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ABSTRACT

Statistical models and maximum likelihood methods are developed for estimating bowhead whale population size from photo-identification
data. These are tested on both simulated data and actual data from 1985 and 1986 photographic studies. Initially a multinomial model that
accounts for unmarked whales is used. Variance is estimated using the parametric bootstrap. In the cases considered, the variance estimators
perform similarly to previously used delta method based estimators in terms of confidence interval coverage, as long as log-normal rather
than symmetric confidence intervals are used for the latter. Further models are developed to account for heterogeneity in capture
probabilities (highly marked whales are more likely to be captured than moderately marked) and non-random sampling caused by age
segregation. These models, particularly the latter, perform better than the multinomial model on simulated data that incorporate these
violations of standard capture-recapture assumptions. All three models are applied to actual bowhead whale data. The resulting estimates
of the 1+ population size (animals 1 year old or older) in 1985-86 range from 4,719 (using the non-random sampling model on the small
dataset in which lengths are available for all whales so that age class can be determined) to 7,331 (using the heterogeneity model on the
full dataset). Standard errors are comparable to those obtained from the ice-based census in years with sub-optimal environmental
conditions. All confidence intervals include the ice-based census estimates for 1985 and 1986, as well as the corresponding values of 1+
population size in the most likely trajectory from a Bayesian synthesis analysis. These most likely values – 6,649 and 6,820 – incorporate
the ice-based census estimates and additional data on bowhead whale population dynamics.
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1. INTRODUCTION
Most estimates of the size of the Bering-Chukchi-Beaufort
Seas stock of bowhead whales (Balaena mysticetus) have
been based on the ice-based visual and acoustic counts of
whales conducted at Point Barrow during the spring
migration. These population estimates have formed the basis
of management advice by the International Whaling
Commission (IWC) Scientific Committee (e.g. IWC, 2000).
However, at least since Rugh (1990) made the first attempt
to compute a population estimate from photo-identification
data, researchers involved in aerial photography of bowhead
whales have been interested in obtaining an independent
population size estimate from such data.

This paper describes three capture-recapture models
developed to permit bowhead population size estimation
from aerial photographs and presents results obtained using
those models on real and simulated bowhead data. The
models address problems caused by unmarked whales,
heterogeneity in capture probabilities (highly marked whales
are more likely to be captured in good photographs than
whales that are only moderately marked) and non-random
sampling resulting from age segregation. The study arose out
of difficulties encountered when applying existing
approaches to bowhead photo-identification data, and thus
the data themselves are described below.

The actual bowhead data
Aerial photographs of bowhead whales suitable for
identification of individuals using their natural markings
have been collected in the Bering, Chukchi and Beaufort

Seas since 1976. Most of the photographs have been
collected by LGL Ltd. (LGL), the National Marine Mammal
Laboratory (NMML) and Cascadia Research Collective
(CRC). The collections are housed at LGL and NMML.
Rugh et al. (1992) described how the photographs are taken,
summarised the methods used initially for organising and
scoring the collection for photo-identification and explained
how individuals are identified. The use of capture-recapture
techniques to estimate whale population parameters from
these data was not envisaged in the early years of the studies,
so a single score that combined quality and identifiability
was assigned to each photograph.

Inadequate quality screening of photographs can lead to
violations of assumptions required for capture-recapture
estimation. For example, Hammond (1986), Hammond et al.
(1990) and subsequent authors have recognised that if
photographs are included in a sample on the basis of
identifiability rather than photographic quality,
heterogeneity of capture probabilities is inevitable, with
well-marked whales more likely to be included in a sample.
This violates a basic assumption of many capture-recapture
analyses. The assumption that all marks are reported on
recovery is a particular problem with aerial photographs of
bowhead whales, because not all of the whale (from the tip
of the rostrum to the tip of the tail) is visible in the majority
of such photographs. This is because of water depth as a
whale dives, splash, whale motion, sea ice, glare or mud on
the whale, each potentially obscuring parts of a whale. Marks
on a particular part of a whale cannot be reported on recovery
of the whale in a subsequent photograph if the part of the
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whale that has the marks is not visible. In addition, it is
possible that a whale would not be recognised because of
changes in marks over time. Based on examinations of
photographs of the same whales taken many years apart
(Miller et al., 1992), it is considered unlikely that large scars
disappear. However, smaller marks may be disguised by new
marks, and they are also more likely than large marks or
groups of marks to be obscured in a photograph.

Another problem of greater importance for the bowhead
whale than for several other whale species is the large
number of unmarked whales in the population. Many young
bowhead whales, in particular, are a uniform black colour
and have not yet acquired distinctive scars that would permit
them to be re-identified in aerial photographs. Because the
majority of bowhead whales are not well enough marked to
be re-identified, they cannot be considered ‘marked’ animals
and therefore cannot be ‘recaptured’ (i.e. re-identified) even
if they are photographed at a later time. Rugh et al. (1998)
recognised that unmarked bowhead whales must be
accounted for in any attempt to estimate population size
using photo-identification data and capture-recapture
techniques.

Rugh et al. (1998) developed a revised scoring system for
aerial photographs of bowhead whales that addressed these
problems. Because the largest available samples of
photographs were collected in 1985, they suggested basing a
population estimate on the 1985 data, with the photographs
collected near Point Barrow during the spring migration
providing the initial captures and the photographs taken a
few months later in the Beaufort Sea providing the
recaptures. However, only a few whales identified in the
spring 1985 sample were recaptured in the summer sample,
so it was clear that two years of data would need to be used
to obtain a reliable estimate. Rugh (1990) and Whitcher et al.
(1996) both noted that the 1986 samples also provided usable
data. The 1985 and 1986 photographs, re-scored using the
revised system, provided the data for the estimates of Section
5.

Only photographs in which the mid-back region was of
good quality were used, so that whales with identifying
marks in that region would be recognised when they were
photographed on more than one sampling occasion. A whale
had to be at least moderately marked on the mid-back to be
treated as marked in the analyses; others were treated as
unmarked even if they had identifying marks on other parts
of their bodies. The scoring system has sufficiently stringent
requirements for categorising a whale as moderately marked
to ensure that a whale photographed on one occasion will be
recognised if photographed again on a subsequent occasion,
even if some changes in markings occur in between,
provided that the photographs are of good quality. Three of
us (WK, GM, DR) had to agree that two photographs were of
the same whale to call the second a recapture, virtually
eliminating the possibility of false recaptures.

Simulated dataset
Simulated data were used to develop and test the models and
methods. A great deal is known about the bowhead whale
population, making realistic simulations possible.

A total of four sampling occasions were considered in the
simulation; two intra-year occasions (spring and summer) in
1985 and 1986. The output of the simulation includes: the
capture history of the marked whales; the total number of
photographs of both marked and unmarked whales at each
sampling occasion; and the number of captured marked
whales at each occasion. For the intra-year occasions the
population is considered closed. However, inter-year

additions and deletions were allowed for. Two kinds of
deletions were considered: those caused by aboriginal
hunting and natural mortalities.

Values of parameters used in the simulations were
gathered from several sources, including papers and
monographs describing the photographic surveys conducted
by NMML and LGL, results of the scoring test described by
Rugh et al. (1998) and papers on bowhead population size
and dynamics. Important sources of information on
characteristics (e.g. age composition) of the bowhead
population are summarised by Givens (1993) and Raftery
et al. (1995), who present a Bayesian synthesis approach for
making inferences about characteristics of interest given
different sources of information which are linked by a
deterministic population dynamics model. A number of the
parameters used here came from the most likely population
trajectory in a Bayesian synthesis analysis carried out by
Givens (pers. comm.).

According to the most likely trajectory, the age structure
of the population (average 1978-1992) is 42% mature, 53%
immature (aged 1-17 years) and 5% calves. Calves are not
considered here because they have no identifying markings
and are thus never part of the marked population. They are
also excluded from the real data. Thus the population size
estimates are for the 1+ population, i.e. age ≥ 1 year, the
population generally considered in population dynamics
models used by the IWC Scientific Committee(e.g. IWC,
2000). According to the most likely trajectory, the 1+
population sizes for the years 1985 and 1986 were 6,649 and
6,820 individuals respectively. Survival rates were based on
the input parameters that produced the most likely trajectory:
0.9445 for the youngest 20% of the immature whales and
0.9853 for the rest. Natural deaths were determined by these
rates, and 19 individuals killed in the subsistence harvest
between the summer 1985 and spring 1986 samples were
accounted for. Additions to the population, assumed to occur
among the unmarked immature whales, were determined as
the number needed to obtain the 1986 population size given
the number of deaths.

Information about proportions of marked and unmarked
bowhead whales was extracted from the datasets used in the
evaluation of the new scoring system (Rugh et al., 1998).
The datasets contained information about photograph quality
and identifiability for several regions of the whale, including
rostrum, mid-back, lower-back and fluke. Identifiability is
scored as H+, H-, M+, M-, U+, U-, and X and constituted the
information used to estimate the proportions of highly (H)
and moderately marked (M) bowhead whales as well as the
proportion of the unmarked whales (U) in the population.
The notation X stands for the photographs whose quality is
so poor that it is impossible to determine whether the whale
is marked. Quality is scored on a five-point scale (1+, 1-, 2+,
2-, 3), indicating how much of the area is visible: 1+
represents the highest and 3 the lowest quality. Only the
mid-back region is considered here since Rugh et al. (1998)
found that it had the largest number of marked whales in
photographs of good quality (2- or better). The values used
to generate the simulated data were 72.8% unmarked, 18.6%
moderately marked and 8.6% highly marked whales in the
76.7% of the photographs of the mid-back region assumed to
be of good quality. Because the photographs used by Rugh et
al. (1998) did not include those from 1985 and 1986, the
older dataset used by Whitcher et al. (1996) was used to
determine the number of individuals photographed at each
sampling occasion for the simulations. In the case of
bowhead whales, it is not possible to know how many
individuals were photographed, since the unmarked
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individuals cannot be recognised. For simulation purposes,
these numbers were determined as the total number of good
photographs taken at each occasion divided by the number of
good quality photographs per marked individual. The
resulting number of individuals photographed ranged from a
low of 401 in spring 1986 to a high of 1,069 in summer
1985.

The simulated data for some of the models used here must
specify the number of good photographs taken of each
marked whale captured. These numbers were generated from
a zero truncated Poisson distribution; see da Silva (1999) for
details.

2. ACCOUNTING FOR UNMARKED WHALES:
MULTINOMIAL MODEL

Background
Since the majority of bowhead whales are unmarked and
therefore un-catchable using photo-identification
techniques, it is essential to account for unmarked whales in
estimating population size. Some previous work has been
done on estimating population size when only part of the
population is catchable. Seber (1982, p.72) gave an
estimate

(1)

where N̂m is the estimated number of individuals in the
catchable population and p̂* is the estimated proportion of
the population that is catchable. Using the delta method, he
derived a variance expression under the assumption that N̂m

and p̂* are statistically independent.
Williams et al. (1993), working with bottlenosed dolphin

photo-identification data, used equation (1) with N̂m the
estimated number of marked individuals in the population
and p̂* the proportion of the photographs that were of marked
individuals. Their estimated variance expression

(2)

matches that given by Seber (1982) when binomial sampling
is used to obtain p̂*; n is the number of photographs on which
the estimate p̂* is based, and N̂m and p̂* are used to
approximate their expected values. Williams et al. (1993)
obtained 95% confidence intervals by multiplying the square
root of the variance estimate (equation 2) by 1.96.

This approach is simple and intuitively appealing.
However, it can be criticised on several grounds. First,
Williams et al. (1993) used photographs from the same
studies to obtain N̂m and p̂*, so the assumption of statistical
independence of these estimates on which the delta method
variance is based does not hold. Covariance between the
estimates is not taken into account in equation (2). Second,
numerous authors (e.g. Burnham et al., 1987; Garthwaite
and Buckland, 1990; Cormack, 1992) have noted that
capture-recapture estimates of population size have a
skewed distribution, so the symmetric intervals used by
Williams et al. (1993) are unsatisfactory. This paper
develops alternative interval estimates of population size
from photo-identification data when the population includes
unmarked animals and this approach is compared with that
of Williams et al. (1993) using simulated bowhead data.

Darroch’s multiple recapture model for closed
populations
Here we generalise the multiple recapture model of Darroch
(1958) for closed populations. The notation and assumptions
of the model used to define our likelihood functions are
introduced below.

(1) N is the population size;
(2) t is the number of sampling occasions; 
(3) ui is the number of individuals caught in the ith sample

but not otherwise, uij is the number caught in the ith and
jth samples but not otherwise, etc.;

Let w be a subset of the integers 1, …, t and

be the total number of different individuals caught in the

complete experiment. Let be the size of the ithn ui w
w i

=
…

Â
sample. For example, n2 = u2 + u12 + u23 + u24 + u123 + u124
+ u234 + u1234 if t = 4.

The probability distribution of {uw} assumed by Darroch
(1958) is a multinomial distribution with parameters N and
Pw, where Pw is the probability of an individual with capture
history w being caught. Let pi = 1-qi be the probability that
any individual is caught in the ith sample. The probability of
any individual escaping capture throughout the experiment

is . The probability of being caught in samplesq Qii
=’

i, …, l and no others is Therefore, the
p
q

p
q

Q Pi

i

l

l
i lK K= .

probability density of {uw} is multinomial, i.e.

(3)

where 0 ≤ uw ≤ N subject to N. Darroch (1958)£ £Â uww

shows that equation (3) can also be written as:

(4)

The above development requires several assumptions:

(1) the population is closed, i.e. it remains constant
throughout the experiment;

(2) all individuals are equally likely to be members of any
given sample, regardless of their previous capture
history or of what other individuals are in the sample,
although capture probabilities may differ between
samples;

(3) all captured animals are marked and are correctly
identified on recapture.

Generalisation of Darroch’s model to bowhead whales
Let us now consider how to generalise the above model to a
situation in which animals are captured and recaptured
photographically, natural markings are used to identify
individuals on recapture, and some individuals in the
population lack identifying markings. Although this section
focuses on bowhead whales, the same considerations apply
to similar situations involving any species.
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As noted in Section 1, it is necessary to use data from two
different years for bowhead whales. It is therefore clear that
the closed population assumption does not strictly apply
since whales are born and die between samples. However,
bowhead whales have high survival rates (Whitcher et al.,
1996; George et al., 1999) and relatively low fecundity rates
(Miller et al., 1992). Therefore, rather than generalising to an
open population model, the closed population assumption is
retained and simulated data are used to determine whether its
failure is problematic in this case.

For bowhead photo-identification, capture probabilities
differ between samples because of differences in
photographic effort between sampling occasions. There
should be no behavioural response to capture; the whales are
not trapped, handled, harmed or treated in any sense. Since
in the case of the bowhead whales a capture means that a
good quality photo of a whale was taken, the only source of
some behavioural response could be if the animal felt
annoyed or threatened by the noise of the aeroplane flying
over it. However, no systematic divings have been observed
during the photographic sessions. It therefore seems
reasonable to assume that an individual’s previous capture
history should not affect its capture probability on a given
sampling occasion. In this section, it is assumed that by
restricting consideration to photographs of adequate quality,
heterogeneity in capture probabilities between highly and
moderately marked whales on a given occasion is avoided. It
is further assumed that the capture of a particular individual
does not make capture of a different individual more or less
likely, since no long-term affiliations have been observed
among bowhead whales photographed during the 1981-94
studies (Koski et al., 1988; Richardson et al., 1995). In short,
it appears reasonable to assume that the second assumption
in the previous section holds.

However, the third assumption clearly does not hold for
bowhead whales. Whales that lack natural markings remain
unmarked even when they are captured in a photograph and
they cannot be identified on recapture. Restricting
consideration to photographs of adequate quality makes it
possible to assume that all marked animals are correctly
identified on recapture. Thus it is reasonable to assume that
the assumptions of Darroch’s model hold for marked whales,
but unmarked whales, the majority of bowhead whales, must
be accounted for outside of that model. As in Williams et al.
(1993), the photographs of the unmarked whales are used to
do this.
Let:

Xu
i equal the number of good photographs of unmarked

whales taken at time i;
Xm

i equal the number of good photographs of marked
whales taken at time i;

Xi equal the total number of good photographs taken at
time i;

nm
i equal the number of individual marked whales

captured at time i;
r equal the total number of individual marked whales

captured over the study; and
{uw} equal a set which includes the number of individuals

with capture history w.

The following relationship is observed:

The parameters in the model are:

N = Nm + Nu, the total number of individuals in the
population;

Nu, the total number of unmarked individuals in
the population;

Nm, the total number of marked individuals in
the population; and

pi, the probability that a given whale is
photographed at sampling occasion i.

The distribution of Xm
i is assumed to be binomial with

parameters

and the distribution of {uw} is multinomial given by
Darroch’s model (equation 3). The joint distribution of these
variables is 

The distribution of (Xm
i |nm

i ) is truncated binomial because Xm
i

≥ nm
i .

Since the estimation of Nu and Nm is restricted by the
relationship N = Nm + Nu, it is natural to write Nu as being
proportional to Nm with proportionality constant g, say, and
write Nu = gNm. Therefore, N = Nm (1 + g). Further
development of the model is simplified by this relationship.
It is implicitly assumed that both N and Nm remain constant
over time when g is treated as a constant. Photographs of the
same whale taken many years apart suggest that marks are
not acquired frequently, so it is assumed that the closed
population model is adequate for the marked as well as the
total population over the two-year time period being
considered.

The distribution of (Xm
i |nm

i ) is expressed by:

(5)

where B = {(Xu
i ,Xm

i )+nm
i ≤ Xm

i ≤ Xi} and I{(Xu
i ,Xm

i )çB} is an
indicator function for pairs (Xu

i ,Xm
i ) that belong to the set

B.
The likelihood function is given by

(6)
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The maximum likelihood estimators for pi and Nm are given
by:

(7)

N̂m is obtained by solving the equation

(8)

as in Darroch (1958). This equation is solved iteratively
using the technique of Robson and Regier (1968). Starting
values are based on recommendations by Chapman (1952)
or, when there are few recaptures, the estimator of Schnabel
(1938); see da Silva (1999) for details. When nm

i / Xi ~ 0,

(9)

closely approximates the maximum likelihood estimate of g.
In the case of the bowhead whales, this condition is satisfied
since large numbers of photographs are taken and the
number of marked whales in the sample is small compared to
the number of photographs. The adequacy of the
approximation was checked by comparing estimates of g
obtained using equation (9) to those obtained by maximising
the likelihood function using the NAG library Fortran
routine E04KDF (16 AUGUST 1993). Estimates differed
only beyond the third decimal place.

The population size estimator obtained from the above
equations is the same as that of Williams et al. (1993).

Parametric bootstrap standard error
Following Buckland (1980) and others, the parametric
bootstrap is used to estimate standard error. Bootstrap
methods depend on the notion of a bootstrap sample (Efron
and Tibshirani, 1993). If the distribution from which the
bootstrap samples are drawn provides a good approximation
to the distribution from which the original data were drawn,
then the standard deviation of the estimates of the parameter
of interest (in this case, population size N) computed from
the bootstrap samples will provide a good estimate of the
standard error of the parameter estimate (in this case, N̂)
computed from the original data. When we obtain bootstrap
samples by re-sampling the original data, giving each of the
original n data points equal weight, we are using the
empirical distribution function F̂n to approximate the true
distribution F. Estimates of standard error obtained in this
way are called non-parametric bootstrap estimates because
F̂n is the non-parametric estimate of F. The parametric
bootstrap uses a different estimate of F. In the parametric
bootstrap setting we draw B samples of size n from the
distribution F̂par, an estimate of F derived from a parametric
model for the data. Where parameters are needed to specify
the distribution, estimates of these parameters computed
from the original data are used.

The choice between non-parametric and parametric
bootstrap in capture-recapture is addressed by Buckland and
Garthwaite (1991). They note that even though the
non-parametric bootstrap is more widely used and more
familiar than the parametric bootstrap, the latter allows a

choice of which underlying distribution model to assume for
the data. Mark-recapture provides an example where the
nonparametric bootstrap makes specific parametric
assumptions that are not immediately apparent. That may
lead a user to bootstrap on the wrong sampling unit, or to
conclude erroneously that the results are more robust than
those from a parametric approach. In fact, Bickel and
Freedman (1981), in examining the theoretical basis for the
bootstrap, developed a number of examples in which the
nonparametric bootstrap fails to provide a consistent
estimate of standard error while the parametric bootstrap
succeeds. This occurs when F̂n provides a poor
approximation to F and the probability model used in the
parametric bootstrap is correct.

The model presented in expressions (3) and (5) was used
in the parametric bootstrap approach used here, which
involves the steps given below.

(1) Obtain the ‘original data’ by running the data simulation
program once or by using the real bowhead data.

(2) Estimate the parameters N̂m, p̂1, …,p̂4,ĝ and N̂, from the
data obtained in step 1.

(3) Using the estimated capture probabilities (p̂1, …, p̂4 and
population size of the marked whales (N̂m), simulate the
number of individuals with a given capture history w,
u*

w, by using Darroch’s multinomial model (equation 3).
This yields the sample sizes (nm*

1 ,…,nm*
4 ) and r* to be

used in calculating the estimate Nm* and p*
i ’s from the

bootstrap sample.
(4) Simulate truncated binomial distributions. The total

number of photographs Xi obtained in the ‘data’ at each
occasion i was kept fixed at its value in the original data
and was divided among marked and unmarked whales
as follows:

(i) A truncated binomial distribution with
parameters

was simulated to obtain the number of good
photographs of marked whales;

(ii) The number of good photographs of unmarked
whales was obtained by subtraction.
This provides the data needed to calculate the
estimate g*.

(5) Calculate the parameter estimates, including N*, from
the bootstrap sample.

(6) Repeat steps 3-5 B times.

In the above steps, * denotes data or an estimate from the
bootstrap sample.

The standard deviation of N* over the B bootstrap
samples, s.e.*, estimates the standard error of N̂. The
difference between the mean of the B values N* and N̂, bias*,
estimates the bias of N̂. Confidence intervals may be found
using the percentile method (Efron, 1981; Buckland and
Garthwaite, 1991) as follows. Order the N* from smallest to
largest, and denote the ordered list by N̂(j). Approximate
100(1-2a)% confidence limits are then given by N̂(k) and
N̂(kA), where k = (B + 1)a and k’ = (B + 1)(1 - a), both
rounded to the nearest integer value.

The determination of the number B of bootstrap
replications depends on the application. Efron (1981)
suggests that bootstrap estimates of standard error usually
have relatively little bias, and that seldom are more than B =
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200 replications needed for estimating a standard error.
Many more replications are needed to obtain a good estimate
of bias or for construction of confidence intervals. The
percentile method depends on the tail of the distribution
where fewer samples occur. Buckland and Garthwaite
(1991) advocate that for a 95% confidence interval B =
1,000 should be satisfactory whilst B = 200 will be
inadequate.

The choice of B made here was based on the analysis of
changes in coefficient of variation (CV) when 1,000, 2,000
and 3,000 bootstrap replications were drawn. Efron (1981)
argued that the increased variability due to stopping after B
bootstrap replications, rather than going on to infinity, was
reflected in an increased CV. Working with simulations of
data under closed and open population assumption, we
observed that the CV based on 1,000 bootstrap samples
compared to 2,000 and 3,000 presented much more
dispersion than when the CV was calculated using 2,000 and
3,000 bootstrap replications. The last cases presented
roughly close CVs, but to guarantee accurate results a value
B = 3,000 was chosen. This value of B should achieve
sufficient precision to estimate bias and obtain reliable
confidence intervals.

Comparison of estimation methods using simulated
data
Although our estimator N̂ is the same as that obtained by
Williams et al. (1993), the method of estimating its standard
error, bias and confidence interval differs. The two
approaches are compared below using the simulated data
described in Section 1. In addition to considering the
symmetric confidence intervals of Williams et al. (1993), the
delta method variance (equation 2) is also used to compute
the confidence intervals suggested by Burnham et al.
(1987).

According to Burnham et al. (1987), the symmetric 95%
confidence interval for N

can be improved by using transformations that better
approximate normality. They recommend the
log-transformation. Transformation makes little difference if
the CV of the parameter estimator in question is small, say
≤ 0.1 (10% when expressed as a percentage). It makes a
difference at moderate (near 20%) and large ( ≥ 40%) CV.
For an approximate (1 - a)100% log-based confidence
interval for a parameter, say N, Burnham et al. (1987)
recommend the calculation of lower and upper bounds, N̂L
and N̂U, as

(10)

where

(11)

and CV(N̂) is the estimated standard error of N̂ from equation
(2) divided by N̂.

Some further definitions are needed. In the following
expressions, N is the population size assumed in generating
the simulated data, means are computed over the s simulated
samples and bias* is computed for each simulated sample
as

(12)

where the N* are the estimates of N from the B bootstrap
samples and N̂ is the estimate of N from the simulated
sample. With this notation,

(1) true bias of N̂ = mean(N̂) – N;
(2) bias corrected N̂ = uncorrected N̂ – bias*;
(3) bias of corrected N̂ = mean(bias corrected N̂) – N

(4) RMSE .

The summary statistics presented below are based on s =
500 simulated samples. For each of them, B = 3,000
parametric bootstrap replications were performed.

Results
In this section the multinomial model is analysed for five
different cases in order to gain some insight into how the
multinomial model works for varying values of total
population size, capture probabilities and population size of
unmarked individuals. For all of the cases studied, the
number of marked individuals in the population was the
same: 1,886 marked individuals. That has the advantage of
keeping the number of cases in the study small, without
leaving out the most interesting ones. In addition, the impact
of departures from the closed population assumption on
estimated population size for bowhead whales is
investigated.

Firstly, the multinomial model is compared using
simulations for closed and open populations. The rest of the
population parameters needed in those simulations were kept
fixed. Secondly capture probabilities and total population
size were varied. A summary of the cases is presented in
Table 1. For example, ‘case 0’ differs from ‘case 1’ because
in the former it was assumed that the population was closed
whereas in the latter it was open. The capture probabilities
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are almost the same for both cases since the same sizes were
used in those simulations. ‘Case 2’ is an ideal case where the
number of unmarked individuals in the population is not as
bad as for cases 3 and 4, the population is closed and capture
probabilities are twice as high as those for cases 0, 1 and 3.
Case 4 is expected to give the worst results: large bias and
standard deviation for the estimated value of N.

Table 2 contains uncorrected and bias corrected summary
statistics for 500 estimated values of N under each case. The
first column of Table 2 gives the average of N̂ for 500
datasets. The next two columns give true bias and RMSE as
defined above. The fourth column gives the average
bootstrap standard error over the 500 samples. The last three
columns give the statistics on true bias and RMSE for bias
corrected N̂.

These results show that even when the percentage of
unmarked individuals in the population is as high as 72%
(cases 0-2) to 86% (cases 3-4), as is the case for the bowhead
whale population, the proposed model works well as long as
it is possible to draw large samples from the population. As
expected, case 2 yields the smallest bias and variance. Cases
0 and 1 show when it is not possible to draw large samples,
the estimator still works well, even when the population is
not closed. Of course the time period considered here is just
two years. Further investigation is required if longer time
periods are to be considered. Cases 3 and 4 show that the
availability of large samples leads to better estimates.
Although 86% of the whales were unmarked in both cases,
case 3, with a sample size twice as large as case 4, resulted
in more accurate and precise estimates of N. Case 0
contrasted with case 3 reveals that the variance of N̂
increases with N and with the number of unmarked
individuals in the population; the CV is small in both cases,
being only slightly larger in case 3.

Bias is negligible in all cases but case 4. Otis et al. (1978)
explain that the bias of the estimated value of a population
size using Darroch’s model is not significant when capture
probabilities (pi’s) are, on average, close to 0.1 or larger.
However, if the pi’s are smaller than 0.1, significant bias
results. Otis et al. (1978) showed by simulation that positive
bias is observed when capture probabilities are low. Seber
(1982, p.72), showed that there is positive bias associated
with the correction for unmarked whales when n and p̂* are
small relative to N. Both these problems occur in case 4. Bias
correction has a negligible effect in cases 0-3. For case 4, the
correction substantially reduces bias and RMSE.

The parametric bootstrap estimates of the variance of N̂
are generally larger than the delta method estimates
(equation 2). That may be because p̂* and N̂m were
considered as being uncorrelated in the latter. Also of
interest in evaluating the performance of the bootstrap is the
study of coverage performance of confidence intervals for N.
Percentile parametric bootstrap confidence intervals are
compared below with intervals calculated from the delta

method variance estimates (equation 2), both the symmetric
intervals used by Williams et al. (1993) and the log-normal
intervals proposed by Burnham et al. (1987).

Table 3 shows the percentage of the times that the
symmetric, log-normal and percentile confidence intervals
(CI) missed the true value of N on the left or right side. For
example, miss left means that the left endpoint was larger
than N, i.e. the population size was overestimated. The
desired coverage is 95%, so we expect miss left and miss
right to be roughly 2.5%. Table 3 also gives mean CI widths.
A total of 500 samples (500 CI realisations) with 3,000
bootstrap replications for each sample were considered.

Overall Table 3 shows that the percentile intervals achieve
better balance than the delta method based symmetric
intervals on the left and right sides. The symmetric CI
overcover on the left and undercover on the right in all cases,
and their overall coverage is 94% or less in all cases. The
parametric bootstrap comes closest, averaged over cases 0-4,
to overall 95% coverage. However, the log-normal intervals
deviate less from 95% coverage on average, and they have
the shortest mean confidence interval widths in all cases. The
percentile bootstrap intervals compare particularly badly
with the log-normal intervals (poorer coverage and much
larger mean CI width) in case 4, the sparse data case.

Case 4 in Table 2 suggests that bias correction can be
important. Improved percentile bootstrap CI could no doubt
be calculated, for example by using the bias corrected and
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accelerated percentile method discussed by Efron and
Tibshirani (1993). However, the delta method based
log-normal CI do quite well overall, and they require much
less computing effort than the parametric bootstrap
percentile intervals. When the approximation (equation 9)
can be shown to be adequate, so that our estimate of N and
that of Williams et al. (1993) is the same, the delta method
variance estimate (equation 2) might be judged to provide
adequate CI, as long as log-normal rather than symmetric
intervals are used.

3. HETEROGENEITY: HIGHLY VS.
MODERATELY MARKED WHALES

Introduction
The capture-recapture model presented in the previous
section, while taking account of unmarked whales, assumed
that all marked whales had the same capture probability on a
given sampling occasion. The goal of the quality scoring
proposed by most researchers interested in using
photographic data for capture-recapture (for example,
Hammond, 1986; Hammond et al., 1990; Friday et al., 2000;
Rugh et al., 1998) has been to identify a quality level that is
good enough to permit whales in photographs of that quality
to be identified regardless of whether they are highly or
moderately marked. It was hoped that by restricting
capture-recapture analyses to photographs of this quality,
heterogeneity in capture probabilities, with highly marked
whales more likely to be captured than moderately marked
whales, could be avoided. However, this goal has proved
elusive. Positive correlations are generally found between
quality and distinctiveness scores (Friday et al., 1997),
implying that photographs of highly marked whales are more
likely to be scored as of good quality.

Consideration of the scoring system developed and tested
by Rugh et al. (1998) indicates that this positive correlation
is inevitable for bowhead whales. Only in photographs of
excellent quality can one be certain that marks are not
obscured. Thus a highly marked whale may well be scored as
moderately marked in a photograph of only good quality.
However, as shown below, if capture-recapture analyses are
restricted to photographs of excellent quality, the dataset will
be too small to provide a useful population estimate.

White et al. (1982) pointed out that numerous published
studies demonstrate heterogeneity in capture probabilities
for a wide range of species. In studies where the true
population size was known (for example, Carothers, 1973),
the commonly used estimators were biased severely by this
heterogeneity. Computer simulation studies have also shown
that heterogeneity can cause substantial negative bias in the
commonly used estimators of population size (Carothers,
1973; Otis et al., 1978).

Pollock (1991) reviewed efforts to develop models and
estimation procedures that can handle heterogeneity without
producing biased estimates of population size. A set of
models that allow capture probabilities to vary due to
heterogeneity (h), trap response (b), time variation (t) (i.e.
capture probability for time i differs from that for time j) and
all possible two- and three-way combinations of these
factors is now available. The eight models (Mo, Mh, Mb, Mbh,
Mt, Mth, Mtb, Mtbh) were first considered as a set by Pollock
(1974) and were more fully developed by Otis et al. (1978),
White et al. (1982), and Pollock and Otto (1983). According
to Pollock (1991), models Mth, Mtb and Mtbh do not usually
permit estimation of population size due to
non-identifiability issues although they are often necessary

for real populations. In the case of bowhead whales, for
example, time variation t is certain because of widely
differing effort on the different sampling occasions.

Pollock et al. (1984) introduced a logistic regression
technique to account for observable population
heterogeneity in capture probabilities. In other words, the
characteristics of the captured individuals were used to
explain their probabilities of capture. They examined
inferences based on the full likelihood, which necessitated
the construction of categories of individuals according to the
values of the covariates and estimation of the number of
individuals in each category. This was necessary to
overcome the problem that the covariates for uncaptured
individuals were not known. Cormack (1989) also advocated
the use of generalised linear models for capture-recapture
but noted that, while his approach could diagnose
heterogeneity, population size estimation was hampered by
the lack of knowledge of the distribution of covariates in the
unobserved part of the population.

Huggins (1989; 1991) and Alho (1990) independently
suggested the use of a likelihood conditional on the captured
individuals. The approach of Huggins is expanded below to
develop a model that allows and accounts for heterogeneity
in capture probabilities between moderately marked M and
highly marked H whales. Although restricting photographs
to those of highest quality might prevent heterogeneity, this
would waste useful data and reduce precision. This is not
necessary if models that allow for heterogeneity are used.

Heterogeneity in capture probability via logistic models
Initially a method to create the likelihood function for the
marked individuals only is considered. This will then be
combined with the unmarked whales to arrive at an estimate
of total population size. The proposed model is based on
Huggins (1989; 1991) who introduced a model that explains
heterogeneous capture probabilities via observable
characteristics of the individuals and time dependence via
observable characteristics of the sampling occasions.
Individual capture probabilities are expressed by linear
logistic models with coefficients assumed to be the same for
individuals in the same group as specified by the animals’
covariates. That provides the homogeneity assumption
needed to enable estimation of the parameters involved in the
model. Population size is estimated by the method of
moments as a function of the individual estimated values of
the capture probabilities.

It is assumed here that the captures of a whale are
independent from the previous occasions and that the
individuals behave independently. That does not imply that
all the whales have the same capture probabilities; this
probability is allowed to be a function of the covariates
included in the analysis. Under the assumptions, the full
likelihood for the marked individuals is:

(13)

where
Nm is the total number of marked individuals; and
pij is probability that animal i is captured at time j, where

i = 1, …, Nm, and j = 1,…, t,

d ij

i j
= Ï

Ì
Ó

1, if individual is captured at time ,

0, otherwise
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and K may depend on Nm but not on the parameters that
define pij.

One complication with estimation of the parameters using
the model above is that the covariates for the uncaptured
marked individuals are not known. Huggins (1989) showed
that inference can be based on the conditional likelihood,

where r is the number of captured individuals over the
experiment and gij is defined by Huggins (1989) as
follows:

(14)

where zij is the indicator of past capture history of individual
i, i.e.

z
i j

ij = Ï
Ì
Ó

1, if individual has been captured before ,

0, otherwise

and p*
il is pil evaluated when zil = 0. Notice that when zij =

1, g = pij.
Huggins (1989; 1991) modelled the pij using logistic

regression. The same approach is followed here by
considering a linear logistic model for the capture
probabilities,

(15)

where zi is an individual covariate and xj is an occasion
covariate.

Notice that when, for example, zi2 = 1 that means that up
to time 2 either capture history 11 or 10 was observed, with
11 representing individual i was captured at times 1 and 2,
and that gi2 = pi2. However, if zi2 = 0, then gi2 is given by

(16)

with j = 2; gij of equation (16) is denoted by g*ij.
Huggins (1991), in his appendix 2, shows that the

likelihood function defined in equation (13) can be
re-expressed by

(17)

In the following sections, equation (17) is used in the
likelihood.

In the logistic model of equation (15), the presence of zij
allows capture probabilities to be modelled to vary according
to an individual’s capture history, i.e. allow for behavioural
effect. In the case of the bowhead whales, the sampling
procedure is not believed to produce any behavioural effect
since systematic diving behaviour when the plane flies over

the animals when the photographs are taken has not been
observed. Therefore, in the model used here, b3 = 0 and p*

il
= pil. In the model proposed below for the bowhead whale,
capture probabilities will be considered to vary only
according to occasion and according to a group specific
covariate that describes the amount of marking: zi = 1 for
highly marked whales and zi = 0 for moderately marked
whales. The effort in hours expended to take pictures on
occasion j is defined as xj. Therefore, the capture
probabilities as defined by the linear logistic model are,

(18)

The likelihood function
Estimating the total population size N requires the use of the
available information on the marked individuals and some
simplifying assumptions that also make sense in a biological
context. Before describing the likelihood function which
incorporates the unmarked whales, further notation must be
introduced:

pij is the capture probability of individual i at time j;
qj represents the encountering probability at time j;
lH

j is the average number of good photographs of highly
marked whales;

lM
j is the average number of good photographs of

moderately marked whales;
v is the probability of a marked whale being highly

marked in the population;
Nu is the population size of unmarked individuals;
ZH

i is an indicator, 1 if the marked whale is highly marked,
and 0 if moderately marked;

dij is the indicator of capture of individual i at time j;
Xm

ij is the number of good photographs of marked
individual i at time j;

Xu
j is the number of good photographs of unmarked

whales at time j;
rH is the number of different highly marked individuals

captured over the experiment;
rM is the number of different moderately marked

individuals captured over the experiment; and
r is the total number of different marked individuals

captured over the experiment, r = rH + rM.

The model developed here follows Hammond (1986). He
noted that the process of ‘capture’ and marking can be
divided into three component parts:

(1) the whale must be sighted (encountered) by conducting
a sample survey of some kind, usually from a boat or an
aeroplane; 

(2) once a whale has been seen it must present itself in such
a way that a photograph of its natural markings can be
taken; and

(3) once the best photograph of a particular whale has been
selected, a decision must be made concerning how it
should be treated.

Hammond (1986) argued that for all whales to have equal
probability of capture they must all have the same
probability of being sighted (encountered) and of presenting
their markings (although strictly this need not be true in the
unlikely event that the product of these probabilities were the
same for all animals). Below it is assumed that all individuals
have the same chance of being encountered (sighted)
regardless of their amount of markings. The probability of an
individual presenting its markings, that can be interpreted as
the probability of a whale having at least one photograph that
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is good enough to be used in capture-recapture analysis, may
differ according to the amount of markings the individual
possesses. There is some evidence that highly marked
whales have a higher average number of photographs good
enough to be used in capture-recapture studies than
moderately marked ones. Such distinction gives rise to the
following expressions for capture probabilities, with qj
representing the encountering probability and (1 – e–lH

j ) the
probability of a highly marked whale having at least one
good photograph,

(19)

and similarly for moderately marked whales 

(20)

Notice that actually only two different capture probabilities
must be estimated at each sampling occasion: one for the
highly marked and one for the moderately marked ones,
since all the animals are assumed to be equally affected by
the occasion variable.

The encountering probabilities at each time are estimated
by summing up the capture probabilities above at each time.
By using simple algebraic calculation, the encounter
probabilities qj are described as 

(21)

The encounter probabilities above are needed in the
formulation of the modelling for the number of good
photographs of unmarked whales as expressed by a random
sum. Another assumption in our model is that the average
number of good photographs of unmarked individuals is the
same as for the moderately marked whales. That assumption,
even though not ideal, is appropriate if the degree of marking
affects the selection of photographs. It is not an unreasonable
assumption, and it translates our belief that the average
number of good photographs of unmarked whales is more
likely to be closer to the moderately marked than to the
highly marked ones.

The likelihood function is given by

(22)

Note that {ZH
i } has been included in the likelihood to make

it possible to allow highly marked whales to have a different
average number of good photographs than moderately
marked ones. That is essential in the characterisation of the
model since capture probabilities are related to the number of
good photographs, as can be seen from equation (19) and
(20). The presence or not of the parameter v in the likelihood
does not affect the estimation of the other parameters in the
model, but it is necessary for some calculations involved in
the unconditional parametric bootstrap procedure for this
model since the total number of distinct individuals observed
over the sampling experiment is random and so are the
respective numbers of highly and moderately marked
individuals.

The log of the likelihood function (equation 22) is
maximised using an iterative procedure that consisted of
maximising the function with respect to its continuous
parameters when Nu was given a fixed initial value. Using
the continuous parameter estimates, the function was then
maximised with respect to Nu. This process was repeated
until convergence. The stopping rule was based on the
comparison of successive values of the log-likelihood
function. The maximisation with respect to Nu was
performed by finding the value of Nu which solved the
difference equation

(23)

This is the value of Nu that solves

(24)

The estimated value of Nu obtained by fitting the
multinomial model described in Section 2 was used as an
initial value. Initial values for parameters b0, b1, and b2,
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were estimated from a logistic regression that was fitted
using Splus function glim. The dependent variable consisted
of counts of the number of highly and moderately marked
whales at each sampling occasion out of their respective
estimated population sizes. Independent variables were ZH

i
and hours of sampling effort.

Estimation of N
Having estimated the population size of unmarked
individuals, Nu, the next stage is to estimate the total
population size, N, where N = Nm + Nu. The population size
of the marked individuals, Nm, is composed of highly (H)
and moderately (M) marked individuals, and it is described
by the relationship Nm = NM + NH.

Following Huggins (1989), the method of moments is
used to estimate NH and NM. Suppose that the full parameter
vector denoted by q is known. Let the probability that an
individual is captured at least once during the course of the
sampling experiment be denoted by

(25)

Thus,

(26)

while NH and NM may be estimated separately by adding
over the appropriate indices in the summation in equation
(26) according to the probabilities expressed by equation
(19) and (20).

Simulations
A set of 100 simulated datasets was generated. They
comprise capture histories of the individuals and their
respective number of good photographs, and a variable
describing if a photographed individual was marked or
unmarked and whether or not a naturally marked individual
was highly or moderately marked. The average number of
good photographs for the highly marked individuals was set
to be slightly higher than for the moderately marked ones to
mimic the true situation for bowhead whales. It is also
assumed that unmarked individuals had the same average
number of good photographs as moderately marked
individuals.

The model described by equation (22) was fitted for the
100 generated datasets, and the multinomial model (equation
6) was also fitted for comparison (Table 4). The population
size for the simulations was 6,734. Table 4 shows that both
models seem, on average, to estimate the population size
reasonably. The results do not strongly suggest that the
model allowing for heterogeneity in capture probabilities is
better than the simple multinomial model, although the
standard deviation for the 100 N̂ for the former model is
smaller. The similarity in performance may be related to the
fact that large differences in capture probabilities of highly
and moderately marked individuals were not allowed for.

In practice, the analyst has one dataset and, after
estimating the population size, wishes to obtain a standard
error for the estimate and a confidence interval. Huggins
(1989) suggested a conditional parametric bootstrap, and da
Silva (1999) also developed an unconditional parametric
bootstrap. However, since each bootstrap sample requires a
time-consuming iterative analysis, it is not feasible to
compute many bootstrap replicates N̂. The best approach for
obtaining standard errors and confidence intervals for the
heterogeneity model is the subject of ongoing work.

4. NONRANDOM SAMPLES: AGE SEGREGATION

Introduction
Capture-recapture theory is primarily based on the
assumption that samples are drawn randomly. If this
assumption is to hold, all animals in the population must be
present in the survey area during each sampling occasion.
For bowhead whales, that is unlikely given limitations in the
time and area covered by the photographic surveys and age
segregation in the population, both during the spring
migration and on the summering grounds.

Hammond (1986) noted that if a group of animals is
consistently less available to be sampled, heterogeneity in
capture probabilities is present because this group will have
a lower probability of being photographed than the rest of the
population. Because age segregation is likely to define such
a group in the bowhead case, here we develop methods of
accounting for non-random sampling based on categorising
the photographed whales as either immature ( ≤ 13.0m long)
or mature ( > 13.0m long). This is possible because a major
goal of most of the photographic surveys was to determine
the distribution of lengths, and ultimately ages, in the
population. To achieve this, most of the photographed
whales were measured using photogrammetric techniques
and their lengths included in the data base.

The photographic surveys have provided good
information about the proportions of mature and immature
whales in the population, summarised by Angliss et al.
(1995). While it is certainly possible that a sample with the
expected proportion of mature and immature whales could
nevertheless be non-random, samples with a greatly
disproportionate number of mature or immature whales are
certainly non-random. For example, the sample taken in
summer 1985 had far too many immature animals to be a
random sample of the whole population. The one taken in
spring 1986 had too many mature animals, while the sample
taken in summer 1986 had again too many immature
animals.

Reasons why some samples were not random are known,
and are related to severe weather conditions or logistical
problems that prevented conducting surveys throughout the
season. Withrow and Angliss (1992) noted that the spring
1986 study began two weeks late and missed the beginning
of the migration. Angliss et al. (1995) demonstrated
temporal age segregation during the spring migration. The
earliest whales to migrate tend to be small. The later
migrants are mostly adults (mature whales). Therefore, since
the spring 1986 survey missed the first portion of the
migration, which is composed primarily of immatures, this
segment is underrepresented in the spring 1986 sample.

In summer 1985, a major photographic effort was
conducted with the goal of estimating bowhead gross annual
reproductive rate. Virtually all of the known summer range
of the bowhead whales was searched, but, for unknown
reasons, very few adults were found. Davis et al. (1986)
speculated that 
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The unusually heavy ice conditions in the Beaufort Sea in 1985
apparently caused major shifts from the normal patterns of summer
whale distribution. Results from aerial photography suggest that the
actively breeding segment (adults with calves) of the population was
essentially absent from the study area in 1985. In late August, only
an estimated 229 of the 2251 bowhead whales accounted for were
adults.

Koski et al. (1988) summarised the evidence for age
segregation on the summering grounds.

Table 5, compiled from the above sources, summarises the
percent mature/immature whales by sampling occasion and
reveals wide differences in percent mature. An attempt to
estimate population size with the methods developed so far
would be suspect. Methods for estimating population size in
the presence of non-random samples are highly desirable
because this occurs frequently in capture-recapture studies
involving cetaceans. To accommodate non-random
sampling, the model in Section 3 is adapted by defining a
new covariate that accounts for departures from random
sampling. The additional covariate will help correct the
magnitude of the capture probabilities to reflect the effect of
the non-random samples. The idea is to treat
non-randomness as a form of heterogeneity in capture
probabilities as Hammond (1986) suggested.

Notation
pij is the capture probability of individual i at time j.
vj represents the encountering probability at time j.
lj is the average number of good photographs of an

encountered whale.
o1j is the conditional probability of encountering an

individual at time j given that it is mature.
o2j is the conditional probability of encountering an

individual at time j given that it is immature.
q is the probability of an individual being mature.
Nu is the population size of unmarked individuals.
dij is the indicator of capture of individual i at time j.
Xm

ij is the number of good photographs of marked
individual i at time j.

Xu
j is the number of good photographs of unmarked

whales at time j.
Ij is a vector describing whether a good photograph is

from a mature (1) or immature (0) whale at time j.
efmat

j is the sampling effort expended to catch mature whales
at time j.

ef imm
j is the sampling effort expended to catch immature

whales at time j.
mati is an indicator variable that assumes value 1 if marked

whale i is mature and 0 elsewhere.

Let us now define some events that will be needed in the
description of some probabilities that are used in the
formulation of the model.

Cj is the event a whale is captured at time j.
Ej is the event a whale is encountered at time j.

M is the event a whale is mature.
I is the event a whale is immature.
1+

j is the event an encountered whale has at least one good
photograph at time j.

The model idealised to allow for non-randomness is based on
the estimation of the population size of the marked
individuals when non-random samples were taken, but at
least one random sample is available. A covariate describing
departures from that random sample was defined and it
accounts for differences in effort per maturity class. Once
population size of the marked whales is estimated, the
unmarked part of the population is accounted for via the
random sum model for the number of good photographs of
the unmarked individuals. The encountering probabilities
needed in the random sum model are a function of capture
probabilities and probability of a whale being mature. This
assumes that encounter probabilities are related to maturity
but not amount of markings since marked and unmarked
mature individuals tend to migrate together. The same
occurs with marked and unmarked immature individuals.
Therefore o1j and o2j, j = 1,…, t are assumed to be the same
for marked and unmarked individuals.

The conditional probability of capturing a whale at time j,
given that it is mature, is expressed by the product of the
probability of a whale having at least one good photograph
taken given that it was encountered, times the conditional
probability of encountering that whale at time j given that it
is mature,

so the conditional probability of encountering a whale at
time j given that it is mature is

(27)

The probability of encountering a whale at time j is defined
as a function of the probabilities above,

(28)

Only the data from the random sampling occasions are used
in the estimation of the probability of a whale being mature.
The best data available for the estimation of a whale being
mature in the population are from the spring 1985 survey.
The probability of a whale being mature must not change in
the small time window being considered here (two years).
All good photographs of whales from the spring 1985 survey
are used in the estimation of the probability of a whale being
mature (q). These whales are categorised as being mature or
immature based on their length. In the simulated data, it is
assumed that lengths are available for all whales. Although
an immature whale could reach maturity between the 1985
and 1986 samples, this possibility is ignored because the
slow growth of bowhead whales and the small sample size
make it unlikely that such a whale would be sampled.

The ‘outcome’ of a photograph being from a mature whale
is being modelled as a Bernoulli trial, although such
modelling has limitations since some of its assumptions are
violated, because multiple photographs of some whales are
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not independent. However, the violation is mild because few
photographs are taken of each whale (1.5
photographs/whale).

The likelihood function

(29)

where vj is the conditional probability of encountering a
whale at time j given that it is unmarked, and it is given
by

(30)

Capture probabilities are described by:

(31)

As earlier, the log of the likelihood (equation 29) is
maximised using an iterative procedure that consisted of
maximising that function with respect to its continuous
parameters when Nu was given a fixed initial value. Using
the resulting estimates of the continuous parameters,
equation 29 was then maximised with respect to Nu. Once the
likelihood was maximised, Nm is estimated as in Section 3.

Simulations
A set of 100 datasets was generated. The composition of the
drawn samples at each sampling occasion in terms of
proportion mature was simulated to reflect the values
displayed in Table 5. It is assumed that 58% of the whales in
the population were immature. Among the unmarked
whales, 70% were assumed to be immature. The simulated
population size was 6,734.

The data consisted of capture histories of the individuals
and their respective number of good photographs, a variable
describing if a photographed individual was marked or
unmarked, one describing whether the individual was mature
or immature, and the effort data for mature and immature
whales on each sampling occasion. The average number of
good photographs was constant for all the whales.

The model described by equation (29) was fitted for the
100 generated datasets. A comparison of the results with the
multinomial model (equation 6) is given in Table 6.

As expected, the non-random sample model performed
better than the multinomial model for estimating the total
population size N. While the bias of the estimated value of N
obtained by the multinomial model is 1,520, that value is
only 81 for the non-random sample model. There is also a
considerable gain in precision. As in Section 3, a parametric
bootstrap was developed to estimate standard errors (da
Silva, 1999), but only a few bootstrap replicates for a few
samples could be computed because of time constraints.

5. RESULTS FROM THE ACTUAL DATA

Datasets used
Rescoring of the 1985 and 1986 photographs using the
scoring system of Rugh et al. (1998) was completed by two
of us (LB and GM) and a data base containing all the data
from these years prepared by WK. Preliminary analyses by
JZ confirmed that the mid-back region (Rugh et al., 1998)
provided the most good photographs (quality at least 2) and
the most recaptures, compared to the rostrum, lower back
and fluke. Four sampling occasions (spring 1985, summer
1985, spring 1986, and summer 1986) were considered. The
variables in the data base were used to create a dataset
containing records with the following information:

(1) WHALE: whale’s number. Each marked whale has a
unique number, but the same unmarked whale could
occur in the dataset more than once with different
numbers.

(2) H: a categorical variable indicating whether the
photographed whale in a good photograph was
unmarked (-1), moderately marked (0), or highly
marked (1).

(3) MAT: a categorical variable indicating whether the
photographed whale in a good photograph was
immature (0), or mature (1).

(4) Four columns indicating the capture histories of the
bowhead whales, with 1 indicating that the whale was,
and 0 that it was not, captured in the sample represented
by the column.

(5) Four columns indicating the number of good
photographs obtained for each of the captured
individuals by sampling occasion.

There were 1,190 records in the dataset, of which only 175
belonged to marked individuals. The subset of 175 marked
whales was used for capture-recapture estimation. Only 12
of the 175 were captured more than once over the four
sampling occasions.

It is important to recognise that there are many more than
175 identified bowhead whales in the photographic
collection, and many more re-identifications than 12, even
when attention is restricted to the years considered here. The
capture-recapture dataset does not contain them all because

J. CETACEAN RES. MANAGE. 2(1):45–61 57



many did not provide good photographs of the mid-back, or
the marks by which they are identified occur on different
parts of the body.

The requirement for length data so that the whale could be
categorised as mature or immature also reduced the dataset.
To mitigate this problem, a larger dataset was created that
could be used in all of the estimation procedures discussed
here with the exception of that which allows for non-random
samples. The larger dataset contained 1,677 records, 229
belonging to marked individuals, with 16 of 229 captured on
more than one occasion.

Table 7 compares the real to simulated data with respect to
the frequencies of recaptured individuals with a given
capture history w. For the simulated data, the average
number of individuals (rounded to the nearest integer) with
a given capture history was taken, based on 100 simulated
datasets where the samples were not random. The
simulations were used under the non-random sampling
model for the comparisons of this section because they are
expected to more closely match the actual data than the other
simulations.

Notation w12, for example, means that an individual was
captured on sampling occasions 1 and 2. Although the
number of captured individuals in the simulated data is much
larger than in the real data (see Table 8), the scarcity of
recaptures between the spring and summer 1985 samples
(w12) causes some concern. The 1985 sampling occasions
had the largest sampling effort. In the simulated data the
average number of recaptures for that category was 11, the
largest in the table. This issue requires further
investigation.

Table 8 shows the number of marked individuals captured
by sampling occasion and the percentage of the marked
population (estimated by N̂m from the model of Section 2)
for the real datasets. Averages over the simulated datasets
are also given, and for these, the average numbers of marked
individuals captured are small, representing at most 8.2% of
the total number in the marked population. For the real data
the situation is worse. The largest estimated capture
probability, even in the large dataset, is 6.7% in the spring
1985 sample. On the fourth sampling occasion, only 18
individuals were captured in the smaller and 26 in the larger
dataset. This cannot be expected to yield very reliable
estimated values for N.

There were also fewer highly marked whales than
expected in the real datasets. Table 9 compares the numbers
in the real datasets with the numbers in the simulated data. In
the actual data, only 18% to 19% of the marked whales
captured were highly marked, compared to 27% in the
simulated data.

Table 10 compares the numbers of marked mature
individuals captured at each sampling occasion in the actual
data with the average numbers obtained in the simulated
data. There is good agreement between the percent values for
real and simulated data. Note these numbers differ from the

percentage of mature whales in the population, estimated at
around 50% of the 1+ population in our capture-recapture
analyses and around 43% by Angliss et al. (1995) from a
larger dataset. This is because many more immature than
mature whales are unmarked.

Precise information about effort is not available and it was
necessary to use an ad hoc procedure to obtain a crude
estimate of hours of effort expended to catch individuals in
a given maturity class. This was done by counting up hours
in which any whale of that maturity class (whether marked or
unmarked) was photographed. The effort data by maturity
class used in the analyses are summarised in Table 11. This
table also gives the overall effort expended to capture whales
of either maturity class. This overall effort is used in
estimation of capture probabilities under the heterogeneity
model. It is less than the sum of the separate efforts because
both mature and immature whales were captured during
some hours.
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Results
Using the multinomial model described in Section 2, the
total population size N is estimated using the datasets
containing 175 and 229 marked individuals. The results are
summarised in Table 12. The dataset containing 229 whales
led to a higher estimated value of N. The standard error,
estimated from 3,000 bootstrap replications, was also
somewhat higher but the CV lower. The bootstrap bias
estimate was around 400 in both cases.

It is encouraging that both the population estimates and their
standard errors are comparable to the estimates obtained
from the combined visual and acoustic census efforts
conducted near Point Barrow in 1985 and 1986. Raftery and
Zeh (1998) applied the generalised removal method to the
combined visual and acoustic data collected during those
years and obtained estimates of the size of the
Bering-Chukchi-Beaufort Seas stock of bowhead whales
(including calves) of 6,039 (SE = 1,915) and 7,734
(SE = 1,450) for 1985 and 1986 respectively. Both these
years were ones in which environmental conditions for
conducting a census were not ideal. Estimates with smaller
standard errors are obtained from the census when
conditions are better, but years with ideal conditions are
relatively rare.

Recall that the estimates in Table 12 exclude calves,
unlike the estimates of Raftery and Zeh (1998). The
estimates of Table 12 also compare well with the 1985 and
1986 estimates of 6,649 and 6,820 (excluding calves) from
the Bayesian synthesis analysis of Givens (pers. comm.).
The estimates of Givens incorporate the estimates of Raftery
and Zeh (1998) and additional data on bowhead whale
population dynamics.

Table 12 also shows population estimates from the
heterogeneity model of Section 3. They are slightly higher
than the multinomial model estimates, suggesting that there
may be some negative bias in the multinomial model values
because highly marked whales are more likely to be captured
than moderately marked. However, convergence to the
estimates given was slow. Consideration of the number of
parameters in this model and the limitations of the actual
data, as compared to simulated data (Table 9), leads to the
conclusion that the heterogeneity model has too many
parameters for the data to support. There were too few highly
marked whales in the actual data.

Bootstrap standard errors for the heterogeneity model
were not estimated since the slow convergence would have
made computing time prohibitive.

Only the smaller dataset could be used in the model of
Section 4 that accounts for non-random sampling because
length data are required to assess maturity. Using the model
for non-random sampling described in Section 4, we
obtained the population estimate given in Table 12 for that
model. As expected, it is smaller than the multinomial model
estimate since it was designed to avoid the positive bias
exhibited by the multinomial model estimate (Table 6) when
applied to simulated bowhead data with non-random
sampling. Some 100 bootstrap replications were carried out
for the non-random sampling model to obtain the standard
error given in Table 12, too few to provide an estimate of
bias or permit use of a percentile confidence interval. The
confidence interval given in Table 12 is the log-normal
confidence interval (equation 10) using the parametric
bootstrap standard error estimate. It covers the values of
1985 and 1986 population size obtained from the ice-based
census and population dynamics modelling.

Discussion
The estimated values of N in Table 12 agree with the results
from the simulations discussed in the previous chapters.
When applied to the data, the heterogeneity model corrects
for negative biases resulting from highly marked whales
being more likely to be recaptured than moderately marked
ones. The non-random sample model corrects for positive
biases caused by the reduced number of recaptures that can
occur when samples are non-random. Both N̂ and its
standard error are somewhat smaller than the values from the
multinomial model. Those results are in agreement with the
simulations. The estimates in Table 12 are not precise
enough to provide a clue as to whether the two kinds of bias
partially cancel each other in the multinomial model
estimates.

The differences between the models are small compared
to the differences that result from increasing the number of
marked whales by 31%, and the number of photographs of
both marked and unmarked whales correspondingly, by
relaxing the requirement for length data. While da Silva
(1999) has outlined a model that accounts for both
heterogeneity and non-random sampling, it is clear that
model will have too many parameters for the data to support.
Even if the heterogeneity side of the model is refined to
reduce the number of parameters, it is unlikely that the 1985
and 1986 bowhead data can support its use. We hope,
however, that the approaches developed in this paper prove
useful for other photographic studies.

Regardless of the possible sources of bias mentioned, the
confidence intervals of Table 12 all cover the 1985 and 1986
estimates of 6,649 and 6,820 (excluding calves) from the
Bayesian synthesis analysis of Givens (pers. comm.), which
reflect the best information available on the size of the
Bering-Chukchi-Beaufort Seas stock of bowhead whales in
those years. Since the population size data and estimation
methods on which the Givens estimates are based are
completely different from the data and methods used here,
our results provide independent confirmation for the
population estimates currently accepted by the IWC
Scientific Committee.

The real dataset available so far is too small to provide a
precise estimate of population size for the bowhead whale. In
addition, refinements in both data and methods are needed.
Work that needs to be undertaken includes the following:
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(1) more thorough review of the data to ensure that all
matches have been located and other data errors have
been corrected; 

(2) more refined estimation of sampling effort;
(3) measurement or estimation of length data for as many

whales as possible and development of an estimator that
allows for missing length data; 

(4) development of models that permit use of rostrum, lower
back and/or fluke data in addition to mid-back data, so
the sample size of marked whales can be increased – this
may require developing models that allow for matching
error, i.e. the failure to recognise that two photographs
are of the same whale; 

(5) implementation of a model that accounts for both
heterogeneity and non-random sampling but is as
parsimonious as possible, and testing of that model on
simulated data;

(6) extension of the methods developed here to open
population models so data collected over the last two
decades can be included to improve precision;

(7) the extended models need to allow for changes in
markings and maturity status over the years; 

(8) completion of scoring and matching work and
incorporation of all years of data, not just 1985 and
1986, into the data base so that the extended methods can
be used; 

(9) examination of the relative cost and difficulty of the
census effort, compared to the collection and analysis of
several large photographic samples, since we have
shown that comparable population estimates can be
obtained using the two methods.
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