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ABSTRACT 
Over eighty percent of the world’s commercially traded goods are transported by sea and 
increasing levels of vessels traffic in whale habitats are resulting in threats to many large 
whale populations. Where these overlaps occur the incidence of ship strikes resulting in 
injury and mortality are being reported.  Approaches to model anthropogenic space use 
and the spatial distribution of species are increasingly being used to identify mitigation 
solutions in important habitat for large whales. We developed an Ensemble Ecological 
Niche Model (EENM) using satellite telemetry data from Arabian Sea humpback whales 
(Megaptera novaeangliae; IUCN Endangered) and combined this with satellite derived 
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Automatic ship Identification System (s-AIS) tracking data to understand the risk of ship 
strike within the North Indian Ocean (NIO) and Important Marine Mammal Areas (IMMAs) 
therein. Areas of increased relative risk to Arabian Sea humpback whales (ASHW) from 
commercial shipping traffic were identified close to core habitat along the Arabian Sea 
coast of Oman. Rerouting vessels 40 nmi (nautical miles) further offshore could reduce the 
risk of strike by as much as 88%. Mortalities of large whales from ship strikes and other 
anthropogenic causes (fisheries entanglement) are unstudied in large part because they 
are difficult to detect. Estimates of the potential biological removal (PBR) reveals that the 
ASHW population cannot sustain the human induced death of more than one animal every 
four years, and that the current level of threat to ASHWs from shipping is likely 
unsustainable, particularly for a relict population at risk of extinction. As such, 
development of mitigation measures is urgently required by coastal states and industry 
stakeholders including support from the International Maritime Organisation (IMO). Initial 
management measures for shipping should be expedited where threats exist within core 
areas of habitat and in the long-term should be implemented in parallel with a broader 
suite of marine spatial planning activities that accounts for the livelihoods of coastal 
communities and projected growth of industrial maritime activities. 

 

KEYWORDS: ARABIAN SEA HUMPBACK WHALE, ENSEMBLE ECOLOGICAL NICHE MODELLING, SHIP STRIKE, RISK 

ASSESSMENT, MITIGATION, VESSEL ROUTING. 

 

 

INTRODUCTION 

The relative importance of non-hunting threats to great whales from anthropogenic activities 

has become a growing area of interest within the international scientific community since the 

moratorium on whaling came into effect and has provided the opportunity for research and 

management initiatives to address new priorities (Burns and Wandesforde-smith, 2002, 

Johnson et al. 2022). Addressing population-level threats has been of particular importance in 

the cases when post whaling recovery has not occurred. 

Over eighty percent of the world’s commercially traded goods are transported by sea, with the 

industry witnessing a 300% increase in the volume of shipping traffic between 1992 and 2013 

(UNTCAD, 2013, UNTCAD, 2022). The risks of strike from commercial shipping is considered 

one of the most serious global anthropogenic threats to large whales along with entanglement 

in fishing gear (Thomas et al., 2016). The threat has resulted in studies to assess risks and 

provide mitigation solutions (Minton et al., 2021). Ship strike records of northern right whales 

(Eubalaena glacialis) were used to develop a model describing the increased probability of a 

lethal strike with vessel speed (Vanderlaan and Taggart, 2007, Conn and Silber, 2013). This 

lethal strike probability model has been combined with spatial models of vessel traffic and 

surface density models of whales to produce maps of relative ship strike risk across selected 

study areas (Redfern et al., 2013, Smith et al., 2020, Wiley et al., 2011, Chion et al., 2018, 

Rockwood et al., 2020).  

The IWC and the International Maritime Organisation (IMO) recommend the adoption of such 

approaches to identify priority areas for the development of mitigation measures (IMO, 2009, 

Silber et al., 2012, Cates et al., 2017). Avoiding whale habitat has been promoted as one of the 

most effective ways of minimising risk, and where this is not possible voluntary or mandatory 

speed restrictions are also considered effective, with a recommended upper threshold of 10 

knots (Constantine et al., 2015, Laist et al., 2014, Ritter and Panigada, 2018, IWC et al., 2019). 

Mapping the distribution of cetacean habitat is logistically and financially challenging (Redfern 

et al., 2006, Redfern et al., 2013), but considered a prerequisite for accurately assessing 

shipping and fisheries related threats. The development of technical approaches, such as 

ecosystem niche modelling (Redfern et al., 2013, Smith et al., 2020), and the emergence of 

collaborative frameworks to map cetacean habitat, such as Important Marine Mammal Areas 
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(IUCN Marine Mammal Protected Areas Task Force, 2018), have become leading biocentric 

approaches to help address place-based cetacean resource management (Notarbartolo di 

Sciara and Hoyt, 2020, IWC et al., 2019). 

In the north Indian Ocean (NIO), the Endangered Arabian Sea humpback whale has been 

described as a ‘canary in a coalmine’ for the plight of baleen whales in the region (Baldwin et 

al., 2010). Almost extirpated by Soviet whaling in the mid-60s (Mikhalev, 1997), and genetically 

isolated (Pomilla, Amaral et al. 2016), the population was last estimated to number 82 

individuals (CI 95% 60-111) (Minton et al. 2008). The extent of ASHW known habitat brings the 

population into proximity with commercial shipping routes (Johnson et al., 2022). Investigating 

habitat preference and location of ASHW’s across their range using ecosystem niche modelling 

approaches has been identified as a priority by the international scientific community to 

identify areas for field-based studies and address management concerns (Minton et al., 2015, 

CMS, 2017).   

Here we develop an ensemble ecological niche model (EENM) of ASHW distribution derived 

from satellite telemetry data collected between 2014 and 2018 together with satellite- derived 

vessel Automatic Identification System data (s-AIS) collected between December 2015 and 

May 2016, to produce a ship strike risk assessment for the NIO. These results are used to 

evaluate speed and ship routing control measures as mitigation solutions. The areas of high 

habitat suitability from EENM are spatially referenced to the location of IMMAs in the region 

and are flagged for the focus of general conservation management efforts beyond shipping. 

 

MATERIALS AND METHODS 

ASHW are thought to range within the EEZs of at least 10 countries bordering the NIO (Minton 

et al., 2008a). Of these 10 countries, dedicated cetacean research that have yielded direct 

observations and detailed data on humpback whale distribution has only been conducted in 

the Sultanate of Oman. As such, understanding the relationship between ASHW distribution 

and vessel activity from direct observations over an extent as large as the NIO is not feasible. 

To gain a relative overview of risk from shipping activity, our method was comprised of five 

stages; (1) developing an EENM using data derived from the tracked movements of ASHW that 

were instrumented with satellite tags, (2) processing AIS data to produce rasters of shipping 

traffic and associated vessel speeds, (3) developing an additional  raster to include a model for  

probability of lethal strike (based on vessel speed) , (4) combining the EENM and lethal strike 

raster to create a strike risk model, and (5) using the strike risk model to investigate mitigation 

scenarios in a selected area of interest.  

  

Developing the EENM 

A workflow plan was developed before initiating the EENM process (Supplementary 

Information, Figure S1).  

 

Occurrence data 

 Thirteen ASHW were instrumented with 14 Wildlife Computers SPOT5 and SPLASH10 satellite 

tags (Redmond, WA, USA) between February 2014 and November 2018 (9 males, 2 females 

and 2 of unknown sex; Willson et al., in prep). Occurrence data for the EENM was generated 

from location data processed in a switching space state model (SSSM; Breed et al., 2009) to 

address serial autocorrelation and reduce the potential bias caused by behavioural shifts of 

animals as described by Aarts et al. (2008). The majority of telemetry data was generated 

between December and May, which coincides with the ASHW breeding period (Mikhalev 

1997). Oceanographic conditions during this period are dominated by the prevailing north east 

monsoon (Bruce et al., 1994). Review of the telemetry data in each month of the year together 
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with consideration of the seasonality of oceanographic processes and biological processes 

provided a rationale to produce a model representing the months between December and 

May. This approach makes the assumption that habitat utilisation will likely be different 

outside of the breeding season and during the southwest monsoon period when strong 

upwelling influences productivity, and likely drives shifts in ASHW movements and distribution 

linked to foraging opportunities. 

Recent and historical data on ASHW occurrence and distribution guided the spatial extent of 

the modelling environment and environmental co-variate data (Figure 1; 31˚N, 32˚E, 83˚W 

and 2˚S) including the northern Red Sea (Notarbartolo Di Sciara et al., 2017), Arabian/ Persian 

Gulf (Dakteh et al., 2017), Somalia and Gulf of Aden (Mikhalev, 1997), Gulf of Mannar 

(Whitehead, 1985) and Pakistan coast (Moazzam et al., 2019). 

 

Selecting environmental covariates 

Physical and biological covariate data were selected based on suitability as detailed in other 

studies (Fiedler et al., 2018, Becker et al., 2016, Redfern et al., 2017) and also on spatial and 

temporal concordance with the telemetry data. Seabed depth, seabed slope and distance from 

the shelf break (as defined by the 200m depth contour) were selected as static physical 

covariates based on the previous ASHW telemetry studies (Willson et al., in press) and 

additional studies on humpback whale breeding and foraging related depth preferences 

(Moore et al., 2002, Moors-Murphy, 2014, MacKay et al., 2016). 

Chlorophyll-α, and a derivative, net primary productivity (NPP), were initially selected as 

temporally dynamic covariates and drivers of habitat use related to prey availability. Sardines 

and euphausiids were found in the stomachs of humpback whales examined in the Soviet catch 

from the Arabian Sea (n=85) (Mikhalev, 1997a) and sardines were the predominant prey 

observed in whales taken off the coast of Oman. Sardine species in Oman primarily feed on 

phytoplankton (Randall, 1995) with fisheries landings correlated to chlorophyll-α 

concentrations off the northern coast of Oman (Piontkovski et al., 2014). The distribution of 

euphausiids in relation to environmental covariates is less well studied in the region although 

the proximity to the shelf edge is considered an important variable in the concentration of krill 

(Harris et al., 2014). Other satellite telemetry studies of humpback whales have found an 

association between elevated levels of chlorophyll-α and slower swimming speeds and 

inferred that this slow swimming is indicative of whales foraging on zooplankton during 

migratory periods (Trudelle et al., 2016). Sea surface temperature was also included as a 

remaining dynamic covariate due to its importance in models generated for humpback whale 

breeding and nursery habitats (Smith et al., 2012). 

Bathymetric data (DEPTH; m) were sourced through gebco.net. Seabed slope (SLOPE; o) was 

derived from the Gebco seabed depth data. Bathymetry data were also used to create a 

distance to shelf edge data layer (DIST; km). For this study the shelf edge was taken to be 200 

m depth contour.  

Covariate data sources and processing 

Satellite co-variate data were accessed for the period between 2003 and 2016. Chlorophyll- α 

(CHLO; mg m-3) and night sea surface temperature (NSST; ˚C) data were accessed from MODIS 

Aqua (Moderate-Resolution Imaging Spectrometer) L3 using MATLAB (The MathWorks, Natick, 

MA, USA) to extract and archive monthly TIF files for the study area (NASA) Ocean Color Group 

(http://oceancolor.gsfc.nasa.gov).Net primary productivity data (NPP; mg C m-2 day-1) were 

accessed as a separate remote sensing product 

(http://sites.science.oregonstate.edu/ocean.productivity/standard.product.php). 

Satellite environmental data were processed within R (R Development Core Team 2013) to 

create monthly climatology rasters. These included the sum, mean, minimum and maximum 

values for each co-variate from the 10-year period. All bathymetry and satellite data were geo-

http://oceancolor.gsfc.nasa.gov/
http://sites.science.oregonstate.edu/ocean.productivity/standard.product.php
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spatially aligned to a 9km x 9km grid according to the coarsest co-variate grid (NPP). To address 

issues related to overfitting of models due to pseudo-replication correlation tests were 

performed between covariates using the ‘COR.TEST’ package. This was based on extraction of 

data from rasters using 100 random points (Supplementary Information Table S1). We 

decided to eliminate use of NPP given its highly significant correlation with CHLO (R2=0.938 p-

value=2.2x10-16) and other covariates, including NSST (R2=0.671 p-value=2.17x10-14). We set an 

acceptable upper limit for an R2 threshold value of 0.6 based on the threshold presented by 

Bombosch et al. (2014) in another humpback whale modelling study. After elimination of NPP 

all covariates were geo-spatially aligned to a 4 x 4 km grid based on the higher resolution 

images associated with other covariate layers. 

 

Modeling framework development 

We used the EENM approach to identify habitat suitability for ASHW (Araujo and New, 2007, 

Loyola and Dias, 2012) within the Biomod2 package (R Development Core Team 2008, (Thuiller 

et al., 2009). Combinations of models and covariates were run in a series of iterative 

experiments to provide a refined and identical modelling framework for occurrence/ presence 

data. The model was configured to run response variables in a binary format with presence 

data together with an equal number of randomly selected pseudo-absence location points to 

represent background environmental characteristics of the study area (Pikesley et al., 2013). 

Experiments were conducted in consideration of spatial bias caveats related to this pseudo-

absence technique (Phillips et al., 2009) and specifically to large whales where the process 

presents the ability to produce patterns of occurrence but not density or abundance 

distributions (Fiedler et al., 2018). Our patterns of occurrence were represented by an 

environmental suitability index. This was produced as raster outputs for each model run, and 

scored from 0 to 1, with 1 a perfect score indicating greatest habitat suitability, 0.5 areas of 

typical suitability and 0 an absence. 

 

Models evaluated included generalised linear model (GLM), generalised additive model (GAM), 

generalised boosted model (GBM), multivariate adaptive regression splines (MARS) and 

maximum entropy (MAXENT). Models were run using a 10-fold cross validation with a 75/25% 

random split of location data for calibration and model testing (Pikesley et al., 2013). Three 

metrics were used for evaluation of model experiments and scaled between 0 to 1. The true 

skill statistic (TSS) was used to determine the accuracy of the models in predicting the correct 

category relative to that of random chance. A measure of resolution in discriminating between 

two alternative events or potential usefulness was performed by the receiver operating 

characteristic (ROC). Cohen’s Kappa coefficient (Heidke skill score; KAPPA) was also used as a 

measure of agreement occurring by chance and inter-raster agreement for categorical 

quantitative items. The mean scores of each model type and mean of means from all runs 

during an experiment were used for performance assessment of each experiment. GAM and 

MAXENT models were removed from initial experiments based on returning the lowest mean 

values for each test.  

The relative importance of environmental variables in their contribution to the modelling 

process was also calculated for each model that was run using a randomisation process 

(Thuiller et al., 2009, Pikesley et al., 2013). Low correlations were considered important for the 

model. The relative importance of each variable was calculated from the mean of the 

correlation coefficient over multiple runs followed by subtracting these means from 1. 

GLM, MARS and GBM models were subsequently run within a series of experiments of which 

Experiment 1, Experiment 3 and Experiment 4 were selected for review. Refinements were 

made in each successive experiment by reducing the number of environmental covariates. 

Preference was associated to the covariates with highest scores whilst considering results of 
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correlation coefficient tests between each variable. Model rasters from successful experiments 

were reviewed within ArcGIS. The Moran’s I Test for spatial autocorrelation was the final step 

in validating models. Ensemble results with z-score values between <1.65 and >-1.65 describe 

random association between occurrence data and model rasters and qualify the results as not 

experiencing spatial autocorrelation to invalidate results. Maps of the coefficient of variation 

(SD of model surface/ Mean of model surface) were produced from the final model outputs; 

values closer to zero represent areas of relative agreement between the ensembles of models. 

 

Area of interest coverage assessment 

Area coverage assessment of EENM surface found within Exclusive Economic Zones (EEZs) 

(Flanders Marine Institute, 2019) and Important Marine Mammal Areas (IMMAs) (IUCN, 2019), 

was calculated for selected environmental suitability index ranges of >0.5, >0.75 and >0.9. 

Raster counts of EENM coverage were expressed as percentages within each area of interest 

and comparatively as the percentage of coverage across the study area.  

 

Processing AIS Data 

Producing ship strike risk rasters 

Range-wide assessment of risk to whales from ship strike referred to as a ship strike risk index 

(SSRI)  was conducted by adapting methods presented by Redfern et al. (2013) and Smith et al. 

(2020). These authors used a spatially explicit estimate of species distribution (from EENM) 

multiplied by a shipping traffic density raster, as a measure of co-occurrence. Shipping traffic 

density was defined by cumulative vessel transit distance through each grid cell of a raster 

(Leaper and Panigada, 2011). A factor defining the probability of lethal strike related to vessel 

speed was applied to the shipping traffic density rasters to reflect the increasing chance of 

being struck by faster moving vessels and the increased probability of the strike resulting in a 

lethal injury (Conn & Silber, 2013). 

S-AIS data sourced from exactEarth Ltd UK covered a six-month period coincident with the 

presence data from our EENM results between 1st December 2015 and 31st May 2016. To 

translate records of individual ship AIS locations into a regional risk assessment framework we 

retained AIS records with Maritime Mobile Service Identity (MMSI) data representing the 

country codes for commercial shipping (codes between 200 and 800). Records were also 

retained for AIS message types including class ‘A’ position reports, static and voyage related 

data, addressed safety related messages, channel management and position reports for long 

range application (highlighted elements in Supplementary Information Table S2). Navigation 

status assignments were further used to retain records for vessels underway using engine, not 

under command, restricted manoeuvrability, engaged in fishing and underway sailing 

(highlighted elements in Supplementary Information Table S3). S-AIS location records for 

consecutive locations common to unique MMSI identifiers were used to produce daily line 

segments for each vessel with a speed attributed to each segment. Segments were summed 

(total distance) within raster cells at a resolution of 4 x 4 km. Each raster represented 

predefined transit speeds. Mean, maximum and standard deviation values were calculated 

from all cells within each raster, and a sum of all rasters was also calculated to denote the total 

transit distance (irrespective of speed) through each cell. Rasters were multiplied by an index 

value representing the probability of lethal strike according to their associated speed range 

(Supplementary Information Table S4) (Conn & Silber, 2013). The sum of these stacked rasters 

was multiplied by the environmental suitability index values from the EENM raster to produce 

the final SSRI raster. Port locations including a relative index for port size (defined by a range 

of criteria including quay length, maximum draft and infrastructure facility attributes) were 

sourced and used to contextualise nodes of shipping (World Food Program, 2017). 
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Area-based assessment and industry trends 

To provide additional insight on the relationship between shipping traffic and marine mammal 

species in general (not just for ASHW) we referenced our shipping traffic density data to the 

location of IMMAs within the NIO, (IUCN MMPAFT, 2020). We also obtained research 

agreements for third party data to characterise the volumes and type of traffic passing through 

IMMAs from a global study evaluating exactEarth AIS data from 1st September 2018 and 1st 

September 2019 (OceanMind et al., 2020). Annual container traffic data were extracted to 

identify the annual trend of freight volumes passing through countries in the study area with 

container trade volumes measured according to the twenty-foot equivalent unit (TEU), where 

one 20-foot-long container is equivalent to 1 TEU, and summary data accounts for units passing 

between land and sea and vice-versa (WTO, 2020). 

 

Mitigation simulation 

Rasters of environmental suitability, probability of lethal strike and SSRI were used in a 

mitigation simulation of ship strike risk reduction based on vessel speed and route transit 

options through the Oman Arabian Sea IMMA along the coast of southern Oman. Raster cell 

values were extracted and summed along simulated vessel transits. Two mitigation scenarios 

were referenced to a primary transit route that reflects the current dominant passage of traffic, 

which was overlaid on the ship strike risk raster through cells with the highest values (<75th 

percentile). The two alternative transit routes were set parallel to the primary route at 20 nmi 

increments offshore and hence at increasing distance from the higher relative risk areas. Risk 

simulations for these routes were prepared using the extracted environmental suitability index 

values multiplied by the probability of lethal strike index values (Conn and Silber, 2013). 

Estimated transit times were also calculated for each speed and route options for rasters 

representing speeds at 2 knot increments ranging between 10 and 30 knots. 

 

Potential Biological Removal 

To understand the tolerance of the ASHW population to suffer human induced mortalities, such 

as those from ship strikes, the potential biological removal (PBR) framework was used (Wade, 

1998). ). The formular accounts for the product of a minimum population estimate, half of the 

maximum productivity rate for the species and a recovery factor, as detailed below: 

PBR = Nmin  ½Rmax Fr 

Where Nmin = the minimum population estimate, ½Rmax = half the maximum theoretical or 

estimated net productivity rate and Fr the recovery factor (between 0.1 and 1). For Arabian Sea 

humpback whales we selected Nmin as 60 (Minton et al., 2008), Rmax as 0.08 for humpback 

whales (Wade, 1998). A range of Fr values were applied including the recognised value of 0.1 as 

defined for vulnerable populations where N <1500 (Taylor et al;. 2003) and values of 0.5 and 1 

to demonstrate the full potential range. 

 

RESULTS 

EENM 

Model test metrics and selection 

A total of 1822 SSSM location points was reduced to 1526 after filtering according to the 

selected 6-month season (beginning of December to end of May) and removal of location 

points that were located in covariate raster cells where data was absent (Figure 1). 
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Figure 1 Study areas in Oman and available ASHW presence data. Full extent 
of study area and selected SSSM estimated locations between 2014 and 2018 after filtering for 
season and spatial cooccurrence with valid data within selected covariate raster plots 

 

Test statistics for the 10-fold cross validation of the models scored within satisfactory limits 

(<0.8) for GLM, MARS and GBM models in all experiments (Supplementary Information Table 

S5). In modelling refinements, SLOPE was eliminated as a covariate based on results in 

Experiment 1. Whilst this covariate was not significantly correlated with any other covariates 

(R2 < 0.21, p > 0.05), it contributed least to model performance, as detailed in the summaries 

of variable importance, with a mean value of 0.02 (SD= 0.01) (Supplementary Information 

Table S6). DEPTH and DIST both significantly correlated with each other, (R2 =0.559, p-value= 

1.5x10-9). The later performed best in variable importance and therefore was retained as the 

preferred static variable in Experiment 4 (Supplementary Information Table S6). NSST and 

CHLO were significantly correlated (R2 = -0.528, p-value= <0.01), although both scored below 

an R2 threshold value of 0.6 and therefor were retained for Experiment 4 given their 

representation of thematically different dynamic oceanographic data sources. 

For our final set of experiments (Experiment 4 a, b and c), DIST, NSST and CHLO values were 

extracted from rasters using occurrence data to evaluate characteristics of environmental 

covariates (Supplementary Information Figure S2). Covariate summary data was represented 

by median values for DIST of 30.66km (IQR= 40.4), NSST 24.7 oC (IQR= 0.53oC) and chlorophyll- 

α of 4.12 mg m-3 (IQR= 7.9 mg m-3), (Supplementary Information Table S7). 

In Experiment 4a occurrence data failed validation (Moran’s I test for spatial correlation), 

scoring significant z-score values above the accepted threshold (z= 2.216, p=0.027). Spatial 

autocorrelation of SSSM data were addressed in subsequent runs by thinning occurrence data 

to two locations every 24 hours (Experiment 4c) and one SSSM location every 24 hours 

(Experiment 4b) and keeping the number of pseudo-absence location points at the same value 

as previous model experiments. The refinement resulted in failed validation for Experiment 4c 

(z= 2.210, p=0.027) but a random association between SSSM data and the final model for 

Experiment 4b (z= 0.044 p-value=0.965), (Supplementary Information Table S8). Experiment 

4b was selected as the preferred model (Table 1). Metrics demonstrated a suitable level of 

agreement between GLM, GBM and MARS models used in the ensemble approach, with a 

coefficient of variation >0.5 for areas of environmental suitability with index values >0.75 

(Supplementary Information Figure S3). 
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Table 1 Summary of ecological niche modelling evaluation metrics for 10- 
fold cross validation. Experiment 4b was the final selected model. 
Abbreviations: Generalised Linear Model (GLM), Multivariate Adaptive Regression Splines 
(MARS) and Generalised Boosted Model (GBM) from Experiment 4 performed in the Biomod2 
R package. 

    SSSM Experiment 4b 

Model Experiment Run Model Test GLM MARS GBM Mean SD 

1 

ROC 0.967 0.981 0.982 0.977 0.008 

KAPPA 0.824 0.868 0.896 0.863 0.036 

TSS 0.845 0.895 0.905 0.882 0.032 

2 

ROC 0.978 0.991 0.984 0.984 0.007 

KAPPA 0.856 0.906 0.890 0.884 0.026 

TSS 0.878 0.925 0.917 0.907 0.025 

3 

ROC 0.968 0.986 0.984 0.979 0.010 

KAPPA 0.805 0.875 0.849 0.843 0.035 

TSS 0.841 0.920 0.893 0.885 0.040 

4 

ROC 0.965 0.983 0.983 0.977 0.010 

KAPPA 0.812 0.885 0.901 0.866 0.047 

TSS 0.823 0.897 0.913 0.878 0.048 

5 

ROC 0.964 0.984 0.989 0.979 0.013 

KAPPA 0.792 0.866 0.904 0.854 0.057 

TSS 0.802 0.907 0.924 0.878 0.066 

6 

ROC 0.973 0.989 0.989 0.984 0.009 

KAPPA 0.843 0.894 0.913 0.883 0.036 

TSS 0.851 0.918 0.918 0.896 0.039 

7 

ROC 0.968 0.985 0.988 0.980 0.011 

KAPPA 0.816 0.873 0.881 0.857 0.035 

TSS 0.826 0.912 0.906 0.881 0.048 

8 

ROC 0.977 0.989 0.992 0.986 0.008 

KAPPA 0.851 0.898 0.924 0.891 0.037 

TSS 0.870 0.920 0.932 0.907 0.033 

9 

ROC 0.960 0.986 0.988 0.978 0.016 

KAPPA 0.796 0.909 0.880 0.862 0.059 

TSS 0.810 0.927 0.912 0.883 0.064 

10 

ROC 0.969 0.990 0.989 0.983 0.012 

KAPPA 0.783 0.902 0.896 0.860 0.067 

TSS 0.827 0.920 0.901 0.883 0.049 

Model Performance 

Summary 

ROC 0.969 0.986 0.987 0.981 0.010 

KAPPA 0.818 0.888 0.893 0.866 0.042 

TSS 0.837 0.914 0.912 0.888 0.044 

Mean 0.875 0.929 0.931 0.912 0.032 

SD 0.082 0.051 0.049 0.061 0.018 

Model Variable 

Importance 

DIST 0.624 0.224 0.363 0.404 0.034 

SST 0.008 0.265 0.262 0.179 0.020 

CHLO 0.368 0.510 0.375 0.418 0.031 

Moran's I Spatial Auto- 

correlation 

Index 0.011 

z-score 0.044 

p-value 0.965 
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Habitat suitability and area based assessments 

Raster outputs of the final model revealed habitat suitability of >0.75 located around the 

periphery of the NIO to the north of 15oN, with distribution mostly concentrated along the 

continental shelf of Oman, Iran, Pakistan and northern India (Figure 2(A)). Habitat suitability 

scores between 0.5 and 0.75 were revealed off the southwest coast of India, Maldives and 

Lakshadweep. Similar suitability scores were identified in the southern Red Sea (Eritrea and 

Saudi Arabia). Habitat suitability values >0.5 were not found in the Arabian Gulf.  

Of the three models, GBM was the most conservative in the predicted extent of suitable habitat 

(Supplementary Information Figure S4). GLM provided a broader distribution with habitat 

extended into southern portions of the Red Sea. MARS revealed greatest suitability along the 

coast of western India and around Sri Lanka. The coefficient of variation indicates best 

agreement between the models along the coast of Oman, Iran and Pakistan. The models are 

most contradictory in the Red Sea, along the coast of Yemen, Somalia and around the 

Lakshadweep territory (Supplementary Information Figure S3). 

The EENM rasters provided a fit with observation data from cetacean surveys and 

opportunistic sightings (ESO, 2020) and Soviet whaling locations (Mikhalev, 1997, Allison, 2013) 

along the coast of Oman for both seasons for environmental suitability cell index values of >0.5 

(Figure 2). For season 1 (December to May) sightings data collected by Pakistani fishing fleets 

from, 2015-2019 (Moazzam et al., 2020) fell within areas with an EENM suitability >0.75 around 

the Indus Canyon and across to India and the Gulf of Kutch (Figure 2 (A)). However, the model 

for season 2 (June to November) does not reflect the occurrence of ASHW in the area as 

reported by the Pakistan fishing fleet or from Soviet whaling locations (Figure 2 (B)). It is noted 

that the season 2 raster surface uses the EENM product produced from occurrence data in 

season 1 and is projected using the environmental co-variate layers from season 2. Soviet and 

Pakistan data have no accompanying observer effort and therefore inferences related to their 

relationship with the EENM should also be treated with caution. 

A comparison of the total EENM surface coverage between EEZs across the study area for an 

environmental suitability index >0.75 was attributed to Oman (42%) and Pakistan (36%). Iran 

and India ranked third (12%) and fourth (7%), respectively (Supplementary Information Table 

S9). At environmental suitability index value >0.9, 56% of the area was attributed to Oman. 

Evaluation of the percent of EEZ surface covered by an index value >0.75 within each country’s 

EEZs revealed Pakistan’s EEZ to have the highest proportion of area covered at 39% (cell count 

n= 11341) in comparison to the Oman EEZ at 19% (cell count n=27523). 

The Oman Arabian Sea IMMA and the Northeast Arabian Sea IMMAs were attributed the 

highest coverage across the study area for environmental suitability index >0.75 with 39% and 

35% respectively (cell count n=32096) (Supplementary Information Table S10). The remaining 

coverage was distributed between the Gulf of Masirah and Offshore Waters, Muscat Coastal 

Waters and Offshore Canyons, Dhofar, and Gulf of Mannar and Palk Bay IMMAs. For index 

values >0.9 the Oman Arabian Sea IMMA contained 46% of raster cells across the study area. 

Of these areas the Gulf of Masirah and Offshore Waters and the Muscat Coastal Waters and 

Offshore Canyons had 100% of the area associated with index cell values >0.75 (cell counts 

n=1185 and 240 respectively). 
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Figure 2 Detailed EENM results produced from satellite telemetry work in 
Oman overlaid with recent sightings from Season 1 (Dec-May) (A), and 
Season 2 (June-Nov) (B). Overlays include Pakistan Sightings documented by a fisheries 

observer programme (2015-2019) (Moazzam et al. 2019), Soviet Captures of humpback whales 
in the Northern Indian Ocean as documented in Soviet whaling (1962- 1966) (Mikhalev, 2000; 
IWC Catch Database, extracted 25 October 2013) and Oman Sightings taken from all 
humpback whale encounters during dedicated humpback whale surveys in Oman (2000-2017). 
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Vessel traffic distribution 

Total traffic passage distance varied with speed, for example 40,456,767 km were transited by 

vessels moving at 12-14 knots, in comparison to 13,918 km of passage at 40-50 knots 

(Supplementary Information Figure S5). The sum of total transit distance for each speed 

category between 2 and 22 knots presents a near normal distribution, with transits within the 

12-14 knot speed range representing 34% of the total distance travelled within the study area 

(n=120,946,750 km) (Supplementary Information Figure S5 and Table 2). The mean transit 

distance of cells in the 12-14 knot speed bin raster was 47 km (SD=257.2). The maximum cell 

transit distance, from transits summed across the entire dataset, was 20,629 km and occurred 

in waters adjacent to the Port of Fujairah (United Arab Emirates).  

Table 2 Summary statistics derived from processed s-AIS data for the 
northern Indian Ocean between December 2015 and May 2016.  

 

Speed 

category 

(knots) 

Sum of total 

transit 

distance at 

given speed 

(km) 

Percentage 

of summed 

distance (%) 

Mean distance 

travelled within cells 

at given speed 

category (km) 

Standard deviation 

of distance 

travelled within 

cells at given speed 

category (km) 

Maximum cell 

value for transit 

distance at given 

speed category 

(km) (km) 

2 to 4 1,443,028 1.2 2.1 46.1 16226 

4 to 6 1,524,207 1.3 2.6 48.9 15221 

6 to 8 3,275,173 2.7 5.4 82.1 20629 

8 to 10 5,653,973 4.7 8.9 93.9 16722 

10 to 12 21,199,419 17.5 26.0 155.9 10252 

12 to 14 40,456,767 33.5 46.6 257.2 10992 

14 to 16 20,270,097 16.8 24.5 151.8 9795 

16 to 18 13,038,158 10.8 15.4 101.7 5971 

18 to 20 10,554,845 8.7 12.5 98.2 6088 

20 to 22 3,279,426 2.7 4.1 35.4 3555 

22 to 24 149,643 0.1 0.2 2.7 524 

24 to 30 58,503 0.0 0.1 1.2 270 

30 to 40 29,593 0.0 0.0 0.4 37 

40 to 50 13,918 0.0 0.0 0.2 18 

sum 120,946,750 100.0    

mean 8,639,054 7.1    

sd 11,739,008 9.7    

 

Areas of high relative shipping traffic moving at speeds >10 knots included the Red Sea, Gulf of 

Aden, eastern approaches of the Arabian/Persian Gulf (Straits of Hormuz) and Laccadive Sea 

(between southern Sri Lanka and southern India) (Figure 3). Transoceanic passages in the NIO 

predominantly connect between these three nodes. Other isolated areas of high relative traffic 

density included the Gulf of Kutch, waters near Mumbai (Eastern Indian coast), a transit route 

through the Lakshadweep Archipelago and approaches to ports of Gulf States and along the 

western coastline of Iran. Transit speeds above 40 knots were observed in the southern Red 

Sea, Sea of Oman, Gulf of Aden and Laccadive Sea, although these are infrequent and represent 

<0.1% of the dataset. 
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Figure 3 Distribution of vessel traffic defined by s-AIS data and grouped by 
speed categories. Distance traversed by vessels (km/cell) at given speed categories (a-m) 

derived from s-AIS data for December 2015 to May 2016 for the Northwest Indian Ocean. 

 

Risk from commercial vessels 

Shipping corridors representing a high probability of lethal strike (cell values > 0.015, 75th 

percentile value) were described for central parts of the NIO between nodes at the approaches 

to the Gulf of Aden, Straits of Hormuz and the Lakshadweep Archipelago, and between the 

same locations but along the coastlines of Oman, India and Sri Lanka (Figure 4(B)). Areas of 

high strike risk were also located along the Arabian Sea coastline of Oman, the Sea of Oman 

coastline of Oman, UAE and Iran and the routes transecting east west from Mumbai and 

Karachi (Figure 4 (C)). Additional areas of high strike risk were also detected around the 

southern coast of Sri Lanka and the northern reaches of the Laccadive Sea along the southwest 

coast of India (southern extent of the Gulf of Mannar). Areas of moderate risk (index values 

75th-25th percentile) are found between areas of higher risk along the west coast of India and 
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Pakistan (Figure 4 (C)). Areas of high risk intersect with the Oman Arabian Sea and Northeast 

Arabian Sea IMMAs (IUCN MMPAFT, 2020). 

The Oman Arabian Sea IMMA also includes the extents of the Dhofar and Gulf of Masirah 

IMMAs that are underpinned by evidence of ASHW breeding and foraging habitat, occurrence 

of blue whales in the former (Baleanoptera musculus), and Bryde’s whales (Baleanoptera 

edeni) in both IMMAs. High risk areas throughout the Oman Arabian Sea IMMA correspond to 

transits of vessels along the coast between routes into the Gulf of Aden and Sea of Oman, 

whereas the high-risk areas in the North East Arabian Sea project outwards into the Arabian 

Sea from ports of Karachi (in Sindh Province, Pakistan) and Kandia (located in the Gulf of Kutch 

/ State of Gujarat, India). 
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Figure 4 Strike risk framework components and important maritime 
features. 
(A) Ensemble ecological niche model (EENM) of environmental suitability for ASHWs (source: 
Chapter 3), (B) probability of lethal strike, and (C) ship strike risk index (SSRI; A x B) Important 
Marine Mammal Areas (IMMAs; red empty polygon). IMMAs are labelled as 1) Dhofar, 2) Gulf of 
Masirah and Offshore Waters, 3) Oman Arabian Sea, 4) Muscat Coastal Waters and Offshore 
Canyons, 5) North East Arabian Sea, 6) Gulf of Kutch, 7) Lakshadweep Archipelago, 8) Maldives 
Archipelago, and Adjacent Oceanic Waters, 9) Gulf of Mannar and Palk Bay and 10) South West 
to Eastern Sri Lanka. 
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Mitigation Scenarios 

The development of two mitigation solutions was guided by shipping industry trend data 

(Supplementary Information; Table S11, Table S12 and Table S13), where cargo vessel traffic 

was the most prolific of vessel categories representing 45% of traffic volume (unique vessel 

IDs= 43,229), and considered trends in overall shipping traffic, which increased 35% between 

2008 and 2018 (increase = 5.7% per annum, SD= 3.7). 

Shipping route assessment through important whale habitat off the coast of Oman 

demonstrated ship strike risk reduction could be achieved by routing vessels further offshore. 

Alternative route options (options 2 and 3 in Figure 5) located 20 and 40 nmi offshore from the 

primary route (the central line of current shipping transits) led to transects that were 28 nmi 

and 59 nmi longer respectively (Figure 5 and Table 3). The sum of strike risk index values for 

route 3 (the furthest offshore) (strike risk = 0.921) was approximately 88% less than the risk 

along the current primary transit route (route A; strike risk = 7.595). 

Shipping route simulations run with speeds between 10 and 30 knots revealed that there were 

marginal differences in transit times between the three routes, with just over 3 hours 

difference between route 1 and 3 at 10 knots and just over 1 hour at 30 knots (Figure 5 and 

Table 3). Of interest, the strike risk along route 3 for a vessel traveling at 30 knots (strike risk 

index value = 46.645) was just less (by 5%) than the strike risk of a vessel traveling at 10 knots 

along route 1 (strike risk index value = 49.599), with the former having a transit time saving of 

approximately 14 hours (Figure 4-4, Table C 7). The risk of ship strike along route 3 can be 

further reduced by 72% by transiting through this area at 10 knots (strike risk index = 12.9) 

instead of 30 knots (strike risk index = 46.6). 

The top three flag states associated with passing through Oman's EEZ include the Marshall 

Islands, Liberia and Panama and accounts for 35% (n=2530) of unique vessel identification 

numbers recorded from the area (total n= 7231) (Table 4-3). The full listing includes 91 flag 

states (Table S13). 

 

Potential Biological Removal 

Our calculation for PBR referred to the lower bounds of the ASHW population estimate (N= 60, 

Minton et al. 2008), and an Rmax value of 0.08 (Wade,1998). Based on the Fr values of 0.1, 0.5 

and 1 the values for potential biological removal were calculated at 0.24, 1.2 and 2.4 whales 

per year respectively. 
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Figure 5 Transit simulation along the Arabian Sea coast of Oman to 
evaluate strike risk and passage time parameters according to different 
route and speed options. (A) Environmental suitability derived from ensemble ecological 

niche model (EENM) of environmental suitability (Chapter 3), (B) probability of lethal injury and 
(C) strike risk derived from multiplication of EENM and probability of lethal injury rasters. Route 
1 represents present dominant shipping route with routes 2 and 3 selected as alternative 
scenarios to reduce putative strike risk and at 20 and 40 nmi from the Omani coast respectively. 
(D) The cost-benefit graph presents re-calculated strike risk for each route (based on EENM 
values multiplied by probability of lethal strike (Conn and Silber, 2013)) and the transit time in 
hours at predefined speeds of 2 knot increments between 10 and 30 knots. 
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DISCUSSION 

 

Understanding the range-wide habitat utilisation of ASHW in the NIO is a management priority 

for this Endangered population (CMS, 2017), although this priority is challenged by a paucity 

of field-based studies across the suspected range (Minton et al., 2015). Evaluation of data on 

vertical space-use from ASHW equipped with biologging devices has revealed they spend 82% 

of time within 20m of the surface (Willson et al. in press), thus placing them within a depth 

range which exposes ship strike for much of the time (McKenna et al., 2015). 

Our study successfully used satellite telemetry data coupled with an EENM framework to 

describe the relative habitat suitability across the suspected range. The EENM results together 

with a speed-weighted s-AIS model revealed that the highest risk of ship strike occurred around 

the periphery of the NIO. High risk areas (in the > 75th percentile of all risk values) were most 

pronounced within the Oman Arabian Sea IMMA and in the North East Arabian Sea IMMA. 

Referencing data external to this study, the majority of the traffic (45%) was attributed to cargo 

vessels (unique vessel IDs =43,299) (IUCN MMPATF, 2020), and is a concern given the 5% 

annual increase in traffic in the NIO between 2008 and 2018 (WTO, 2020). The preliminary 

mitigation simulation exercise in this study supports an approach to re-route vessels by 40 nmi 

further offshore from existing preferred existing routes to reduce the ship-strike risk to ASHW 

by 88%. 

 

Consequences of ASHW population level impacts 

Of 93 live ASHW examined in a visual health assessment, 10% showed signs of ship strike with 

two showing severe injuries or deformation attributed to fishing or shipping (Minton et al. 

2022). A further 66% had scaring consistent with fisheries interactions. Ship strikes are 

considered to have a low detection rate and modelling has demonstrated that mortality from 

ship strikes to be significantly higher than the number of events that can be detected from 

strandings (Rockwood et al., 2017). The reduced number of animals likely to strand and be 

accessible to evaluation after decomposition also make it difficult to assign ship strike to the 

cause of mortality (Williams et al., 2016). As considered elsewhere, the absence of evidence of 

ship strike (based on observed carcasses) should not be considered as a proxy for the extent of 

the problem (Williams et al., 2011). Our results revealed ship strike risk is greatest along the 

Oman Arabian Sea coastline. Using the detection of beach strandings as an indicator of lethal 

ship strikes in this area is likely to be constrained by the cross-shore or offshore winds that 

prevail for 72% of the year (Supplementary Information Figure S6, Global Wind Atlas, 2019). 

These offshore winds are dominant between March and October.  

Although our study is devoid of an ASHW surface density model to calculate the probability of 

a ship strikes, applying the concept of potential biological removal (PBR) to our situation 

revealed there is limited tolerance for human induced mortality where, according to 

recognised calculation parameters for small populations, loss of an estimated one whale every 

four years to human induced causes should not be exceeded. The PBR value is a concern 

particularly considering the cumulative influence of the range-wide threats presented by 

fisheries (Minton et al. 2022, Johnson et al., 2022) and the 5% annual increase in commercial 

shipping traffic in the NIO over the last decade (WTO, 2020). These compounding threats 

render the population vulnerable to further decline and highlight the urgent requirement to 

work with industry to evaluate all options for reducing threats. 

 

Mitigation approach for commercial shipping 

Our study adopts recommended approaches for ship strike risk assessment detailed by the IWC 

and IMO (Cates et al., 2017, Silber et al., 2009). This assessment together with the evaluation 
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of mitigation options aligns our study with ‘Stage 3’ of the IWC ship strike risk assessment 

framework. The next stage in the framework involves engagement with stakeholders to assess 

and optimise risk reduction measures. From an IMO perspective, the coastal member states of 

the IMO exercise primary jurisdiction over vessel routing within their own EEZ, and therefore 

the member states should be considered as a first point of approach for discussion of 

mitigation proposals. However, the IMO can be called to administer such a process given that 

rerouting options (that this study describes) may also have a bearing on safety and 

antipollution regulations which flag states of IMO are bound to under international law (IMO, 

2014b). The southern coastline of Oman is already recognised for its importance by the IMO 

as a ‘Special Area’ under MARPOL guidelines (IMO, 2020) and the adoption of a PSSA would 

provide the opportunity to develop associated protective measures for a broader array of the 

Sultanate’s coastal and marine natural resources that are worthy of protection. 

It is recognised that rerouting will also have a bearing on the operational measures of vessels 

and therefore also requires support of representatives from the shipping industry to ensure 

measures will be acceptable. This has been addressed as a first step by consultation of the 

World Shipping Council within this study. 

 

Limitations of the EENM approach 

Highest environmental suitability (≥0.75) and the most expansive areas of habitat were 

identified along the southern coast of Oman and marine waters between Pakistan and India. 

The agreement of our habitat suitability model with the location of Soviet ASHW catch 

positions, recent Pakistani fishing observer data, Oman vessel survey data and core home 

range analysis (defined by satellite telemetry data; Willson et al., in press), suggests that the 

important areas of habitat may have remained consistent over the last 50 years. 

The EENM work addressed the importance of refining occurrence data selection and 

elimination of environmental covariates to use within the modelling framework. It also 

promoted compliance with pre-defined statistical parameters for each model run. Although 

not spatially independent, or able to provide absence data for a niche modelling environment, 

the satellite telemetry studies provided superior spatial and temporal extents of empirical data 

on whale occurrence than could be obtained from small vessel surveys (Corkeron et al. 2011). 

Furthermore, use of the SSSM approach is known to reduce issues related to serial 

autocorrelation in tracking data (Edelhoff et al., 2016), however, our SSSM data still required 

thinning to gain sufficient spatial independence between the locations for autocorrelation not 

to be detected when compared with the final model. This also has its constraints in limiting the 

availability of information for the modelling process (Aarts et al., 2008, Rooney et al., 1998). 

It is important to bear in mind that the telemetry work did not proportionally sample the ASHW 

population across the known geographical range (Willson et al. in press). Our presence-only 

occurrence datasets relied on the incorporation of randomly generated pseudo-absences to 

produce the modelled surfaces. Use of pseudo-absence assumes no bias in presence sampling, 

and therefore a sampling bias may be present in our model (Fiedler et al., 2018). As a result, 

the relative importance of habitat utilisation across the range may not be well defined. Such 

caveats are understood to compromise the use of such models for risk management purposes 

(Guillera-Arroita et al., 2015, Fiedler et al., 2018). However, the cross reference with vessel-

based occurrence data (from Soviet whaling data and Pakistani fisher sightings) has proven 

useful as an independent means of coarsely evaluating our model. 

Our final modelling outputs were further restricted by seasonal constraints on tag deployment 

and longevity. This resulted in a temporally restricted dataset to apply to the modelling 

environment. The occurrence data we selected for the model represents an important period 

relating to the annual breeding cycle, however a gap remains in describing the habitat 

utilisation of ASHW during the rest of the year, particularly during the southwest monsoon. 
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The good fit with alternative occurrence data off the coast of Oman but poor reflection of 

habitat suitability off the coast of Pakistan for season 2 demonstrates the requirement for 

season-specific models to utilise presence data collected from the same period and across a 

broader extent of the Arabian Sea. 

The biological covariate in our EENM model (chlorophyll-α) is used as a proxy for suitable 

foraging habitat. We believe this should be improved in future modelling exercises through 

generating covariate surfaces that more directly reflect the ecological niche of prey species, as 

it has for North Atlantic right whales (Eubalaena glacialis) (Pendleton et al., 2012). This may be 

a challenge due to the multi-prey diet of ASHW’s (Mikhalev, 1997) but should allow for dynamic 

data to be used for seasonal or near real-time definition of environmental suitability. With 

conservation management a priority for the population, a more dynamic approach to 

understanding habitat utilisation (e.g., Maxwell et al., 2015, Hazen et al., 2018) is deemed 

necessary given observed ecosystem state change and concern for future biological 

productivity in the region (Goes et al., 2020). 

 

Limitations of the ship strike risk assessment 

Our EENM and s-AIS source data generalise space use patterns over a 6-month period. 

Between December and May ASHW move between different areas along the coastline of 

southern Oman (Willson et al. in press), but there are insufficient data to understand inter- or 

intra-annual variation of movements within this area. From a management perspective, the 

risk described by our study in this area is considered to be consistent year-round given the 

relative seasonal consistency of shipping traffic (Oceanmind et al. 2020) and the combined 

evidence of year-round ASHW presence in the Arabian Sea evidenced by Soviet whaling 

activities (Mikhalev, 1997), small vessel surveys (Minton et al., 2011, Willson et al., 2013), 

passive acoustic monitoring (Cerchio et al., 2016a) and satellite telemetry (Willson et al. in 

press). Whilst more complex dynamic ship strike management tools (accounting for dynamic 

oceanographic variables and near real-time AIS data) have been developed for assessing strike 

in multispecies environments (Becker et al., 2016, Hazen et al., 2017), the static spatial 

management measures applied in this study have still proven effective in these same areas 

where there is consistency of whale distribution and vessel movement (Redfern et al., 2020).  

Environmental suitability described by the EENM was likely underestimated in waters of the 

eastern Arabian Sea and Laccadive Sea, particularly in areas where there was less convergence 

in model predictions. Evidence that suggests ASHW are using this habitat, include an ASHW 

satellite track along the southwest coast of India (Willson et al. in press), acoustic detections 

made off Cochi and Goa (Mahanty et al., 2015, Madhusudhana et al., 2019, D’Souza et al., in 

press) and the sightings of ASHW in the Gulf of Mannar (Whitehead and Moore, 1982, Reeves 

et al., 1991). As such, we consider the ship strike risk assessment in the eastern Arabian Sea to 

be an underestimate. Further studies of whale distribution in these areas will allow for refined 

EENMs to be developed. 

Our study adopted a model for calculating lethal injury that was sensitive to speeds greater 

than 20 knots. This has been considered to generate estimates of instantaneous strike rates 

that can be misleading (Leaper, 2019). As such we accounted for potential over-prediction of 

the instantaneous strike rate by capping the index value for the probability of lethal injury for 

speeds above 22 knots (value = 1.006). However, we consider the influence of this capped 

value to be negligible in our overall strike risk assessment given that <0.1% of transits through 

raster cells occurred at speeds above 22 knots. The relationship used to estimate probability 

of lethal injury from vessel speed was derived from strike risk assessments developed for North 

Atlantic right whales, and whilst there was unlikely to be substantial difference in the severity 

of injury at different speeds between different species of large whales, there may be 

differences in response time and swim speeds to approaching vessels (Leaper, 2019). 



 21  20/04/2023 

 

Although large industrial vessels (>300 tonne) should be captured within our s-AIS dataset, 

many of the fishing fleets in the region are dominated by the artisanal sector, such as in Oman 

where 99% of the fleet is represented by small artisanal vessels (fibreglass skiffs < 13m overall 

length and capable of speeds >20 knots) that account for 96% of the total number of registered 

vessels (n= 22,673) (Ministry of Agriculture and Fisheries Wealth, 2018). The associated risk 

from this fleet is as likely to be associated with injury to the occupants or damage to the vessel 

from hull strike as it is from risk to the whales (Winkler et al., 2020). Larger multi-day artisanal 

and semi-industrial fishing vessels (of higher displacement) also exist throughout the region, 

although little information is available regarding the characteristics of these vessels that would 

be necessary to make an assessment of what risk they might present. Further marine spatial 

planning work should also consider the overlap between commercial shipping and artisanal 

fisheries with respect to risk of collisions or losses to gear (e.g. Guzman et al., 2020). 

Our approach also neglects to evaluate the impact of noise generated by vessel traffic 

(commercial or otherwise). Masking from vessel noise has been linked to changes in animal’s 

communication space (Clark et al., 2009). This is of concern given that increased noise from 

vessel traffic in the presence of large whales has been associated with reduced foraging 

behaviour, changes to social communication (surface generated sounds), changes to call rates 

and frequency, reduced social interaction (joining between different groups) (Blair et al., 2016, 

Dunlop et al., 2010, Parks et al., 2014, Rolland et al., 2012). Reduction of noise from shipping 

is attracting attention of international governance (IMO, 2014a, IWC, 2018) and studies have 

shown that reduction of speed by 10% (from 15 knots) can reduce sound energy at the source 

by as much as half (Leaper, 2019). These stated reductions indicate that speed reduction 

measures are worth considering for areas of important habitat, even where re-routing 

measures are also advised. In consideration of IMO non-mandatory noise reduction measures 

and IWC recommendations we suggest noise modelling and monitoring is conducted for 

important whale habitat to provide comprehensive recommendations of speed and re-routing 

mitigation options (IMO, 2014a, IMO, 2018). 

 

The future for ship strike risk assessment in the NIO 

Future risk assessment work should account for seasonal variability of shipping and whale 

movements using dynamic environmental information, (Redfern et al., 2020), and also 

introduce presence-absence abundance data collection for whales, based online transect 

methodology, to allow the interactions to be assessed within a modelling framework for 

estimating dynamic habitat suitability (Abrahams et al., 2018). This approach has been applied 

to a near real-time blue whale (Balaenoptera musculus) density prediction tool in the Eastern 

North Pacific and is used to inform resource managers of the temporal and spatial components 

of ship strike and bycatch risks in the Californian Current (Hazen et al., 2017, Hazen et al., 2018). 

Approaches such as these are considered more suitable for addressing ecological and 

economic objectives that are associated with the emerging field of dynamic ocean 

management (Maxwell et al., 2015). 

The Oman Arabian Sea IMMA includes the extents of the Dhofar and Gulf of Masirah IMMAs. 

The IMMAs were identified on the basis of evidence of ASHW breeding and foraging habitat, 

as well as the regular presence of blue whales (Baleanoptera musculus), Bryde’s whales 

(Baleanoptera edeni) and sperm whales (Physeter macrocephalus) within their extents (IUCN 

MMPAFT, 2020). The evidence of ship strikes of blue whales off southern Sri Lanka has also 

been well documented (de Vos et al., 2013, de Vos et al., 2016, Priyadarshana et al., 2016). 

Development of a regional multispecies ship strike assessment would be a logical next step, 

particularly given the availability of species distribution models that have already been 

developed for blue whales and sperm whales within the NIO (Redfern et al., 2016, Letessier et 

al., 2023).  
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Conclusions 

Our EENM model development and validation process has produced a final EENM that can be 

used to inform ASHW conservation management. Its use should consider the model 

constraints (Guillera-Arroita et al., 2015) including the potential spatial bias that may result 

from seasonally constraints and patterns of relative occurrence that result from tagging 

locations being restricted to the western Arabian Sea. To help address these current potential 

shortfalls, we advise use of the model in guiding the design of future field surveys in eastern 

Pakistan and northern India within the North East Arabian Sea IMMA to understand habitat 

utilisation of ASHW in greater detail, and support efforts to track the conservation status of 

the population (CMS, 2017, IUCN MMPAFT, 2020). 

Areas not detected with high environmental suitability (areas of < 0.75) known to host ASHW, 

(such as along the western and southern coasts of India and the Gulf of Aden) should receive 

similar attention. These areas are currently classified as ‘Areas of Interest’ within the IMMA 

classification framework (IUCN MMPATF, 2020) and require further evidence of habitat 

utilisation to be considered for full IMMA status. 

The risk of ASHW ship strikes is likely to escalate given the annual increases in shipping traffic 

throughout the NIO and projected global increase of 2.1 % per year between 2023 and 2027 

(UNTCAD, 2022). We have outlined evidence to support uptake of mitigation measures subject 

to further review from the commercial shipping industry, the International Whaling 

Commission and member states of the International Maritime Organisation. The successful 

implementation of these measures will require continuous engagement through dedicated 

communication strategies used by the industry (Guzman et al., 2020). The effective 

management of ship strikes also needs to be coupled with assessments of underwater noise 

associated with vessel traffic and the interaction of ASHW with fishing fleets (and associated 

gear). Based on our review of potential biological removal of ASHW and consideration of the 

cumulative impacts from anthropogenic industries we recommend that the next steps towards 

mitigation are taken up with immediate effect. These should be integrated within a marine 

spatial planning framework that will ensure the ecological and economic security of a broader 

range of interests including the livelihoods of coastal communities and growth of other 

industrial maritime activities including fisheries and offshore energy production. 
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SUPPLEMENTARY INFORMATION 

 
Figure S1 Overview of the workflow used for the EENM study. 

The workflow includes incorporating the vessel based sightings and satellite telemetry data of 

ASHWs into ensemble ecological niche models in the ‘Biomod2’ package in R. 
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Table S1 Summary of tests for covariate correlation (R2) and strength of 
correlation (p-value).  

Values extracted from 100 random points applied to all rasters layers in ArcGIS 10.5 and tested 

in R using the ‘COR.TEST’ package. 

 

Selected Covariates R2 p-value 

slope v nsst 0.020 0.846 

slope v dist -0.061 0.547 

depth v slope 0.152 0.130 

slope v chlo -0.179 0.074 

slope v npp -0.208 0.038 

dist v chlo -0.218 0.029 

dist v nsst 0.292 0.003 

depth v chlo 0.400 0.000 

depth v npp 0.528 0.000 

nsst v chlo -0.528 0.000 

depth v dist -0.559 0.000 

depth v nsst -0.598 0.000 

nsst v npp -0.671 0.000 

nsst v npp -0.671 0.000 

chlo v npp 0.938 0.000 
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Table S2 Summary of AIS message types and code.  
S-AIS records were retained for those message types highlighted in yellow. 
(Source: https://web.nlcindia.com/gpsd/gpsd-3.1/www/AIVDM.txt) 

Message types 

[width="50%",frame="topbot"] 

|====================================================== 

|01 |Position Report Class A 

|02 |Position Report Class A (Assigned schedule) 

|03 |Position Report Class A (Response to interrogation) 

|04 |Base Station Report 

|05 |Static and Voyage Related Data 

|06 |Binary Addressed Message 

|07 |Binary Acknowledge 

|08 |Binary Broadcast Message 

|09 |Standard SAR Aircraft Position Report 

|10 |UTC and Date Inquiry 

|11 |UTC and Date Response 

|12 |Addressed Safety Related Message 

|13 |Safety Related Acknowledgement 

|14 |Safety Related Broadcast Message 

|15 |Interrogation 

|16 |Assignment Mode Command 

|17 |DGNSS Binary Broadcast Message 

|18 |Standard Class B CS Position Report 

|19 |Extended Class B Equipment Position Report 

|20 |Data Link Management 

|21 |Aid-to-Navigation Report 

|22 |Channel Management 

|23 |Group Assignment Command 

|24 |Static Data Report 

|25 |Single Slot Binary Message,  

|26 |Multiple Slot Binary Message With Communications State  

|27 |Position Report For Long-Range Applications  

|====================================================== 

  

https://web.nlcindia.com/gpsd/gpsd-3.1/www/AIVDM.txt
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Table S3 Summary of AIS navigation status codes.  
S-AIS records were retained for those codes highlighted in yellow. (Source: 
https://web.nlcindia.com/gpsd/gpsd-3.1/www/AIVDM.txt) 

 

Navigation Status 

[width="50%",frame="topbot"] 

|================================================================= 

|0 | Under way using engine 

|1 | At anchor 

|2 | Not under command 

|3 | Restricted manoeuvrability 

|4 | Constrained by her draught 

|5 | Moored 

|6 | Aground 

|7 | Engaged in Fishing 

|8 | Under way sailing 

|9 | Reserved for future amendment of Navigational Status for HSC 

|10| Reserved for future amendment of Navigational Status for WIG 

|11| Reserved for future use 

|12| Reserved for future use 

|13| Reserved for future use 

|14| Reserved for future use 

|15| Not defined (default) 

|================================================================= 

  

https://web.nlcindia.com/gpsd/gpsd-3.1/www/AIVDM.txt
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Table S4 Probability of lethal strike adapted from Conn and Silber (2013). 
The probability of lethal strike (PLS) is derived from the estimated probability of 
lethal injury (Mv) multiplied by the instantaneous rate at which whales are struck 
(log(λ)). Highlighted rows represent PLS values capped after the 20-22 knot 
speed bin to account for the absence of supporting empirical data informing the 
instantaneous strike rate (log(λ)).  

 

Selected 

Raster 

Speed 

Bin 

(knots) 

Selected 

speed 

value 

(knots) 

Mv log(λ) PLS 

  1 0.156 -0.310 -0.048 

  2 0.187 -0.009 -0.002 

2 to 4 3 0.222 0.167 0.037 

4 to 6 5 0.306 0.389 0.119 

6 to 8 7 0.405 0.535 0.217 

8 to 10 9 0.512 0.644 0.330 

10 to 12 11 0.618 0.732 0.452 

12 to 14 13 0.714 0.804 0.574 

14 to 16 15 0.794 0.866 0.688 

16 to 18 17 0.856 0.921 0.788 

18 to 20 19 0.902 0.969 0.874 

20 to 22 21 0.934 1.012 0.946 

22 to 24 23 0.956 1.052 1.006 

24 to 30 24 0.965 1.070 1.006 

30 to 40 35 0.997 1.234 1.006 

40 to 50 45 1.000 1.343 1.006 
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Table S5 Means of modelling test statistics including ROC, KAPPA and TSS 
from experiments performed in the Biomod2 R package.  

The means of each experiment are derived from ten runs for each model (GLM, MARS, GBM) 

with vessel sightings and satellite telemetry data. 

Env. Cov. 

Model 

Test 

Stats 

SSSM Models 

Loc. 

Point 

Count 

GLM MARS GBM Mean SD 

EXP 1 ROC 

1526 

0.975 0.987 0.991 0.984 0.008 

Depth 

Slope 

Dist200m 

NSST 

CHLO  

KAPPA 0.859 0.927 0.949 0.912 0.047 

TSS 0.836 0.921 0.947 0.901 0.058 

Mean 0.890 0.945 0.962 
 

  

SD 0.074 0.036 0.025     

EXP 3 ROC 

1526 

0.977 0.990 0.993 0.987 0.008 

Depth 

Dist200m 

NSST 

CHLO  

KAPPA 0.874 0.936 0.951 0.920 0.041 

TSS 0.851 0.930 0.950 0.910 0.053 

Mean 0.901 0.952 0.965 
 

  

SD 0.067 0.033 0.024     

EXP 4a ROC 

1526 

0.972 0.989 0.990 0.984 0.010 

 

Dist200m 

NSST 

CHLO  

KAPPA 0.847 0.921 0.926 0.898 0.044 

TSS 0.846 0.922 0.927 0.898 0.045 

Mean 0.888 0.944 0.948 
 

  

SD 0.072 0.039 0.037 
 

  

EXP 4b ROC 

509 

0.969 0.986 0.987 0.981 0.010 

 

Dist200m 

NSST 

CHLO  

KAPPA 0.818 0.888 0.893 0.866 0.042 

TSS 0.837 0.914 0.912 0.888 0.044 

Mean 0.875 0.929 0.931 
 

  

SD 0.082 0.051 0.049     

Exp 4c ROC 

763 

0.970 0.987 0.988 0.982 0.010 

 

Dist200m 

NSST 

CHLO  

KAPPA 0.837 0.897 0.904 0.879 0.037 

TSS 0.838 0.917 0.924 0.893 0.048 

Mean 0.881 0.934 0.939 
 

  

SD 0.077 0.047 0.044     
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Table S6 Summary of variable importance of environmental covariates from 
experiments in the Biomod2 R package. Variable importance presented for 
sightings and satellite telemetry data. 
Results show means for each experiment where five, four and three covariates 
were tested in a process of elimination according to rank determined by variable 
importance. Means are determined from 10 model runs for each model (GLM, 
MARS and GBM). Relative importance of environmental covariates was 
determined by ranking of sightings and telemetry means of means. 

 

Exp 

No. 

Env. 

Cov. 

SSSM Varaible Importance 

Loc. 

Point 

Count GLM MARS GBM 

Mean 

of 

Means 

Mean 

of SDs 

EXP 

1 

DEPTH 

1526 

0.10 0.10 0.15 0.12 0.04 

SLOPE 0.05 0.02 0.01 0.02 0.01 

DIST 0.58 0.21 0.32 0.37 0.05 

SST 0.01 0.21 0.25 0.15 0.03 

CHLO 0.27 0.47 0.27 0.34 0.06 

EXP 

3 

DEPTH 

1526 

0.15 0.14 0.29 0.19 0.19 

DIST 0.54 0.29 0.26 0.36 0.36 

SST 0.01 0.26 0.26 0.18 0.18 

CHLO 0.31 0.31 0.19 0.27 0.27 

EXP 

4a 

DIST 

1526 

0.62 0.33 0.34 0.43 0.04 

SST 0.00 0.23 0.28 0.17 0.02 

CHLO 0.38 0.44 0.37 0.40 0.04 

EXP 

4b 

DIST 

509 

0.6238 0.2244 0.3625 0.4036 0.0345 

SST 0.008 0.2653 0.2622 0.1785 0.0204 

CHLO 0.3682 0.5103 0.3752 0.4179 0.0314 

EXP 

4c 

DIST 

763 

0.64 0.2242 0.3462 0.4034 0.0156 

SST 0.0008 0.268 0.3112 0.1933 0.01 

CHLO 0.3592 0.5078 0.3426 0.4032 0.021 
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Table S7 Quartile statistics for environmental covariate raster surfaces 
extracted for sightings and SSSM data in Arc GIS 10.5. 

Depth and slope parameters (in grey) were eventually eliminated as selected covariates for the 

final EENM model. 

 

 
Quartile depth (m) 

slope 

(degrees) 
dist (km) sst (oC) 

chlo (mg 

m-3) 

SSSM 

lower -132 0.09 11.81 24.69 1.90 

median -40 0.25 30.66 24.97 4.12 

upper -22 2.76 52.22 25.39 9.78 

IQR 110 2.67 40.40 0.70 7.88 

mean -275 2.01 31.85 25.24 6.29 

sd 592 3.07 21.82 1.11 5.02 
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Figure S2 Plots of data extracted from environmental covariate rasters.  

Left and middle: Box plots (with outliers) for median and inter-quartile ranges for 

environmental covariates extracted from December to May for satellite telemetry SSSM data. 

Variables include; (a) mean distance from the 200m isobath (km) (DIST), (b) mean night time 

sea surface temperature (NSST) (°C) (c) chlorophyll- α (CHLO) (mg C m-3). Box plot upper and 

low hinges set at interquartile ranges (25% and 75%), and box width proportional to the square 

root of the number of observations in the groups. Whisker plots are set within no more than 

1.5 x the inter-quartile range and remaining outlying data represented by points. Right: 

Environmental covariate rasters of distance from 200m contour (DIST), night sea surface 

temperature (NSST) and chlorophyll- α (CHLO). Scales for covariate values adjusted to 

interquartile ranges (Supplementary Information, Table 8). 
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Table S8 Results of Morans I spatial autocorrelation test conducted on raster 
outputs of EENM experiments.  
Test conducted in Arc Map 10.7. P-values <0.05 indicate that features are 
spatially autocorrelated.  

Exp. 

No. 

SSSM Morans I Test 

Index 

z-

score 

p-

value 

Exp 

1 
0.180 2.175 0.030 

Exp 

3 
0.158 1.911 0.056 

Exp 

4a 
0.184 2.216 0.027 

Exp 

4b 
0.011 0.044 0.965 

Exp 

4c 
0.318 2.210 0.027 
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Figure S3 Ensemble ecological niche models for Arabian Sea humpback 
whales.  

(A) Environmental suitability index derived from SSSM location estimates (2014-2018). (B) 

Spatial coefficient of variation from all model outputs (GLM, GBM, MARS). Agreement across 

models is indicated by lower values for the coefficient of variation (lighter shading), with high 

values indicating lack of agreement in model predictions. 
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Figure S4 Environmental suitability EENM rasters generated from satellite 
telemetry data.  
Rasters produced using satellite telemetry data from the months of December 
to May extracted from data collected between February 2014 and December 
2017. Rasters presented for (a) General Linear Model, (b) Multivariate Adaptive 
Regression Splines, (c) Generalised Boosted Model (d) Ensemble. Model 
algorithms used from the ‘Biomod2’ package (R Development Core Team, 
2008; R package: biomod2; Thuiller et al., 2013). 
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Table S9 Extent of EENM within Exclusive Economic Zones (EEZ) of Arabian Sea humpback whale range states. 
Assessment according to EENM raster counts of environmental suitability index values (ESI) of >0.5, >0.75 and >0.9 within 
EEZs. Countries ranked by percent of EEZ surface covered by EENM relative to other areas for ESI values >0.75. 

  
Count (n) Perc. surface within area (%) 

Perc. of surface relative to other 

areas (%) 

Area 

Type 
Area of Interest 

Raster 

Count 
0.5 0.75 0.9 

ESI 

>0.5 
ESI >0.75 

ESI 

>0.9 

ESI 

>0.5 
ESI >0.75 

ESI 

>0.9 

EEZ 

Oman 27523 6455 5153 3666 23 19 13 28 42 56 

Pakistan 11341 6453 4406 2033 57 39 18 28 36 31 

Iran 8119 2351 1485 491 29 18 6 10 12 8 

India 62233 4144 805 136 7 1 0 18 7 2 

United Arab Emirates 2610 225 153 74 9 6 3 1 1 1 

Eritrea 3758 181 86 49 5 2 1 1 1 1 

Federal Republic of Somalia 36851 227 81 39 1 0 0 1 1 1 

Sri Lanka 17049 1332 63 12 8 0 0 6 1 0 

Saudi Arabia 11249 1070 31 1 10 0 0 5 0 0 

Sudan 3114 46 25   1 1 0 0 0 0 

Yemen 25269 85 25 6 0 0 0 0 0 0 

Bahrain 383       0 0 0 0 0 0 

Djibouti 346       0 0 0 0 0 0 

Egypt 4451 34     1 0 0 0 0 0 

Iraq 53       0 0 0 0 0 0 

Israel 81       0 0 0 0 0 0 

Jordan 2       0 0 0 0 0 0 

Kenya 21       0 0 0 0 0 0 

Kuwait 586       0 0 0 0 0 0 

Maldives 39538 727     2 0 0 3 0 0 

Qatar 1614       0 0 0 0 0 0 

Seychelles 3582       0 0 0 0 0 0 
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Table S10 EENM extent within Important Marine Mammal Areas (IMMAs) of Arabian Sea humpback whale range states. 
Assessment according to EENM raster counts of environmental suitability index values (ESI) of >0.5, >0.75 and >0.9 within 
IMMAs. Countries ranked by percent of EEZ surface covered by EENM relative to other areas for ESI values >0.75. 

  
Count (n) Perc. surface within area (%) 

Perc. of surface relative to other 

areas (%) 

Area 

Type 

Area of Interest Raster 

Count 

ESI 

>0.5 

ESI 

>0.75 

ESI 

>0.9 

ESI 

>0.5 

ESI 

>0.75 

ESI 

>0.9 

ESI 

>0.5 

ESI 

>0.75 

ESI 

>0.9 

IMMA 

Oman Arabian Sea IMMA 4745 3671 3303 2560 77 70 54 30 39 46 

North East Arabian Sea IMMA 6572 4425 2940 1254 67 45 19 36 35 22 

Gulf of Masirah and Offshore Waters IMMA 1185 1185 1185 1090 100 100 92 10 14 20 

Dhofar IMMA 937 769 650 479 82 69 51 6 8 9 

Muscat Coastal Waters and Offshore Canyons IMMA 240 240 240 199 100 100 83 2 3 4 

Gulf of Mannar and Palk Bay IMMA 954 608 64 0 64 7 0 5 1 0 

Indus Estuary and Creeks IMMA 102 29 17 0 28 17 0 0 0 0 

Sindhudurg-Karwar IMMA 186 60 10 1 32 5 1 0 0 0 

Farasan Archipelago IMMA 278 38 8 1 14 3 0 0 0 0 

Southern Egyptian Red Sea Bays, Offshore Reefs and Islands 

IMMA 

986 3 3 0 0 0 0 0 0 0 

South West to Eastern Sri Lanka IMMA 1346 606 1 
 

45 0 0 5 0 0 

Miani Hor IMMA 1 1 1 1 100 100 100 0 0 0 

Gulf of Salwa IMMA 538 0 0 0 0 0 0 0 0 0 

Gulf of Kutch IMMA 130 0 0 0 0 0 0 0 0 0 

Lamu Offshore IMMA 538 0 0 0 0 0 0 0 0 0 

Lakshadweep Archipelago IMMA 4130 22 0 0 1 0 0 0 0 0 

Nakhiloo Coastal Waters IMMA 18 0 0 0 0 0 0 0 0 0 

Northern Gulf and Confluence of Tigris, Euphrates and Kuran 

IMMA 

172 0 0 0 0 0 0 0 0 0 

Northern Red Sea Islands IMMA 111 0 0 0 0 0 0 0 0 0 

Southern Gulf and Coastal Waters IMMA 1306 0 0 0 0 0 0 0 0 0 

Maldives Archipelago and Adjacent Oceanic Waters IMMA 7621 728 0 0 10 0 0 6 0 0 
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Figure S5 Sum of total transit distance within each speed category for 
processed s-AIS data in the Northern Indian Ocean from December 2015 to 
May 2016. 
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Table S11 Counts of vessels (by type) found within Important Marine Mammal Areas (IMMAs) of the north Indian Ocean. 

Counts derived from s-AIS unique vessel IDs (MMSI numbers) and the percentage of counts from each vessel category of the total number of detected unique 

vessel IDs. Assessment includes IMMAs associated with large whale habitat.  

Vessel category   Fishing Fish 

carrier  

Fish 

bunker 

Fishing 

buoy  

Cargo Hazardous 

cargo  

Passenger Pleasure  Unknown  Other Total 

Dhofar IMMA 

C
o

u
n

ts
 o

f 
U

n
iq

u
e 

V
es

se
l I

D
s 

27 1 2 2 1066 790 53 73 28 181 2223 

Gulf of Mannar and Palk Bay IMMA 112 0 0 0 385 111 9 11 28 90 746 

Gulf of Masirah and Offshore Waters IMMA 13 1 0 1 1053 716 50 41 28 200 2103 

Lakshadweep Archipelago IMMA 313 9 0 8 3117 3093 45 30 355 192 7162 

Maldives Archipelago and Adjacent Oceanic Waters 

IMMA 

292 13 0 7 933 626 35 85 54 125 2170 

Muscat Coastal Waters and Offshore Canyons IMMA 17 3 3 2 1802 1989 59 53 36 234 4198 

North East Arabian Sea IMMA 99 1 2 2 2597 2521 28 36 187 343 5816 

Oman Arabian Sea 42 3 3 3 1991 1871 72 94 77 293 4449 

South West to Eastern Sri Lanka IMMA Vessel 1475 8 0 53 5816 4625 106 115 1647 516 14361 

Dhofar IMMA 

P
er

ce
n

ta
ge

 o
f 

ve
ss

el
 c

at
eg

o
ri

es
 1 0 0 0 48 36 2 3 1 8 

 

Gulf of Mannar and Palk Bay IMMA 15 0 0 0 52 15 1 1 4 12 
 

Gulf of Masirah and Offshore Waters IMMA 1 0 0 0 50 34 2 2 1 10 
 

Lakshadweep Archipelago IMMA 4 0 0 0 44 43 1 0 5 3 
 

Maldives Archipelago and Adjacent Oceanic Waters 

IMMA 

13 1 0 0 43 29 2 4 2 6 
 

Muscat Coastal Waters and Offshore Canyons IMMA 0 0 0 0 43 47 1 1 1 6 
 

North East Arabian Sea IMMA 2 0 0 0 45 43 0 1 3 6 
 

Oman Arabian Sea 1 0 0 0 45 42 2 2 2 7 
 

South West to Eastern Sri Lanka IMMA Vessel 10 0 0 0 40 32 1 1 11 4 
 

Mean   5 0 0 0 45 36 1 2 3 7 
 

SD   6 0 0 0 4 10 1 1 3 3 
 

 

Source: WWF-IUCN-IWC-OceanMind, (2020). A Geospatial Analysis of Vessel Traffic in Important Marine Mammal Areas; Using the Automatic Identification 

System to Monitor the Important Marine Mammal Areas (01Sep2018-01Sept2019).  
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Table S12 World Trade Organisation container port traffic data for selected countries surrounding the north Indian Ocean from 
2000 to 2018. 
Summary statistics calculated for the increase in TEU traffic since the beginning of records for each country. 

 
  

Country Name 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Perc. Increase 

from the 

beginning of 

recrds (%)

India 2,450,656 2,764,757 3,208,380 3,916,814 4,332,863 4,982,092 6,141,148 7,398,211 7,672,457 8,014,487 8,922,576 9,922,786 10,072,000 10,626,000 11,323,000 11,882,003 12,086,010 15,426,000 16,382,600 85

Saudi Arabia 1,502,893 1,676,991 1,958,570 2,440,327 759,769 3,732,706 3,863,202 4,208,854 4,652,022 4,430,676 5,810,404 7,001,000 7,949,000 7,811,139 7,446,762 7,567,862 7,578,862 8,082,000 8,670,000 83

Qatar na na na na na na na 350,000 400,000 410,000 420,000 420,001 420,001 420,001 462,000 568,000 568,000 1,267,000 1,835,000 81

Kuwait na na na na na 673,472 750,000 900,000 961,684 854,044 950,000 950,000 950,000 950,000 1,050,000 1,035,000 1,262,174 984,000 3,099,345 78

Sri Lanka 1,732,855 1,726,605 1,764,720 1,959,354 2,220,525 2,455,297 3,079,132 3,687,338 3,687,465 3,464,297 4,100,000 4,260,000 4,321,000 4,310,000 4,908,000 5,185,000 5,550,000 6,200,000 7,000,000 75

Egypt, Arab Rep. 1,625,601 1,708,990 1,336,040 1,579,530 2,959,895 4,031,114 5,372,832 5,181,581 6,099,218 6,250,443 6,833,009 6,514,020 7,434,989 7,345,189 7,897,189 7,186,489 7,377,489 6,151,900 6,151,900 74

United Arab Emirates 5,055,801 5,081,964 5,872,240 6,955,202 8,661,636 9,851,709 10,967,048 13,182,412 14,756,127 14,425,039 15,177,436 16,866,912 18,120,112 18,693,112 20,223,612 21,233,200 20,613,200 19,128,300 19,054,000 73

Pakistan na 878,892 na 787,559 1,269,373 1,686,355 1,776,939 1,935,882 1,938,001 2,058,056 2,149,000 2,278,000 2,222,000 2,262,000 2,534,600 2,755,600 2,755,600 3,275,000 3,275,000 73

Oman 1,161,549 1,331,686 1,415,500 2,264,826 2,515,546 2,748,584 2,620,363 2,876,969 3,427,990 3,768,045 3,943,835 3,749,817 4,330,000 4,024,400 3,886,000 3,569,000 4,075,000 4,784,712 4,223,712 72

Djibouti na na na na na na na 294,902 356,462 519,500 600,000 634,200 659,600 660,000 736,000 910,000 987,000 928,000 847,000 65

Yemen, Rep. 248,177 377,367 na na na na na 773,016 775,165 639,671 640,076 619,694 569,694 559,694 496,000 377,000 375,000 535,000 54

Maldives na na na na na na na 47,703 53,650 56,000 49,627 53,062 54,820 79,712 83,777 83,778 81,744 86,730 88,898 46

Bahrain na na na na na na na 238,624 269,331 279,799 269,331 269,331 269,331 269,331 269,331 269,331 269,331 400,300 432,200 45

Iran, Islamic Rep. na na 805,860 1,090,212 1,177,265 1,325,643 1,528,518 1,722,513 2,000,230 2,206,476 3,045,500 3,426,000 2,656,000 2,129,000 2,270,000 2,165,250 2,555,063 3,093,400 2,378,600 44

Sudan na na na na na na na 342,152.00 391,139.00 431,232.00 430,000.00 430,000.00 441,000.00 447,495.00 434,445.00 481,815.00 465,355.00 487,331.00 551,900.00 38

Mean 66

SD 16
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Table S13 Summary of World Trade Organisation container port traffic data for the north Indian Ocean study area between 2009 
and 2018. Summary statistics calculated for the percent increase relative to 2009 and the annual percent increase. Summary data 
includes countries selected in Error! Reference source not found.. 

 

 

Source: The World Bank, World Development Indicators (2020). Container port traffic (TEU: 20 foot equivalent units) 

[API_IS.SHP.GOOD.TU_DS2_en_excel_v2_1217940]. Retrieved from https://data.worldbank.org/indicator/IS.SHP.GOOD.TU (Accessed 21/07/2020)  

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

47,807,765 53,340,794 57,394,823 60,469,547 60,587,073 64,020,716 65,269,328 66,599,828 70,829,673 73,990,155

3,384,038 3,779,342 4,068,916 4,287,753 4,295,684 4,541,877 4,627,680 4,723,891 5,024,453 5,649,097

3,996,636 4,284,412 4,753,070 5,130,507 5,300,923 5,678,390 5,919,202 5,785,058 5,811,812 5,963,136

0 10 17 21 21 25 27 28 33 35

0 10 7 5 0 5 2 2 6 11

5.47

3.74StDev of annual increase

Mean annual increase

Statistical Summary
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Table S13 Ranked counts of unique vessels assigned to the 20 most frequent 
flag states passing through Oman’s EEZ.  

Counts derived from from s-AIS MMSI data between January 2015 and May 2016. 

 

Country MMSI Counts Rank 

Marshall Islands (Republic of the) 895 1 

Liberia (Republic of) 867 2 

Panama (Republic of) 768 3 

Hong Kong (Special Administrative Region of China) 499 4 

Singapore (Republic of) 369 5 

Unassigned 353 6 

Bahamas (Commonwealth of the) 273 7 

Malta 238 8 

Greece 190 9 

India (Republic of) 183 10 

United Kingdom of Great Britain and Northern Ireland 144 11 

Iran (Islamic Republic of) 133 12 

Antigua and Barbuda 129 13 

Norway 124 14 

Cyprus (Republic of) 103 15 

United Arab Emirates 90 16 

Cayman Islands 79 17 

Saudi Arabia (Kingdom of) 78 18 

Denmark 61 19 

China (People's Republic of) 60 20 
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Figure S6 Annual Wind frequency data from offshore of Masirah aligned with 
shipping route A.  
Statistics demonstrate the frequency of time surface winds (10m) are prevailing 

onshore or offshore. (Source: Global Wind Atlas 3.0, a free, web-based application 

developed, owned and operated by the Technical University of Denmark (DTU). The 

Global Wind Atlas 3.0 is released in partnership with the World Bank Group, utilizing 

data provided by Vortex, using funding provided by the Energy Sector Management 

Assistance Program (ESMAP). For additional information: https://globalwindatlas.info) 
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