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ABSTRACT

This paper presents dive data obtained from the deployment of a suction-cup attached time-depth recorder (TDR) on a gray whale off the
west coast of Vancouver Island, Canada. Data are presented in the form of dive profiles. This represents the first time that dive data have
been collected from a gray whale. The data were used to compare subjective classification of dive types to statistical methods of
classification, and to test the ability of the statistical methodsto classify dives. Each dive was analysed using maximum depth, dive duration
and bottom time variables for both subjective and statistical methods to make direct comparison of results. Subjective classification
suggests that the tagged animal performed five distinct dive types. Two of these dive types, termed Interventilation and Feeding, were
assigned a purpose. Two statistical technigques were then used to classify dives: k-means cluster analysis and discriminant function analysis.
Cluster analysis and subjective classification showed poor agreement due to the statistical technique's inability to account for dive
geometry. Discriminant function analysis proved more successful, although this technique al so demonstrated some weaknessin testing for
dive geometry. It was concluded that while statistical analysis of dive data is useful to classify dive typesin a general manner, subtle
differences, which may be indicative of behavioural differences, still depend on subjective analysis for identification. Detailed analyses of
the third, or depth, dimension of the marine mammal environment will be important for the development of effective management

strategies, especially as whalewatching grows in popularity.
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INTRODUCTION

Wildlife managers are currently faced with issuesbeyond the
bounds of their historical practice. Non-consumptive
wildlife use (e.g. wildlife viewing and photography) is a
rapidly growing sector. Wildlife management is becoming
more complicated due to both alarge ‘user’ population and
increasing economic impact (Duffus and Dearden, 1990;
1993). Detailed understanding of species life history,
ecology and behaviour (e.g. foraging, reproduction and
spatial behaviour) will now, more than ever, dictate a
programme’s success in mitigating human impact on the
focal species. Within the spectrum of wildlife watching
activities, whale and dolphin watching has grown extremely
rapidly (Hoyt, 1995; 2000). Management concerns have now
arisen in many locations and for several species (IFAW
Tethys and Europe Conservation, 1995; IFAW, 1998). The
issue is aso being examined by the International Whaling
Commission (e.g. IWC, 1997a) and its Scientific Committee
(e.g. IWC, 1997b; 1999; 2000).

Records of underwater behaviour are now available
through the use of time-depth recorders (TDRS). This paper
reports on the use of a TDR attached to a gray whale
(Eschrichtius robustus). Individual dives (n=651) were
analysed using data collected from Clayoquot Sound, on the
west coast of Vancouver Island, Canada. Gray whales
aggregate and forage in Clayoquot Sound between May and
September and a whalewatching industry has developed in
the villages of Tofino and Uclulet based on whales
(approximately 100) that move between Barkley, Clayoquot
and Nootka Sounds during these months (Duffus, 1996).
While information from asingle individual does not provide
a foundation upon which to generalise behaviour, it does
providethefirst record of the underwater behaviour of agray
whale. More importantly, these data provide an opportunity
to compare and analyse dive classification methods in a

dataset for which feeding dives (the main behaviour of gray
whales in Clayoquot Sound during the summer) are
identifiable due to their foraging habits.

In the past, analyses of dive data collected by TDRs
initially focused on maximum depth and duration of dives
(e.g. Le Boeuf et al., 1988; 1989; DelLong and Stewart,
1991). Subsequently, researchers expanded their analysesto
include shape (depth versustime) to classify dive types (e.g.
LeBoeuf et al., 1992; 1993; Martin et al., 1993; 1994; Baird,
1995). This type of analysis typically relies on subjective
examination of individual dive records to differentiate
shape.

Analysis of dive data beyond summary description is still
initsinfancy. The use of multivariate statistical techniques
has been introduced to deal with large datasets and to reduce
biasin subjective analysis (Hindell et al., 1991; Schreer and
Testa, 1995; 1996; Burns et al., 1997). However, subtle
differences in shape, discernible in subjective analysis, may
not be recognised statistically (Schreer and Testa, 1996). The
desire to derive more than description, however, will
continue to stimulate advances in this area.

METHODS

Thetag

The tag used was based on the original design of Goodyear
(1981; 1989). The attachment mechanism followsthe design
of Goodyear, modified by Baird (1995). A VHF transmitter
(Telonics Dart 4, Mesa, AZ) and time-depth recorder (Mk5
TDR, Wildlife Computers, Redmond, WA) were
incorporated into the tag body. The depth sensor (precision
+/- 1m) onthe TDR was set to record once per second for this
study. Data collected during deployment was stored and
downloaded following recovery of the tag.



178 MALCOLM & DUFFUS: COMPARISON OF DIVE CLASSIFICATION METHODS

The attachment mechanism consisted of a 7.8cm, soft
rubber suction cup, fastened to the tag body by flexible
plastic tubing. The detachment mechanism was a stainless
steel tube running through the stalk of the suction cup
opening into the inside of the suction area. A stainless steel
spring maintained a stainless steel washer in constant contact
with amagnesium cap screwed onto the top of the tube. The
detachment mechanism relied on electrolysis to erode the
cap, releasing the device. Once free, the tag was located
using a VHF receiver and 3-element Yagi antenna.

The TDR tag was attached to a gray whale foraging with
a group of 12 animals at Rafael Point, Flores Island, on 6
August 1994. A SCUBA diver reconnaissance and plankton
tows, undertaken from a support vessel during the tagging
period, revealed that the animal was feeding on planktonic
crab larvae (Pachycheles spp. and Petrolisthes spp.)
swarming 0-3m above the ocean bottom at an average depth
of 18m. The tag remained attached for 8 hours, 21 minutes,
collecting 29,842 depth points, representing 651 dives.

Data were downloaded from the TDR in a hexadecimal
format for analysis with DIVE ANALYSIS (Wildlife
Computers, Redmond, WA) and a decimal-formatted listing
of each single-depth reading for statistical analysis. DIVE
ANALYSIS produced individual, two-dimensional dive
profiles, displayed in order of occurrence. DIVE
ANALYSIS aso generated the following user-selected
variables for each dive: dive duration, maximum depth,
bottom time, descent time, average descent rate, ascent time
and average ascent rate.

Classification techniques

Dives were classified subjectively based on shape, dive
duration, maximum depth and bottom time variables
generated for each dive. Fig. 1 illustrates the decision tree
employed in the subjective classification process. Dives
were sorted into classes through k-means cluster analysis
based on k a priori user-designated clusters (Everitt, 1980).
This method allows direct comparison with the subjective
classification.

The first k-means clusters were generated using the same
variables as the subjective classification (dive duration,
maximum depth and bottom time). To compare the results of
the two methods, dives classified subjectively were grouped
according to the clusters generated statistically.

A second cluster analysis was performed using converted
variables. Maximum depths were converted to z-scores to
reduce the effect of the large range of the variable relative to
the other two variables. Relative bottom time was calculated
by dividing bottom time by maximum depth to differentiate
between dives to similar depths with varying bottom times
(e.g. v-shaped dives versus square-shaped dives). The dive
duration variable was not altered. Results using the dive
duration, maximum depth z-score and relative bottom time
variables were then compared with the subjective
classification.

Discriminant Function Analysis (DFA) predicts group
membership by creating a linear regression function based
on the test variables. This function is the least squares
predictor of group membership, whereby observations are
split into two groups by the discriminant function (Sokal and
Rohlf, 1981). In cases where observations belong to more
than two groups, multiple discriminant functions are created.
The number of functions created is either equal to the
number of variables or one less than the number of groups,
whichever is lower. The first discriminant function
maximises the between-groups to within-groups sum of
squares, the second function derived is the second best
explainer of variance, and so on (Norusis, 1994). For the data
in this study, three discriminant functions were derived,
equalling the number of variables.

By converting the subjectively determined dive classes
into numerals (e.g. Feeding=>5) and inserting them as a
variable (along with dive duration, maximum depth and
bottom time) into the analysis, the accuracy of the subjective
classifications is tested by comparing the analysis results to
the subjective classification (sensu Schreer and Testa, 1996).
The resulting comparison calculates an error rate of the
subjectively determined classifications.
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Fig. 1. Decision tree for subjective classification of dive types.
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RESULTS

Subjective  analysis classes were labeled: (1)
Interventilation; (2) Shallow Intermediate Square; (3) Deep
Intermediate ‘v’; (4) Deep Intermediate Square; and (5)
Feeding (Fig. 2). Function was ascribed to the
Interventilation and Feeding dive types. Interventilation
refers to short, shallow dives performed during oxygen
recharge and Feeding refers to long, deep dives to the prey
patch. There is no basis presently upon which to ascribe
function to the other three dive types.

K-means cluster analysis is based on five groups,
replicating the number of groups categorised in the
subjective method in order to compare the two classification
methods. The summary statistics as well as the location of
proportions of members in other categories classified by
each technique respectively illustratesthe level of agreement
in the two techniques (Table 1).

Clustering of geometrically distinct dives within the same
groups and the large range of the maximum depth variable
was addressed in a second cluster analysis. Two new
variables were used for this analysis. maximum depth
converted to a z-score and rel ative bottom time cal cul ated by
dividing bottom time by maximum depth. The second cluster
analysis classification was again based on five clusters. The
new clusters again agree poorly with the subjective
classification (Table 2).

DFA was used to test the validity of the subjective
classifications by predicting group membership (Table 3).
There was better agreement between the discriminant
functions and the subjective classifications than with the
k-means cluster analyses and subjective classification. The
only subjective category that DFA determined to be
misclassified was the Shallow Intermediate Square dive

Interventilation
\ Shallow intermediate square

type, which had only 21.6% agreement. The overall error
rate, given by the number of divesidentified as misclassified
divided by the total number of dives, was 8.6%.

DISCUSSION

In the subjective examination of the data, the TDR provided
evidence of five different types of dive. Function was
ascribed to two of these. The short, shallow, Interventilation
dives were part of the cycle of oxygen recharge that the
whales perform between pursuit dives to obtain prey. The
Feeding dives appeared readily discernible by their length,
depth and shape, and showed the anima pursuing
supra-benthic  swarms, confirmed by  underwater
observation. The three intermediate dives, while classified
through the subjective process as separate dive types, were
too scarcein this dataset to attempt any explanation. Nothing
inthe dive sequence or geographic location provided cluesas
to their function.

Divesclassified by both subjective and statistical methods
explore the application of multivariate statistical techniques
to dive data. The small dataset (n=651) allowed inspection
of every diveto compare subjective and statistical analysis of
gray whale diving data for the first time. By using the same
variables for both the subjective and initial k-means cluster
analysis (maximum depth, dive duration, bottom time) a
direct route for comparison between the two methods is
possible. The subjective method focuses primarily on
geometry as well as the maximum depth, dive duration and
bottom time, with the ultimate goal of assigning purpose to
each dive. However, assigning purpose, with a priori ideas
(e.g. feeding, oxygen recharge), may create bias. Statistical
analysis applies rigid criteria to data to provide
comparison.
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Fig. 2. Subjectively classified dive profile examples.
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Table 1
Comparison of cluster analysis to subjective classification.
Key: Depth = Mean Maximum Depth; Dive = Mean Dive Duration;
Bottom = Mean Bottom Time. Under ‘Cluster analysis’ and ‘Subjective’
I = Interventilation; SIS = Shallow Intermediate Square; DIV = Deep
Intermediate ‘V’; DIS = Deep Intermediate Square; F = Feeding. Under

Table 3
Predicted group membership determined by diseriminant function. Under
‘Subjective’ 1 = Interventilation; SIS = Shallow Intermediate Square; DIV

= Deep Intermediate “V’; DIS = Deep Intermediate Square; F = Feeding.

% DFA predicted group membership (#)

Subjective group 1 2 3 4 5
1 (n=466) 99.6 0.4 0 0 0
SIS (#=51) 78.4 21.6 0 0 0
DIV (#=18) 0 0 66.7 222 11.1
DIS (#=33) 0 0 9.1 87.9 3.0
F (n=83) 0 0 1.2 3.6 95.2

‘Subjective’ Cluster 1 = 1; Cluster 2 = 2; Cluster 3 = 3; Cluster 4 = 4;
Cluster 5= 5.
Cluster analysis Subjective
Cluster 1 (#=515) I (n=466)
Depth (m) 2.2 2.2
Dive (s) 133 12.6
Bottom (s) 7.3 0.12
Classification: 90.5% in I; 9.5% in SIS 100% in 1
Cluster 2 (n=40) SIS (n=51)
Depth (m) 6.8 35
Dive (s) 56.3 28.2
Bottom (s) 31.4 9.8
Classification: 5.0% in SIS; 32.5% in 96.1%in 1;3.9% in 2
DIV; 62.5% in DIV
Cluster 3 (#=17) DIV (n=18)
Depth (m) 12.0 9.0
Dive (s) 110.3 44.4
Bottom (s) 533 11.0
Classification: 17.6% in DIV; 47.1% in 72.2%in 2; 16.7% in 3;
DIS; 353% in F 11.1% in 4
Cluster 4 (n=42) DIS (n=33)
Depth (m) 16.8 8.0
Dive (s) 178.8 79.8
Bottom (s) 125.4 46.2
Classification: 4.8% in DIV; 95.2% in F 75.8% in 2;24.2% in 3
Cluster 5 (#=37) F (n=83)
Depth (m) 18.8 17.5
Dive (s) 208.2 190.8
Bottom (s) 150.6 130.4
100% in F 48.2% in 4; 44.6% in 5;
7.7% in 3
Table 2

Comparison of second cluster analysis using transformed variables to
subjective classification. Under ‘Cluster analysis’ and ‘Subjective’ [ =
Interventilation; SIS = Shallow Intermediate Square; DIV = Deep
Intermediate ‘V’; DIS = Deep Intermediate Square; F = Feeding. Under

‘Subjective’ Cluster 1 = 1; Cluster 2 = 2; Cluster 3 = 3; Cluster 4 = 4;
Cluster 5= 5.
Cluster analysis Subjective
Cluster 1 (#=504) I (n1=466)

92.3%inI; 7.7% in SIS 99.7% in 15 0.03% in 2

Cluster 2 (n=54)

1.9% in I; 22.2% in SIS; 27.8%
in DIV; 48.1% in DIS

SIS (n=51)
76.5% in 1;23.5% in 2

Cluster 3 (#=20)
15% in DIV; 35% in DIS;
50% in F

DIV (1=18)
83.3%in 2; 16.7% in 3

Cluster 4 (#=37)
100% in F

DIS (n=33)
78.8%in 2;21.2% in 3

Cluster 5 (#=36)
100% in F

F (n=83)
44.6% in 4;43.4% in 5; 12.0% in 3

Whileitispossiblethat dive types may be continuous, and
not amenable to separation by artificia boundaries in some
circumstances, in this case the advice of Shreer and Testa
(1995) was followed, i.e. that cluster analysis is the most
efficient multivariate procedure for analysing dive data
solely by statistical techniques.

The difficulty in the dtatistical analysis lies in its
insensitivity to shape. The initial cluster analysis (Table 1)
has no variable that deals with depth and geometry
simultaneously. The Deep Intermediate dives, both ‘v’ and
sguare, are scattered into three central clusters with depth
centres of 6.8m, 12m and 16.8m. The subjective analysis
separates the two Deep Intermediate classes not by depth,
with 9.0m and 8.0m means, but by bottom time, 10.8s and
46.2s, respectively, which clearly differentiates between the
distinct dive shapes.

The division of Feeding dives between three clusters is
due to the range of the maximum depth variable for Feeding
dives (8.33m), resulting in longer dive time and bottom time
centres for the deeper dive clusters. The range may be
explained by two aspects of the environment: (1) athough
the prey was observed by SCUBA diversto be supra-benthic
during the tagging session, prey swarms may have been
several meters thick in some areas; and (2) the rocky
substrate results in variable depths throughout the Rafael
Point feeding site. Identifiable geometric characteristics of
feeding dives (long, deep dives with long, flat bottom times)
and knowledge of environmental conditions, included in
subjective analysis, could not be considered in cluster
analysis.

Depth may also be the main criterion for clustering 96.1%
of Shallow Intermediate Square dives in the same cluster as
Interventilation dives. However, the subjective analysis
revealed the Shallow Intermediate Square dive to be more
than twice the duration of the Interventilation dive.

The second cluster analysis attempts to moderate the large
range of the depth variable and address the relationship of
bottom time to depth. However, dive geometry shape
remains undistinguished. The percentages of Deep
Intermediate ‘v’ and Deep Intermediate Square dives
grouped together in Cluster 2 (83.3% and 78.8%
respectively) is even higher with the new variables.

Theinsensitivity to shapein both k-means cluster analyses
reinforces the importance of subjective analysis. The ability
to subjectively analyse and alocate dives to particular
groups appears essential for analysis of dive behaviour to
assign purpose to dives. This level of understanding is
needed for effective management. However, databases
containing thousands of dive records may prohibit the
possibility of individua subjective analysis. Random
selection of < 1,000 dives from a database for subjective
analysis may be useful, although the chance of missing a
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rare, yet potentially important, diving behaviour is a
possibility. Although Burns et al. (1997) describe a method
for transforming dive data that cluster analysis can classify
into general groups, their method was not used at this stage
of the analysis for three reasons. (1) Burns et al. were
analysing Weddell seal dive data which had much longer
average dive durations (x = 8.83+1.49min) compared to the
large percentage of short dives (x=0.67+1.03 min for al
dives) in our own dataset - their method would not have
given us a fine enough scale to work with; (2) Burns et al.
had to subsequently divide groups by depth, whereas for our
data, with an identifiable food source depth, depth had to be
aprimary factor in classification; and (3) asour primary goal
was to compare subjective with statistical classification the
same variables were needed for both methods. However, the
method described by Burnset al. is useful for the analysis of
lengthy dives and is not ruled out for use in the future,
especialy with larger datasets.

The inability to account for shape encountered in this
study poses a problem, as shape must be taken into account
in assigning purpose. In the case of some skim-feeding
baleen whales (or benthic feeding gray whales), in which a
long, flat bottom time indicates a feeding behaviour, this
problem is not as severe. In other situations, however, this
may not be the case.

DFA can be used as a dtatistical test of the grouping
agorithms created by other methods (Schreer and Testa,
1995). In this study, it was used to test the subjective
classifications. As in the cluster analysis, DFA determined
Interventilation and Shallow Intermediate Square divesto be
similar. DFA determined that 78.4% of Shalow
Intermediate Square dives belonged in the same group as
Interventilation dives (Table 3).

Thisresult leavesasmall group of 13 dives (including two
from the Interventilation dive class) asthe DFA analogue of
the Shallow Intermediate Square dive class. Although both
cluster analysis and DFA revealed that these two dive types
were similar statisticaly, it remains difficult to conclude
whether these two dive types should be considered as one.
The mean dive durations of the two dive types, when classed
subjectively, were 12.6 and 28.2 seconds, respectively,
suggesting a difference. This difference could have an
energetic component. With only one anima’s dive
behaviours recorded and only 51 dives in the Shallow
Intermediate Square dive class, there areinsufficient datafor
amore robust interpretation.

With respect to the other subjectively determined dive
types, DFA results agree more than cluster analysis. The
Feeding dive type was determined by DFA to be 95.2%
correct. DFA also appeared more adept at analysing shape.
Deep Intermediate ‘v’ and Deep Intermediate Square dive
types were determined by DFA to be classified 66.7% and
87.9% correctly, and till represented the highest variability
across different classes.

The overdl error rate (number of misclassified dives
divided by total number of dives) for the DFA analysis was
8.6%. Thispercentage may be artificially low dueto the high
percentage of agreement between the subjective and DFA
classifications for the Interventilation dives, which
constituted 71.5% of the sample. Schreer and Testa (1996)
reported amean error rate of 48%, cal culated from anumber
of individual DFA analyses using different datasets for their
Weddell seal study, a much higher rate than this study.
Schreer and Testa, however, employed amuch larger dataset
and subjectively identified nine dive types, several classes of
which are only subtly different. It is also possible that the
gray whale tagged in this study performed dives that were

dragtically different (based on the maximum depth, dive
duration and bottom time variables used) and thus easily
identified subjectively.

CONCLUSION

This study presents the first application of a TDR tag on a
gray whale. While the single application does not provide an
appropriate dataset upon which to base generalised
behavioural hypotheses, it does provide an opportunity to
examine the applicability of statistical methods to classify
dives from a continuous dive record.

Continued work with subjective and multivariate anaysis
techniques for dive data will prove important for the
conservation and management of marine mammals,
especialy in light of the growing whalewatching industry
throughout the world. Surface behaviour datahasyet toyield
much significant change in the presence of vessel traffic.
Neither technique on its own is completely satisfactory in
dedling with the differences in dive morphology.
Exploratory application of multivariate analyses methods,
such asthose by Schreer and Testa (1995; 1996), Burnset al.
(1997), and those emerging from this study, revea the
statistical techniques' ability, at least in part, to identify
characteristic dive types. However, subjective anaysis,
examining overall shape of each dive, remains an important
element of analysis. The effectiveness of the statistical
techniques employed in this study to test for shape, within
similar dive depths and durations, was not sufficient;
however, a solely subjective analysis may introduce bias. A
combination of sub-sampled subjective runs and large scale
statistical testing may provethe most effectiveroutefor large
datasets, coupled with sound biological knowledge of the
animal and its behaviours.
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