transect 
sightings, to the extent possible. Aside from sightings, 
records of location were recorded at ‘point-on-transect’, 
‘point-on-connect’, and ‘point-on-search’ at convenient 
times between sightings (referred to below as ‘pot’, ‘poc’ and  
‘pos’, respectively). Sightings of species were treated aside 
from bowhead whales as points on segments rather than 
sightings on segments. Rare circumstances required ‘abort-
flight’ events. A histogram of on-transect sighting distances 
is shown in Fig. 3. Fig. 4 shows all bowhead whale sightings 
in the dataset.

MATERIALS AND METHODS
The raw dataset contained 1,187 flights consisting of 84,543  
records including 4,469 bowhead sightings and over 
750,000km of total flight distance. The number of bowhead 
whales per sighting (cluster size) was initially ignored in the  
analysis because the distribution of cluster sizes was 
extremely skewed. Although whale behaviour likely has 
important implications for detection, it was not explicitly 
included in estimation of detection probabilities because the  
key behaviour, feeding, was only observed in 2.8% of cases. 
For each sighting (and frequently for other types of records 
during the flight), a variety of covariates were recorded. Key  
covariates are listed in Table 1. It is important to note 
that the ‘visibility’ variable describes the atmosphere, not 
some informal combination of atmosphere, sea conditions 
and other factors. Ice coverage and visibility were judged  
subjectively. English units are used on occasion for  
covariates for consistency with the original data records.

A variety of data coding errors and omissions were 
detected during the analysis. Out of the 84,543 records, there 
were 4,816 corrections to sea states, 37,757 corrections to 
visibilities, 3 corrections to ice coverage, and 1 event type 
correction, mostly due to inconsistent data coding. Twelve 
missing visibility entries were imputed when visibilities were  
discernable from long sequences of identical entries in 
temporal windows surrounding the missing entry. Finally, 78  
event types were altered to the most sensible alternative 
because the original entry was not sensible. For example, a  
sighting-on-transect (sot) entry would be changed to  
sighting-on-connect (soc) if it occurred in the sequence st-
pot-pot-pot-et-poc-poc-sot-poc-poc-poc-st-pot-pot-et.

Of the available flights in this corrected dataset, 786  
flights were retained for being within the time and space 
limitations described above. The data for these flights 
comprised 50,463 records after deleting 1,712 records 
with failed or missing clinometer readings and 91 repeat  
sightings. Among these data, there were 2,786 bowhead 

whale sightings comprising 1,695 observations on-transect, 
1,000 on-search and 91 on-connect.

From these raw data, a variety of additional covariates 
were constructed (Table 2). Sea-state and visibility were 
categorised. The categorisation of Beaufort Sea state was 
intended to bin sea-states into glassy, intermediate, and 
choppy conditions and is hereafter labelled BSS. Visibility 
categories (VIS) were constructed to provide sufficient bin 
counts and to maximise between-bin differences in detection 
probabilities. Later, for the purposes of averaging, the 
‘unlimited’ category was treated as 20km. Available GIS 
data (NOAA, 2008) were used to determine the water depth 
(DEPTH) at each sighting. Preliminary comparisons of the 
effects of water depth and offshore distance indicated that 
depth was a more effective covariate. These two variables 
are very highly correlated due to the bathymetry of the  
region, where depth contours closely match the shoreline 
except along the west edge of the survey region in the  
Barrow Canyon. In addition to providing slightly better 
predictive power, depth may also be the more ecologically 
sensible covariate (see Discussion).

To investigate spatial patterns, an idealised shoreline 
was created, which is a straight line from Point Barrow to 
the point on the coast at the Canadian border. Given this 
definition, the distance along this idealised shoreline (DAS) 
was calculated for each sighting. Due to the shape of the 
northern Alaska coastline (Fig. 1), DAS correlates strongly 
with longitude. This variable was standardised so that the 
distance from Barrow to Canada was approximately three 
standard deviations, with smaller values indicating greater 
proximity to Barrow. 

Many of the additional covariates pertain to sums or 
averages accumulated along the flight path, not only at 
sightings but also for most other segments along the flight 
path. The ‘waiting distance’ (WAIT) was defined to be 
the total distance along the flight path from the previous  
sighting (or from the start of the survey) until the present 
sighting. Covariates were averaged over this wait, reflecting 
the possibility that conditions associated with a sighting  
may be better summarised by typical conditions while 
awaiting the detection rather than specifically at the 
moment of detection. One justification for this approach is 
that it reduces variability when measurement of conditions  
includes a notable white noise component. The approach is 
also useful when covariate observations at the moment of 
detection are missing. 

Covariate averages were computed as follows (e.g. Fig.  
5). Each waiting distance comprises a collection of one or 
more shorter segments determined by records of point-on-
transect, etc., as described above. A covariate average over 
a waiting distance was defined to be the segment length-
weighted average of the covariate values over all non-



missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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Fig. 5. Illustration of segment-weighted averaging for the first sighting on a transect. At point p4 a bowhead was sighted. The covariate values x1, x3
and x4 contribute (in proportion to their respective surrounding segment lengths) to the average covariate value during the wait until the sighting (at
the fourth point here). The value at x2 cannot contribute because it is missing.

Table 3

Results from stepwise AIC model selection. For truncation at 9,500 feet, 
there was an inconsequential tie.

Model �AIC

Truncation at 5,280 feet

BSS +WAIT+YEAR+DEPTH 0.0

BSS+WAIT+YEAR 2.2

BSS+WAIT 5.6

BSS 9.5

NULL 15.2

Truncation at 9,500 feet

WAIT+DEPTH+DAS+YEAR 0.0

WAIT+DEPTH+DAS 2.5

WAIT+DEPTH 7.6

WAIT+DAS 7.6

WAIT 11.6

NULL 20.8
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never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
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corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
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corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.
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fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form
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each covariate listed in Tables 1 and 2 in a separate model for
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expansions) and hazard function (with possible polynomial
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the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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Fig. 5. Illustration of segment-weighted averaging for the first sighting on a transect. At point p4 a bowhead was sighted. The covariate values x1, x3
and x4 contribute (in proportion to their respective surrounding segment lengths) to the average covariate value during the wait until the sighting (at
the fourth point here). The value at x2 cannot contribute because it is missing.

Table 3

Results from stepwise AIC model selection. For truncation at 9,500 feet, 
there was an inconsequential tie.

Model �AIC

Truncation at 5,280 feet

BSS +WAIT+YEAR+DEPTH 0.0

BSS+WAIT+YEAR 2.2

BSS+WAIT 5.6

BSS 9.5

NULL 15.2
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WAIT 11.6

NULL 20.8
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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the fourth point here). The value at x2 cannot contribute because it is missing.
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Results from stepwise AIC model selection. For truncation at 9,500 feet, 
there was an inconsequential tie.
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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Fig. 5. Illustration of segment-weighted averaging for the first sighting on a transect. At point p4 a bowhead was sighted. The covariate values x1, x3
and x4 contribute (in proportion to their respective surrounding segment lengths) to the average covariate value during the wait until the sighting (at
the fourth point here). The value at x2 cannot contribute because it is missing.

Table 3

Results from stepwise AIC model selection. For truncation at 9,500 feet, 
there was an inconsequential tie.

Model �AIC

Truncation at 5,280 feet

BSS +WAIT+YEAR+DEPTH 0.0
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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Results from stepwise AIC model selection. For truncation at 9,500 feet, 
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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missing data along the segment. Specifically, for a given
flight, let n denote the number of segments within a flight,
determined by records at points p0,...,pn. Denote the
between-point segment lengths l1,...,ln. Let the covariate xi
be measured at some or all of the points. Then let the
indicator zi equal 1 if xi is observed and 0 if it is missing, so
that xi contributes to the average only when zi=1. Finally, let
integers sj {1,...,n} index sightings and locations so that
sj=k if the jth sighting occurs at pk. The weighted average
covariate value corresponding to the jth sighting is given by

for j=1,...,b, where s0=0, the number of bowhead sightings
on the flight is b ≥1, and lsj+1 must exist since no flight ends
with a sighting. Furthermore, the above discussion over-
simplifies the definition of the zi: there are reasons aside
from missing data when xi should not contribute to the
waiting period. For example, any single segment from
deadhead to abort-flight should not count in the average.
When the covariate x is categorical with levels 1,...,M,

analogous expressions can be defined for the weighted
average level (averaging level values) and for the weighted
average proportion of the waiting period spent in level m
(averaging binary indicators of state). The former approach
is not sensible unless the levels are at least ordered.
The analysis was based on only the on-transect sightings.

The DISTANCE program (Thomas et al., 2006) was used to
fit parametric models for detection functions with covariates.
For example, a detection function based on an underlying
hazard function model (see below) can take the form

where

and the Xi denote covariates 1,...,c. The parameters of this
model are α and βi for i=0,...c.

Initial model selection was conducted by incorporating
each covariate listed in Tables 1 and 2 in a separate model for
estimation of the detection function, using DISTANCE 5.0
(Thomas et al., 2006). Half-normal (with possible Hermite
expansions) and hazard function (with possible polynomial
expansions) models were investigated. On the basis of
Akaike’s information criterion (AIC) and log likelihood
comparisons between models using the alternative versions of
the same covariate, a preferred version or binning of each

covariate was selected. These covariates have been assigned
capitalised labels in Tables 1 and 2, namely BSS, VIS, ICE,
WAIT, DAS, DEPTH, DAY, and YEAR. Sky condition was
never found to provide any useful information and is hereafter
ignored. The distribution of depths at sighting locations was
extremely skewed, with a heavy tail to the right. Concern
about the influence of this skew led to consideration of using
log(depth). After experimentation, it was determined that a
more reliable approach was to eliminate the 2.6% of sightings
at depths exceeding 200 feet (61m).
With these data and covariates, model choice was made

using a forward selection strategy with AIC (Burnham and
Anderson, 1998) as the comparison metric, stopping when
no additional variable reducedAIC by at least 2.0 units. This
model selection exercise was conducted independently for
two choices of data truncation. For the first choice,
observations with distances exceeding 5,280 feet (1,609m)
were excluded, roughly corresponding to the distance at
which a preliminary estimated detection function equalled
0.15. For the second choice, observations with distances

exceeding 9,500 feet (2,896m) were excluded, closely
corresponding to 95th percentile of distances. Both strategies
are among those offered by Buckland et al. (2001).

RESULTS AND DISCUSSION

Model choice
Initial model fitting showed that the normal model was
always worse than the hazard model. Therefore model
selection was limited to the hazard model for the detection
function. Although polynomial covariate terms were not
considered in the model, polynomial expansions to the
hazard model were investigated. These usually did not
improve AIC, therefore model selection was also limited to
models with no series expansion terms.
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Fig. 5. Illustration of segment-weighted averaging for the first sighting on a transect. At point p4 a bowhead was sighted. The covariate values x1, x3
and x4 contribute (in proportion to their respective surrounding segment lengths) to the average covariate value during the wait until the sighting (at
the fourth point here). The value at x2 cannot contribute because it is missing.

Table 3

Results from stepwise AIC model selection. For truncation at 9,500 feet, 
there was an inconsequential tie.

Model �AIC

Truncation at 5,280 feet

BSS +WAIT+YEAR+DEPTH 0.0

BSS+WAIT+YEAR 2.2

BSS+WAIT 5.6

BSS 9.5

NULL 15.2

Truncation at 9,500 feet

WAIT+DEPTH+DAS+YEAR 0.0

WAIT+DEPTH+DAS 2.5

WAIT+DEPTH 7.6

WAIT+DAS 7.6

WAIT 11.6

NULL 20.8
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Table 3 shows the model selection results for the datasets
with distance truncations at 5,280 and 9,500 feet,
respectively, using the simple hazard model. Aside from the
null model, models constituting steps in a logical
progression of nested models leading to the best model and
having improvements of at least 2.0 AIC units are shown.
Having identified good models, the question of cluster size

effects was revisited. To compensate for the extremely
skewed distribution of this covariate, cluster size was
separated into three categories: 1 whale; 2 whales; and at least
3 whales. The addition of this variable raised AIC, indicating
an inferior model fit adjusted for the increased number of
parameters. Thus, contrary to expectations, cluster size did
not affect the detection function. This may reflect the fact that
most sightings occurred in good sea states and good visibility
conditions with little sea ice. However, since the distribution
of cluster sizes is highly positively skewed, there may be too
few data to obtain a reliable estimate of cluster size effects,
particularly since the comparative impact of large cluster
sizes is likely most severe at extreme distances but sighting
distances were truncated at 5,280 feet for analysis.
The on-connect and on-search data were not used in the

main on-transect analyses. The protocol employed during
on-connect survey effort was similar to that for on-transect
except that some observers may rest. There are 66 additional
on-connect sightings with no relevant missing covariates.
Fitting a model identical to the best one shown in Table 3 but
including the on-connect data yielded a similar estimate of
the detection function found in our chosen model, and the
average effective strip width was decreased by less than one
percent. Notwithstanding this result, future survey protocol
could be improved by clearly articulating the goal for on-
connect effort. Ideally, on-connect effort should be identical
to on-transect effort and the protocol should reflect this goal.
The protocol for on-search survey effort was qualitatively

different than for either other survey mode. However, a
histogram of on-search distances is virtually indistinguishable
from on-transect distances. The same model identification
and fitting strategy as above was experimented with, applying
it only to the on-search data truncated at 5,280 feet. In this
case, only DAS influenced detection. Recall that on-search
effort is triggered by the sighting or suspected sighting of a
whale. Therefore, variables that assess sighting conditions
(such as BSS, ICE, VIS) and variables that reflect relative
density (such as WAIT and YEAR) should no longer matter.
The importance of DAS for on-search data probably relates
again to whale behaviour: feeding and clustering in the
eastern Beaufort as opposed to swimming further westward.
Of course, the on-search analysis cannot be considered
reliable due to its survey protocol.

Model results and diagnostics
Table 4 provides the parameter estimates for the two models
discussed above. Hereafter the model using distance
truncation at 5,280 feet is focused on. This model should be
less sensitive to the right tail of the distance distribution,
thereby likely providing a better fit to the bulk of the data.

The average effective strip half-widths (ESW) were 3,635
feet (1,108m) and 4,246 feet (1,300m) for the small and
large truncation distances, respectively, with CVs of less
than two percent.
Buckland et al. (2004) describe several goodness-of-fit

model diagnostics. A quantile-quantile plot showed good
correspondence between observed and fitted cdfs, except
that the observed data include some zero distances, as would
be due to heaping or rounding. The model need not be
adjusted in this case (Buckland et al., 2004). The cosine-
weighted Cramer-von Mises test provided no evidence of a
poor fit (p>0.15). Informal examination of graphs of the
model fit also identified no severe problems.

Interpretation and discussion
For BSS, we found that glassy sea state (B0-B1) reduced the
effective strip width compared to when sea state is merely
good (B2-B3). This is counterintuitive because one would
expect greater ease of detecting distant whales when
conditions are excellent. However, for white whales
(Delphinapterus leucas) DeMaster et al. (2000) found no
convincing relationship between BSS and ESW. It is
suspected that the finding presented here may partially
reflect observer behaviour. Despite the intended survey
protocol, observers may have favoured nearby effort during
excellent conditions because sightings were comparatively
easy. Nevertheless, other past studies of bowhead whales
(Cosens et al., 1997) and other cetaceans (e.g. Kingsley and
Reeves, 1998) have found that sightings per unit effort were
reduced in poorer sea states.
An alternative explanation for the BSS finding is that the

binning of sea state categories may not have been the best
choice. To investigate this, a different binning of BSS was
considered, namely low (B0,B1,B2) and high (BSS�3).
Such a binning separates unbroken surfaces from surfaces
with some breaking crests. The model was re-fitted using
this binary BSS pooling and found virtually no effect for
BSS. Although this represents a weakening of the primary
BSS finding, it still fails to indicate a reduction in ESW as
sea states deteriorate. Perhaps one could infer that when sea
states are poor, sightings are so difficult that it doesn’t much
matter how nearby you look.
It is also difficult to disentangle a BSS effect from

potential effects of location and behaviour. There is a strong
relationship between BSS and sighting location. The median
sighting location during excellent sea states (B0-B1) is 69%
further eastward than during good (B2-B3) states. In
addition, whales sighted in the eastern Beaufort tend to be
feeding (particularly before the peak migration), whereas
whales in the western Beaufort and eastern Chukchi are
migrating (see Fig. 6). The median cluster sizes for diving,
swimming, and feeding whales are 1, 1, and 5, respectively.
DEPTH is another influential term in the models. The

ESW narrows with increasing depth. Whales sighted at
locations having large sea depths generally are swimming
quickly as they migrate westward at high latitudes with little
clustering. Feeding whales tend to be in shallow water (see
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Table 4

Parameter estimates (standard errors) for selected models.

Truncation DEPTH WAIT YEAR BSS (low) BSS (high) DAS �0 �

5,280 -0.0023

(0.0012)

-0.090

(0.043)

-0.015

(0.006)

-0.22

(0.09)

0.47

(0.92)

NA 4,358

(63)

2.52

(0.91)
9,500 -0.0030

(0.0012)
-0.118
(0.043)

-0.011
(0.006)

NA NA 0.073
(0.067)

3,999
(53)

2.13
(0.75)
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null model, models constituting steps in a logical
progression of nested models leading to the best model and
having improvements of at least 2.0 AIC units are shown.
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parameters. Thus, contrary to expectations, cluster size did
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most sightings occurred in good sea states and good visibility
conditions with little sea ice. However, since the distribution
of cluster sizes is highly positively skewed, there may be too
few data to obtain a reliable estimate of cluster size effects,
particularly since the comparative impact of large cluster
sizes is likely most severe at extreme distances but sighting
distances were truncated at 5,280 feet for analysis.
The on-connect and on-search data were not used in the
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except that some observers may rest. There are 66 additional
on-connect sightings with no relevant missing covariates.
Fitting a model identical to the best one shown in Table 3 but
including the on-connect data yielded a similar estimate of
the detection function found in our chosen model, and the
average effective strip width was decreased by less than one
percent. Notwithstanding this result, future survey protocol
could be improved by clearly articulating the goal for on-
connect effort. Ideally, on-connect effort should be identical
to on-transect effort and the protocol should reflect this goal.
The protocol for on-search survey effort was qualitatively

different than for either other survey mode. However, a
histogram of on-search distances is virtually indistinguishable
from on-transect distances. The same model identification
and fitting strategy as above was experimented with, applying
it only to the on-search data truncated at 5,280 feet. In this
case, only DAS influenced detection. Recall that on-search
effort is triggered by the sighting or suspected sighting of a
whale. Therefore, variables that assess sighting conditions
(such as BSS, ICE, VIS) and variables that reflect relative
density (such as WAIT and YEAR) should no longer matter.
The importance of DAS for on-search data probably relates
again to whale behaviour: feeding and clustering in the
eastern Beaufort as opposed to swimming further westward.
Of course, the on-search analysis cannot be considered
reliable due to its survey protocol.

Model results and diagnostics
Table 4 provides the parameter estimates for the two models
discussed above. Hereafter the model using distance
truncation at 5,280 feet is focused on. This model should be
less sensitive to the right tail of the distance distribution,
thereby likely providing a better fit to the bulk of the data.

The average effective strip half-widths (ESW) were 3,635
feet (1,108m) and 4,246 feet (1,300m) for the small and
large truncation distances, respectively, with CVs of less
than two percent.
Buckland et al. (2004) describe several goodness-of-fit
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that the observed data include some zero distances, as would
be due to heaping or rounding. The model need not be
adjusted in this case (Buckland et al., 2004). The cosine-
weighted Cramer-von Mises test provided no evidence of a
poor fit (p>0.15). Informal examination of graphs of the
model fit also identified no severe problems.

Interpretation and discussion
For BSS, we found that glassy sea state (B0-B1) reduced the
effective strip width compared to when sea state is merely
good (B2-B3). This is counterintuitive because one would
expect greater ease of detecting distant whales when
conditions are excellent. However, for white whales
(Delphinapterus leucas) DeMaster et al. (2000) found no
convincing relationship between BSS and ESW. It is
suspected that the finding presented here may partially
reflect observer behaviour. Despite the intended survey
protocol, observers may have favoured nearby effort during
excellent conditions because sightings were comparatively
easy. Nevertheless, other past studies of bowhead whales
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An alternative explanation for the BSS finding is that the
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choice. To investigate this, a different binning of BSS was
considered, namely low (B0,B1,B2) and high (BSS�3).
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with some breaking crests. The model was re-fitted using
this binary BSS pooling and found virtually no effect for
BSS. Although this represents a weakening of the primary
BSS finding, it still fails to indicate a reduction in ESW as
sea states deteriorate. Perhaps one could infer that when sea
states are poor, sightings are so difficult that it doesn’t much
matter how nearby you look.
It is also difficult to disentangle a BSS effect from

potential effects of location and behaviour. There is a strong
relationship between BSS and sighting location. The median
sighting location during excellent sea states (B0-B1) is 69%
further eastward than during good (B2-B3) states. In
addition, whales sighted in the eastern Beaufort tend to be
feeding (particularly before the peak migration), whereas
whales in the western Beaufort and eastern Chukchi are
migrating (see Fig. 6). The median cluster sizes for diving,
swimming, and feeding whales are 1, 1, and 5, respectively.
DEPTH is another influential term in the models. The

ESW narrows with increasing depth. Whales sighted at
locations having large sea depths generally are swimming
quickly as they migrate westward at high latitudes with little
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considered, namely low (B0,B1,B2) and high (BSS≥3).



Fig. 6). If distant whales are more difficult to detect unless
they spend relatively more time near the surface and/or if
lone whales are more difficult to detect at large distances
than are clusters, then the observed inverse correlation
between ESW and depth would be expected.
Next the effect of WAIT was considered. Fitting an

adjustment term for WAIT is the continuous analogue to
stratifying the analysis by encounter rate as described by
Buckland et al. (2001). It was found that long waits between
sightings are associated with reduced ESW. One explanation
for this may be that long waits are associated with poor
sighting conditions, during which periods of effort might
tend to be focused closer to the plane. More importantly,
long waits clearly serve as a proxy for all sorts of
unmeasured variables that effect sighting probability.
Although the BWASP dataset contains data on several such
variables, many other factors (known and unknown)
probably impact detection probabilities as well. WAIT is
effectively an indirect measure of such effects. It should be
emphasised that WAIT is not a factor that can be controlled
by the surveyors. However, one implication of the finding is
that it may be useful to stratify data by encounter rate when
analysing bowhead whale aerial survey data.
The results in Table 2 for the model with truncation at

9,500 feet show that the only covariate substitution in the
alternative models is the exchange of BSS for DAS. As
discussed above, there is a strong positive correlation
between increasing DAS and improved sea states. These
two variables act as partial surrogates for each other.
Furthermore, the presence of DAS in the model explains
why calendar day is not selected in the modelling. Recall the
spatio-temporal nature of the migration. Early in the autumn
season, when weather tends to be better, the whales are
mostly in the eastern portion of the survey region and
sightings predominate there. Later in the autumn as the
weather degrades, the whales (and sightings) are mostly in
the west. Although these correlations involve DAY too, we
believe that the position along shore is a superior indicator
of the location of whales during the migration because the
day-to-day timing of the migration exhibits substantial inter-
annual variability.
Increasing YEAR decreases the ESW. George et al.

(2004) have estimated that the bowhead whale population
abundance has increased dramatically over the BWASP
survey period. Thus the results presented here confirm again
that encounter rate affects the detection function.
Due to serious concerns about the survey design and

features of the data, a reliable estimate of total abundance
cannot be obtained from the BWASP data. Nevertheless, a
crude reality check based on these results is not alarming.
For the year 2000 on-transect data only, there were 46
sightings over a survey region of 1.185e+12 ft2. Effort was
strongly imbalanced in 2000, so the analysis was stratified
into two regions: one with sparse effort and one with heavy
effort. Across both regions the total transect length was
about 3.485e+7ft and the average effective strip width was
taken to be the estimate for the model with distance
truncation at 5,280 feet. These results yielded uncorrected
abundance estimates of 63 and 141 whales for the sparse and
dense regions, respectively. Krutzikowsky and Mate (2000)
provide estimates of correction factors for availability due to
bowhead whale diving behaviour. They estimate that
bowhead whales are sufficiently near the surface to be
available for visual detection from the airplane 11.1% of the
time. Heide-Jørgensen et al. (2007) offer a perception bias
correction factor of 0.48. The mean cluster size in the data
presented here is 2.04. Adjusting for all these correction

factors yields a crude estimate of total abundance of 7,836
whales. One notable source of downward bias in this
estimate is that it ignores 38 additional whales seen on-
connect and on-search with comparatively little extra survey
effort. For 2001, a reliable abundance estimate is 10,470
with 95% confidence interval (8,100-13,500); see George et
al. (2004).
Although the BWASP data constitute one of the longest

and richest time series of data regarding bowhead whales,
they also present serious challenges for analysis and
interpretation. Most notably, the block coverage was not
wholly random with respect to the distribution of animals,
although transects within blocks were random. Non-random
block selection can bias estimates of relative density.
However bias in estimation of the detection function should
be reduced if detection probabilities are independent of
location and adequate covariate sampling is maintained. The
transect locations also changed every season. Although this
might be important for a monitoring programme, it is not
necessary for estimation of absolute or relative abundance,
nor for the detection function estimation we present here.
The spatio-temporal variation in whale presence, survey

coverage, and whale behaviour (and hence availability)
presents another challenge for analysis. Adjustment for
short-term and long-term changes in encounter rates merits
consideration. Stratification by encounter rate can be
implemented in the survey design, or in post hoc analysis. In
general, stratification can be carried out on the basis of
encounter rates and/or covariates shown to influence the
detection function. For the model fit to data truncated at
5,280 feet, the only covariate available for stratification
during the survey would be depth. Such stratification could
be particularly effective because whale presence is
extremely strongly (negatively) correlated with depth.
Over the 25 year period of surveys, many aspects of the

survey effort and region must have changed: migration
patterns may have systematically evolved over time;
weather conditions may have changed, and ice coverage has
clearly decreased over the period despite substantial
interannual variation; observers have changed, along with
equipment. Such variations raise the question of whether a
single detection function can reasonably be fitted to data
collected over such a long period.
Despite the above difficulties, several other important

distance sampling assumptions listed by Buckland et al.
(2001) appear quite reasonable for this dataset. Compared to
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Fig. 6. Boxplots of depth and location of sightings split by whale
behaviour.
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than are clusters, then the observed inverse correlation
between ESW and depth would be expected.
Next the effect of WAIT was considered. Fitting an

adjustment term for WAIT is the continuous analogue to
stratifying the analysis by encounter rate as described by
Buckland et al. (2001). It was found that long waits between
sightings are associated with reduced ESW. One explanation
for this may be that long waits are associated with poor
sighting conditions, during which periods of effort might
tend to be focused closer to the plane. More importantly,
long waits clearly serve as a proxy for all sorts of
unmeasured variables that effect sighting probability.
Although the BWASP dataset contains data on several such
variables, many other factors (known and unknown)
probably impact detection probabilities as well. WAIT is
effectively an indirect measure of such effects. It should be
emphasised that WAIT is not a factor that can be controlled
by the surveyors. However, one implication of the finding is
that it may be useful to stratify data by encounter rate when
analysing bowhead whale aerial survey data.
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alternative models is the exchange of BSS for DAS. As
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why calendar day is not selected in the modelling. Recall the
spatio-temporal nature of the migration. Early in the autumn
season, when weather tends to be better, the whales are
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day-to-day timing of the migration exhibits substantial inter-
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For the year 2000 on-transect data only, there were 46
sightings over a survey region of 1.185e+12 ft2. Effort was
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about 3.485e+7ft and the average effective strip width was
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Over the 25 year period of surveys, many aspects of the

survey effort and region must have changed: migration
patterns may have systematically evolved over time;
weather conditions may have changed, and ice coverage has
clearly decreased over the period despite substantial
interannual variation; observers have changed, along with
equipment. Such variations raise the question of whether a
single detection function can reasonably be fitted to data
collected over such a long period.
Despite the above difficulties, several other important

distance sampling assumptions listed by Buckland et al.
(2001) appear quite reasonable for this dataset. Compared to
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Fig. 6. Boxplots of depth and location of sightings split by whale
behaviour.

009-016 JNL 423:Layout 1  29/12/09  11:47  Page 15



the scale of transect strip widths, animals are detected at
their initial locations for all practical purposes. There is
probably little response to the aircraft: for example
Patenaude et al. (2002) estimated that only 2.2% of
bowhead whales reacted to overflights of a Twin Otter
aircraft and that the vast majority of these occurred at flight
altitudes not exceeding 182m. In the BWASP data, the target
flight altitude was 458m and only 2% of on-transect
sightings occurred at less than 182m. Clinometer readings
should be reliable, except that there was heaping on 5°
increments (variation in altitudes meant that no heaping was
seen for distances). There are some distance outliers when
clinometer readings were very small, but these were
eliminated during the data truncation phase. Finally, a
shoulder in the histogram of sighting distances is clearly
seen near zero (Fig. 2), providing a better basis for
estimation of the detection function.
Considering the results overall, it appears that the

detection function depends notably on whale behaviour.
When information on behaviour is sparse or lacking, it
appears that variables related to space and time can be used
as surrogates, as long as information about spatio-temporal
patterns of behaviour is available. Annual surveys like
BWASP are likely to continue in the near future, providing
even greater opportunity to improve understanding of
bowhead whale detection, distribution, behaviour and
migration in the region.
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their initial locations for all practical purposes. There is
probably little response to the aircraft: for example
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bowhead whales reacted to overflights of a Twin Otter
aircraft and that the vast majority of these occurred at flight
altitudes not exceeding 182m. In the BWASP data, the target
flight altitude was 458m and only 2% of on-transect
sightings occurred at less than 182m. Clinometer readings
should be reliable, except that there was heaping on 5°
increments (variation in altitudes meant that no heaping was
seen for distances). There are some distance outliers when
clinometer readings were very small, but these were
eliminated during the data truncation phase. Finally, a
shoulder in the histogram of sighting distances is clearly
seen near zero (Fig. 2), providing a better basis for
estimation of the detection function.
Considering the results overall, it appears that the

detection function depends notably on whale behaviour.
When information on behaviour is sparse or lacking, it
appears that variables related to space and time can be used
as surrogates, as long as information about spatio-temporal
patterns of behaviour is available. Annual surveys like
BWASP are likely to continue in the near future, providing
even greater opportunity to improve understanding of
bowhead whale detection, distribution, behaviour and
migration in the region.
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