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Preamble
The scope of this document is model-based estimation of abundance (and its uncertainty) from counts of cetaceans
obtained using standard distance sampling line transect surveys (e.g., Buckland et al., 2015). The aim is not to be
prescriptive about what the actual model formulation is but rather provide guidelines on what modellers can do to
ensure reliable results and how they can show that this is the case to readers.

Though it is the case that we wish to build models to relate counts to environmental covariates (most importantly
space), the commonly seen case of estimating and interpreting effect sizes and associated relationships is ignored
here. Here we are only interested in estimating abundance (N̂), its variance (VarN̂) and potentially covariances
between temporally separate estimates of abundance, usually as a function of spatial location.

Why do model-based estimation?
The big conceptual difference between design-based and model-based approaches comes down to differences in how
you take information at the sample level and extrapolate/interpolate these out to the broader survey/study area.
Design-based estimates assume that density is flat within each stratum, where as model-based estimates allow for
variation in space.

There are a number of reasons why model-based estimation is preferable to design-based estimation (via Horvitz-
Thompson-like estimators; see appendix) in certain situations. Probably most interesting in this context is the
inclusion of non-designed/poorly-designed surveys (providing they still have sufficient coverage of the study area
and that good field procedures have been followed) and potential variance reduction (which comes from changing the
sampling unit of our analysis from transects to smaller segments of the transects). Additionally, resulting maps of
abundance and uncertainty can be used for spatial management of populations as well as a planning tool for future
surveys. Interpolation over areas not sampled in the original data may also be useful but should be undertaken
with caution (see below).

Common approaches
There are several approaches that one might use for model-based analysis. Here we list some key references
and software implementations. This is not an exhaustive list, just examples of what is available. One of the
older approaches is density surface modelling (DSM; Hedley and Buckland (2004); Miller et al. (2013)) which uses
a two-stage approach, first modelling detection as usual, then incorporating this information into a generalized
additive model of the samples (as implemented in the R package dsm). The inlabru R package uses a Bayesian
point process approach (Yuan et al., 2017; Bachl et al., 2019) to model the spatial pattern of animals in space,
while simultaneously estimating and accounting for detectability. DSpat (Johnson et al., 2010) takes a similar
approach. A more limited approach of model-based (but not very spatially flexible) analysis is unmarked (Fiske
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and Chandler, 2011; Sillett et al., 2012). Other custom hierarchical Bayesian approaches are used (e.g., Sigourney
et al., 2020), perhaps implemented in JAGS/Nimble/etc (Plummer, 2003; de Valpine et al., 2017), these approaches
are potentially amenable to more complex data integration.

For the purposes of this document we refer to two broad categories: “regression-type” approaches (including DSM
and unmarked) which tend to consider “blocks” of sample effort as their primary unit of analysis and “point process-
type” approaches (including inlabru and DSpat) which address the locations of observations directly. Custom
hierarchical Bayesian approaches are available in either flavour.

Design and data preparation
As mentioned above, the use of non-designed surveys with good coverage is a key selling point of model-based
analyses. The reason this is possible is that the model-based approach allows us to trade the assumption of
randomized sampling (central to the usual Horvitz-Thompson-like estimation in standard distance sampling) for
a model of the additional information we have in the form of the locations of the samples. For that reason, we
need to ensure that the spatial coverage of our survey allows us to build a representative model. We can assess the
quality of the realized design (that is the places that were actually sampled, not just those which were planned to
be visited but perhaps could not due to weather, logistics etc) using Distance for Windows (Thomas et al., 2010)
or the R package dssd (https://github.com/distanceDevelopment/dsims), which can provide coverage maps.
Diagnostics can also be generated using the ltdesigntester package (see appendix). Note that here we are talking
about things to do before going into the field. Model-based approaches are not there just to “save” bad data, careful
planning is still necessary from the outset.

For some of the modelling approaches listed above (most notably DSM), existing transect lines need to be
chopped into smaller segments which are then used as the sample units for the model. This chopping can have
adverse effects on the results, so some care should be taken. If segments are too small then the resulting data
is effectively binomial and potentially highly correlated (since each segment will contain only 1 sighting), making
modelling difficult. Making segments too long will lead spatial features being discarded from the analysis as there
will not be sufficient variation and detail in the data. Other considerations include using natural breaks in detection
function covariates like Beaufort or observer watch, so avoiding having to average over these covariate levels.

We may wish to use a model-based approach to include data from multiple surveys. This is perfectly acceptable
in principle (see, e.g., Miller et al. (2021)), but some care must be taken to ensure that the same population is
being modelled (e.g., for a migratory species ensuring that the same part of the migration is being targeted by the
survey). When including multiple surveys, it may be the case that estimates of in situ trackline detectability (g(0))
or availability, for example, are available for some surveys but not others. Again it is acceptable to use estimates
from other parts of the model, provided that they are comparable (similar vessels and observer experience levels
were used etc).

Detection function modelling
This has been covered in the RMP (International Whaling Commission, 2012), however we note that model-based
inference does not mean that detection function modelling is unimportant for this approach. Like design-based
methods, mistakes in detection function modelling will propagate to the rest of the model, so it is vitally important
that the detection function is thoroughly checked. Importantly we separate covariates for the detection function into
two classes: (i) observation (or detection) covariates that relate to detectability of an individual detection (individual
or group) these include group size and observer which could potentially vary from observation to observation and,
(ii) segment (or sample) covariates which relate to the conditions and are constant over some small section of the
transect, like sea state or weather conditions. This distinction is especially important when using methods like
DSM, which chop-up transects into smaller segments, where detection function covariates need to remain constant
within each segment (though see Bravington et al. (2021) for a solution to this issue).

Model-based approaches to estimating abundance
At their core model-based approaches for estimating abundance seek to relate counts of animals to environmental
covariates. A model-based abundance estimation method needs to include: a correction for incomplete detectability
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(detection function, perception bias, availability bias etc), some way to account for varying effort and a mechanism
to relate animal distribution to the environment. So, we must have a method that can use distance sampling data
to estimate a probability of detection. This detectability adjustment and the effort are usually included as offsets
in the model (that is model components that do not have model parameters associated with them). There are
three classes of methods to relate abundance to the environment: (i) purely spatial models (i.e., those containing
only geographical coordinates), (ii) purely environmental covariate models (“habitat models” sensu Redfern et al.
(2006)) and (iii) mixed spatial and environmental (see, e.g., Miller et al. (2013)). Here we will only address (i).
Spatial effects need to be flexible enough to ensure that they can capture variation between the segments. The
methods suggested above all use some kind of structured random effects to allow for flexible models of covariates:
e.g., DSM and inlabru both use smoothing (via splines, covariance modelling, etc). This flexibility is essential to
ensure that sufficient detail can be captured from the data, especially the flexibility to account for changes/patterns
in density over space. For surveys that took place close to land, models that take into account geographical features
(peninsulae, islands, etc) should be used (e.g., Wood et al., 2008; Bakka et al., 2016), especially when high and low
densities are separated by land.

As with any modelling approach, care should be taken when selecting the response distribution (equivalently the
process type for point process modelling) to ensure that this is a reasonable approximation for the distribution the
data at hand (see next section). For models where they are used, priors need to be specified (not just the defaults
used) and justified appropriately (see e.g., Gelman et al. (2013) and/or Gabry et al. (2019)).

An additional complication in modelling cetaceans which occur in groups is accounting for that clustering.
Specifically issues can occur when group size varies in space (e.g., if there are particular areas which have large
concentrations of prey). For point process models this consists of choosing a different process to describe the data.
For DSM and other methods based on regression, it may then be preferable to construct a model for group size
as a function of environmental covariates separately, as well as an encounter rate model to model detections as a
function of environmental covariates (e.g., Becker et al., 2020). Alternate model formulations can also be used to
address this issue (see, e.g., the group size model of Bravington et al. (2021)).

Model checking
Model checking is, to some extent, an inherently model-form-specific issue so there are limited general statements
that can be made. For regression-based methods Wood (2017) is a good general reference. For point process-based
models, Baddeley et al. (2015) covers these topics.

Regardless of methodology, there are some general strategies that can help us assess whether the model did a
good job. The first is ensuring that the response distribution (or equivalently process type) was reasonable, which
can be assessed using quantile-quantile plots (see Augustin et al. (2012) for regression-based methods and Baddeley
et al. (2005) for point processes) to compare theoretical quantiles with those given by the model to check the match
between model and data. We can also inspect residuals (differences between the model predicted values and the
data) of various types to see if there are areas (in geographical and covariate space) where the match between the
data and model is not good. We can also inspect tables of observed vs. expected counts. Both of these approaches
require some level of aggregation generally, as models that include smooth, structured effects tend to be wrong at
any one particular point, but are good on average. Several papers have proposed strategies for how to aggregate
spatial data for checking (e.g., Wenger and Olden, 2012; Roberts et al., 2017; Valavi et al., 2019) and potentially
provide useful strategies in a spatial context. We may also want to do these aggregations over the levels of the
detection function covariates, for example investigating counts/residuals at given sea states (e.g., Bravington et al.,
2021). Relatedly, cross-validation type approaches can be used to ensure good predictive power for the model (e.g.,
Mannocci et al., 2017).

For models fitted using maximum/marginal likelihood, ensuring that the optimization algorithm has converged
is essential. Similarly for simulation-based methods like MCMC, relevant standard diagnostics should be used to
ensure that mixing is good and that chains have converged to their equilibrium distributions; Gelman et al. (2013)
provides relevant details. A prior sensitivity analysis and posterior predictive checks would could be used to show
that the priors that were selected are appropriate for the data.

If an additional model or change of process is used for species where group size may be an issue (see above),
then this should be justified by comparing models with and without this additional component (one should see an
improvement in the diagnostics listed above).
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Prediction and variance
Once a model has been fitted and checked, predictions can be made. In general we predict over some “grid”
(not necessarily square/rectangular) and sum over cells to obtain abundance estimates over strata. An important
consideration is what the size and shape of the prediction units are. When making choices about this one should
consider the size of the segments (if they were used), any complex geographical features such as peninsulae, islands
or ice (does creating a grid which “smears” predictions over the land/ice have a negative impact on results?), and any
post-stratification that may be needed (again taking into account cells that lie in two strata etc). Any prediction
cells should be small enough to take into account the spatial structure that was imposed by the model: predictions
made extremely coarsely over the study area will smooth over details that the model has picked-up (possibly to the
detriment of density features you’re trying to demonstrate). Conversely, making cells smaller than the segments (if
they are used) may lead to a false sense of accuracy when looking at maps.

We want to obtain estimates of uncertainty for the predicted N̂ values (and potentially, the covariances between
estimates in time). Such variance estimates need to include uncertainty from all appropriate model components,
where possible and document those which are included or excluded. Those components include uncertainty from
the detection function, spatial model, availability estimate, trackline detectability (g(0)) estimate and any other
relevant sources. Approaches that fit models for the different components simultaneously (e.g., fully Bayesian
approaches; e.g., Sigourney et al. (2020)) should automatically propagate the uncertainty between components,
making the inclusion of these components basically automatic. In the case where component uncertainty estimates
are independent (usually the case when availability, say, has been estimated from a tag study or dive-surfacing focal
follow experiment in a different place/time), summing squared coefficients of variation is sufficient. However if there
is any covariance between model components (e.g., between the detection function when a covariate like sea state has
been included and a spatial model) then other strategies need to be used (e.g., Bravington et al. (2021)). Uncertainty
for aggregated areas (to obtain Var(N̂) and covariance of time series) can be estimated analytically (using e.g., the
delta method to move from parameter uncertainty to uncertainty about N̂) or via posterior simulation (sometimes
referred to as a “parametric bootstrap”), the latter can be easier mathematically and helps deal with non-linear
relationships cause by the link function (see e.g., Wood (2017) section 7.2.7).

Care should be taken when creating a prediction grid to ensure that extrapolation is minimised and justified
where necessary. Extrapolation can take place in both geographical and covariate space (Bouchet et al., 2020), with
both univariate extrapolation (being outside of the range) and combinatorial extrapolation (if covariate combinations
unseen in the data are in the prediction grid) being issues. Software (e.g., Bouchet et al. (2020)) can be used to
diagnose these issues to some extent and can help exclude covariates that may be problematic prior to analysis.
Relatedly, methods which take a smoothing approach to spatial effects have issues with regard to “edge effects”:
generally we see that uncertainty will increase beyond the area which was sampled. This is not unexpected, as we
don’t have information outside of the sampled area, so uncertainty should increase but we should be cautious when
using results were this effect is large (see next section on presenting maps).

Presentation of results
Since model-based estimation will usually involve a spatial component, maps of predictions should be presented
along with aggregated estimates of N̂ to show that estimates are not unduly influenced by a few large predictions
and that complex geography has not caused “leakage” between areas with high and low animal density. Similarly,
maps of uncertainty (coefficients of variation) should be provided to allow for interpretation of where we trust our
predictions the least.

At every step considered above, analysis decisions should be well-justified and model diagnostics should be
presented. Where one choice has been preferred over another, it may be necessary to show what the result was of
taking the other option, giving a simple sensitivity to those modelling decisions. As would normally be expected,
software used (and versions) should be reported. Ideally a reproducible analysis should be provided to give complete
transparency in any results (e.g., Sandve et al., 2013; Shade and Teal, 2015; Peng and Hicks, 2021).
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1 Introduction

The IWC Scientific Committee (SC) often has to consider abundance estimates derived from line transect
surveys which have been analysed using “design-based estimators”, but where for various reasons it is not clear
whether the resulting estimates of abundance and uncertainty are trustworthy for, say, RMP purposes. The
SC has therefore in recent years (up to 2016) considered revising its formal Guidelines1 to take advantage of
methodological developments, in particular the increased flexibility o↵ered by“model-based”abundance estim-
ates, constructed statistically around smooth estimates of animal density across space. As background for that
revision, document IWC/65b/RMP11 (Hedley & Bravington 2014) describes the randomization assumptions
required by design-based principles; it also introduces some of the practical issues around model-based estim-
ates, which are more flexible but also more complicated to implement. In section 11 of that document, the
authors note that it may sometimes be possible to derive acceptable estimates of abundance and uncertainty
using a design-based calculation— which in this document we call an HT (“Horvitz-Thompson-like”) estimate—
even when the underlying design-based assumptions are not strictly met, provided that (among other things)
realised coverage is su�ciently even. This has been common practice at IWC and elsewhere, but generally on
an ad hoc basis with no clear criteria for “how bad is too bad?”. For such cases, IWC/65b/RMP11 recom-
mends instead that HT acceptability needs to be verified on a case-by-case basis, using diagnostics derived
from model-based analysis.

This document follows up on that suggestion. We briefly review the main di↵erences between HT and
model-based estimates (section 2), explain where problems can occur with the former (3), and through simu-
lation demonstrate those problems and how they might be checked for using model-based criteria (sections 4,
5). The idea is to consider a range of scenarios about underlying density gradients, then fit di↵erent spatial
models (including a “null model” that is equivalent to an HT estimate) to data simulated from the actual
survey tracks and each density scenario, then check the consistency of point estimates and variance estimates
across the di↵erent models. Software implementing these criteria/checks is available as an accompanying R
package.

1
The Requirements and Guidelines for Conducting Surveys and Analysing Data within the Revised Management Management

Scheme: IWC (2012). “Requirements and Guidelines for Conducting Surveys and Analysing Data within the Revised Management

Scheme”. J. Cetacean Res. Manage. (Suppl.) 13, pp. 509–517.
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In order to keep things tractable, we have made certain assumptions, beyond the usual requirements
for distance sampling (see e.g., Buckland, Anderson, Burnham, Borchers et al., 2001; Buckland, Anderson,
Burnham, Laake et al., 2004; Buckland, Rexstad et al., 2015)):

Transect lines are the ones actually visited (“realised e↵ort”), not whatever may have been planned in
the original design.

We assume there is some environmental covariate related to sighting probability that has been measured
along (within) transect lines, not just when sighting is made (e.g., Beaufort sea state recorded as “good”
or “worse” categories). We refer to this covariate simply as “weather”. For evaluating a survey, it should
not matter too much exactly how the weather covariate is defined. Without a weather covariate, though,
we do not consider it possible to adequately evaluate HT acceptability post hoc (see section 3).

We assume that detectability, broadly speaking has already been estimated in a preliminary step. So
g (0) and availability etc have already been estimated . What is required for evaluation, is the integrated
detection probability out to the truncation distance; the details of functional form do not matter.

We have ignored school/group size; if a survey is not going to lead to reliable HT analysis even if all
groups are size 1 with equal detectability, then variations in group size (and detectability) are hardly
going to improve matters. Group size error is an even harder issue. See section 9 of IWC/65b/RMP11
for some discussion.

With these assumptions in mind, we now go on to describe the HT and spatial approaches to estimating
abundance.

2 Methods

We do not spend time here describing fitting the detection function to the distance data and refer readers
to Buckland, Anderson, Burnham, Borchers et al. (2001), Buckland, Newman et al. (2004) and Buckland,
Rexstad et al. (2015) for information on model formulation and selection. Assuming a fitted detection function
(which we will denote ĝ— a function of distance (y), observed detection-related covariates such as weather
(z), and estimated parameters (✓)), we can estimate the average (over distance) probability of detection for
an observation (indexed by i, conditional on observed covariate values), p̂i, by integrating ĝ (y; zi,✓) across
perpendicular distances y out to the truncation distance.

2.1 Horvitz-Thompson-like estimators

We first describe the “Horvitz-Thompson-like” estimator (e.g., Borchers and Burnham, 2004). In its simplest
version, the HT estimator is

N̂HT =
A

a

nX

i=1

si

p̂i
, (1)

where n is the number of observations (number of groups if animals occur in clusters), indexed by i, si is the
size of the ith group (or always 1 if animals are solitary) and p̂i is the detectability estimated for the ith group,
which will be a function of the covariates for that observation. The total area surveyed (covered area) is a,
which is the sum of the product of the line lengths and their corresponding strip widths (if the strips were all
the same width then a = 2wL, where w is the strip half-width as in Buckland et al 2001, and L is the sum
of all the lines’ lengths). Finally, A is the area that we wish to estimate abundance for (sometimes referred
to as the study area). Intuitively, we take the group sizes, correct them for detectability and sum to get an
estimate of abundance in the covered area, which we then rescale to the study region. The HT estimator can
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only estimate animal density at a constant level within the area A; the rescaling assumes that the density in
the observed area is representative of the larger area. The unbiasedness of equation 1 relies on the inclusion
probability of the observations being known, we estimate these (via estimating detectability and implicitly
assuming equal inclusion probability; see IWC/65b/RMP11 section 1) so equation 1 is only unbiased when
these assumptions hold. These assumptions may be approximately valid in some situations, but it is hard to
check directly.

We can perform pre or post hoc stratification, slicing-up the study area into smaller regions (strata) and
estimating abundance for each of these. These may be geographically defined (“near vs. far from shore”,
“east/west of some feature”, etc), based on conditions at sea (“dense vs. non-dense ice”) or based on ocean-
ographic features (“deep or shallow water”). Mathematically, this consists of changing the limits of the sum
(summing over the animals which occur in a given stratum), then changing a and A accordingly to reflect
the e↵ort in the given stratum and the area of that stratum, respectively; abundance estimates can then be
summed to obtain total abundance or given per-stratum form. In some sense these estimates reflect a crude,
“blocky” spatial model, which try to address the deeper drivers of distribution in a given species. Stratification
can be performed using animal/group-specific covariates (e.g., abundance of males/females, juveniles/adults
etc), though we do not address this here. The assumptions and shortcomings mentioned in the previous
paragraph still apply, but on a smaller scale, so may be more defensible.

Variance is estimated for N̂HT by noting that there are (at least) two sources of stochasticity in the equation:
(i) from the variance in the model for p̂i (i.e., the detection function) and (ii) by noting that the observed
number of observations, n, is random. If animals are observed in groups, then there is also variation from
the group size to consider. The variance component from p̂i can be calculated by using the variance from the
detection function estimation procedure and using a sandwich estimator to express that parameter variance
on the scale of p̂i (Borchers, Buckland and Zucchini, 2002, Appendix C). Variance in n is usually calculated as
variance in n/L: the encounter rate variance. There are a number of formulations for this estimator, depending
on the possible design used. Fewster et al. (2009) proposes a series of estimators and evaluates them. Here
we use the Fewster et al. (2009) R2 estimator (though we use an encounter rate estimator of N̂/L as in Innes
et al., 2002). Note though that this estimator only considers variance between the sample units: the transects,
so if transects are long and there is significant variation in density along the transect, we may obtain variance
estimates that are far too small. If animals occur in groups, we calculate the variance in group size empirically.

2.2 Density surface models

We now describe one spatially explicit approach to modelling distance sampling line transect survey data,
which we refer to as density surface modelling (DSM; Hedley and Buckland, 2004; Miller, Burt et al., 2013).
As with HT estimators, they assume that the detection function has already been adequately fitted to the
distance data and estimates of probability of detection are available for the spatial model to use. The spatial
part of the model uses the generalized additive modelling framework (Hastie and Tibshirani, 1990; Ruppert,
Wand and Carroll, 2003; Wood, 2006a) to build smooth, spatially explicit terms describing the distribution
of the species and their response to other biological/physical variables (though here we only consider models
that include smooths of location). Rather than dealing with whole transects (which are generally long and in
which animal density and environmental covariate values can change appreciably), we cut the transects into
smaller pieces, which we call segments. The mean response of the model can be written as:

E(nj) = Aj p̂j exp

"
�0 +

X

k

sk(zkj)

#
,

where j indexes the segments, which have area Aj and all observations in that segment have a probability of
detection of p̂j . The response, nj (count per segment), is distributed according to some count distribution
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(usually Tweedie or negative binomial) for which exp is the inverse link function2. The model intercept is �0.
The sk are usually splines (Boor, 1978): smooth functions of one or more covariates (denoted zjk), though
could be more exotic things like random e↵ects, tensor products, smooth-factor interactions and so forth
(Wood, 2006a; Wood, Pya and Säfken, 2016). The exact form of each sk depends on the nature of the e↵ect
we wish to model, for smooths of location there are quite a few options, some of which are enumerated and
described below (IWC/65b/RMP11 also discusses this in section 7.2).

A typical DSM may take a form such as:

E(nj) = Aj p̂j exp
⇥
�0 + sx,y(xj , yj) + sDepth(Depthj)

⇤
,

that is: the expected count in segment j is a function of its location and the water depth at that location, this
is then exponentiated onto the response scale, and multiplied by the area of the segment and probability of
detection in that segment.

Note that here the probability of detection has a subscript j not i as in the HT estimator. This is because
in this formulation of the DSM we only consider detectability as varying at the scale of the segments, not the
observed individuals/groups. This means that covariates such as weather, observer shift/team or ship can be
included in the detection function, but sex of the animal or observer ID (if there were multiple observers on
deck at once) cannot be3.

3 Why do spatial modelling?

A criticism of the DSM approach is that it is more complex, as we explicitly model the spatial and possibly
environmental covariate e↵ects. More mode checking is required and there is a wide literature of often con-
flicting advice on how to construct models. However, explicit modelling is the only way to deal with the
heterogeneity in spatial distribution of the study species. In this section we give some some arguments about
why HT estimation may not be a good idea from a theoretical perspective.

3.1 Appeals to pooling robustness

An appeal to “pooling robustness” (Buckland, Anderson, Burnham, Laake et al., 2004, Section 11.12) does not
get around heterogeneity in the spatial distribution of the population. Before explaining why, we first define
and explain pooling robustness in a distance sampling context. From Burnham, Anderson and Laake (1980):

nf̂(0) =
RX

r=1

nrf̂r(0),

where there are R strata chosen to minimise heterogeneity, n is the total number of observations, nr is the
number of observations in stratum r and f̂(0) and f̂r(0) are the probability density functions of the observed
distances, evaluated at zero distance, for the whole sample and by stratum, respectively. Equivalently we can
write:

n

p̂

=
RX

r=1

nr

p̂r
.

Intuitively, we say that if pooling robustness holds, the estimates from a stratified analysis would be
the same as those for an unstratified analysis. Buckland, Anderson, Burnham, Laake et al. (2004, Section

2
Though any exponential (and beyond) family response can be used in the GAM framework with any appropriate link function,

we just talk about count distributions and log link functions for clarity of notation.

3
These covariates can be included in a more general formulation of DSMs, though we don’t consider them here for clarity of

presentation. See Miller, Burt et al. (2013) for further details.
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11.12) state: “if only an overall abundance estimate is required, standard methods without covariates [in the
detection function] are satisfactory under rather mild conditions, provided heterogeneity in detectability is not
too extreme.” This is a statement about HT estimation in the presence of (mild) detection heterogeneity and
does not address spatial variation in density within strata. If we knew the optimal R strata to chop our survey
into, according to the density gradient we might be onto something, but this is impossible in practice.

So far we have only considered the case where detectability is certain on the line (g(0) = 1). If we start
to consider issues around uncertain detectability on the line (Borchers, Zucchini and Fewster, 1998; Borchers,
Buckland, Goedhart et al., 1998; Borchers, Laake et al., 2005; Burt et al., 2014) this situation only gets more
complicated. Buckland, Anderson, Burnham, Laake et al. (2004) note that if the detection function includes
covariates “then the model robustness criterion fails, and we must model the heterogeneity to avoid bias”. So,
if we do expect that the probability of detection at zero distance is influenced by covariates (which it almost
surely will be in a cetacean survey), pooling robustness does not apply.

3.2 Weather covariates

Following on from pooling robustness, we now think more about recording a sighting conditions covariate,
such as weather. It is not enough to “see” that tracklines physically cover the entire study area in a seemingly
even way; if most of the survey e↵ort in the West are in good sighting conditions whereas most in the East are
in poor conditions, then the actual e↵ort can be quite imbalanced. (The tracklines on the West have higher
sighting probabilities, so they are in e↵ect “wider” and cover a higher proportion of nearby areas, but the
width di↵erence is not visible on the scale of a plot.) The average probability of detection of a whale (across
all whales in the region) is not the same as the average detection probability averaged along the trackline.

If density does vary within strata the e↵ect of detectability and distribution are confounded, unless data
on observation conditions (e.g., a weather covariate) and spatial distribution (e.g., location of transects) is
recorded and modelled. A spatial model that includes data on the location of the observations and the sighting
conditions will be able to tease apart these e↵ects and attribute appropriate uncertainty. For example, say we
saw many animals in the West of the study area and fewer in the East. Let us also say that there were good
sighting conditions in the West and poor sighting conditions in the East. If we ignore the weather covariate,
we have know way of knowing if there truly were many animals in the West or whether it was just the e↵ect
of having good sighting conditions.

This is the reason for our stipulation that HT-acceptability (i.e., robustness to animal density variations)
can only be assessed when a weather covariate is available. For a full analysis of data, some care is usually
given to the choice of covariate (e.g., number of levels, if the covariate is a factor; use of several covariates
together), but for broad assessment of uniformity, we suspect that the choice does not matter too much. For
example, splitting Beaufort into two levels such that the “good” level contains 1/3—2/3 of total sightings, and
the “poor” level contains the rest, should be su�cient. Using a simple classification of that type makes it easy
to estimate a separate detection probability by “weather level”, simply by splitting the sightings according to
weather before fitting a separate detection function to each.

3.3 Designs with unknown coverage probability

Implicit in the HT formula (1) is the assumption that all locations in the study area are (at least approxim-
ately) equally likely to be sampled (e.g., IWC/65b/RMP11 section 1; Borchers and Burnham, 2004). With
a truly randomised (or systematic) design, this is certainly the case, but it is often the case that designs
are “constructed” rather than realised from a randomisation process (such as that provided in Distance for
Windows (Thomas et al., 2010)). This can be for a variety of logistical reasons, but the lack of randomisation
invalidates the design-based justification for HT estimation of abundance.

Given the above, there is a temptation then to fit a “dumb” spatial model and hope for the best. Properly
configuring a spatial model is a time-consuming process requiring some “expert” judgement. As well as for-
mulating, fitting and selecting between models, the investigator also needs to select an appropriate prediction
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Figure 1: The proposed density surfaces. From left to right: flat, left-right gradient, right-left gradient,
diagonal gradient. Shorthand names are given as the title for each plot.

grid, ensuring that unreasonable extrapolations are not made. There is no “quick fix” to obtain a good spatial
model, care must be taken in the construction and checking of the model if reasonable inferences are to be
drawn.

4 Simulation setup

With the above in mind, we set about constructing some simple simulations of plausible survey data. We
attempted to keep the underlying densities as simple as possible and the realised designs as fairly realistic.

4.1 Density surfaces

We used a series of simple density surfaces to test for di↵erences between the proposed models. Although
animal distribution is much more complicated than the patterns shown below, if models perform poorly for
these simple density surfaces (where gradients are clearly defined) then it is likely that there will be more
severe issues when more complex surfaces are used. In the simulations presented here the following surfaces
were investigated:

“f”: flat density, uniform distribution across the region.

“lr”: left to right gradient, high on the left, decreasing as we go right.

“rl”: right to left gradient, high on the right, decreasing as we go left.

“diag”: increasing gradient from top right to bottom left

These are shown in Figure 1.

4.2 Detectability

Detectability in the survey was set at two fixed detectabilities “good” and “bad” by varying the parameters
of a hazard-rate detection function. We also simulated a two-level weather covariate that changed from left
to right across the study area, on the left side the weather was “good” (using the “good” detection function)
and on the right side the weather was “bad” (using the “bad” detection function). The transition between the
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Figure 2: Detection functions used in the simulations. Dashed line indicates the truncation distance used.
For the “good” detection function, the scale parameter was set at 0.025, shape parameter at 3. For the “bad”
detection function, the scale parameter was set at 0.005, and the shape at 1. In both cases truncation was at
0.05.

detection functions was controlled by a logistic function. Due to its change along the x axis, the covariate is
confounded with the “lr” and “rl” density gradients – this is eminently possible in survey data as discussion in
section 3.2. Plots of the detection functions used to simulate the data are shown in Figure 2 along with their
parameters.

For clarity and simplicity we do not consider the case where detectability is uncertain at zero distance
(g(0) 6= 1) here — we assume that if animals occur directly in front of the observer they will be seen. We also
do not consider any availability issues (that cetaceans are often underwater and cannot be seen). Finally, we also
assume that observations are of single animals (that group size is one). These are simplifying assumptions, but
a modelling strategy that fails in this simple situation is unlikely to perform well once any of these assumptions
are relaxed.

4.3 Designs

We experimented with four designs. A good design with good realised coverage across the whole study area
(“manyzigzags”; to confirm that what we consider to be a good design gives us the results we expect from our
metrics). Two “i↵y” designs: one with a large gap between each contiguous section of realised e↵ort (“zzl”)
and one with two very di↵erent e↵ort distributions for two parts of the survey (“twozigzags”). A bad design
where the e↵ort is concentrated along two sides of the area (“corner”). The designs are shown in Figure 3.
In each case the box surrounding the design indicates the area used for prediction in the simulations, dashed
lines indicate divisions between strata used for stratified HT estimates.
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Figure 3: Realised e↵ort for the designs used in the simulations. From left to right: good design with even
coverage; an “i↵y” design where e↵ort high in one side and low in the other; an “i↵y” design where e↵ort is
more sporadically allocated; the bad design, with most of the e↵ort in the left and bottom of the survey area.
In each case the black box around the designs indicates the limits of the study area. Red dashed lines indicate
the boundaries of the strata used with the stratified HT estimator (see “Models”).

Design 1: zig-zag with good coverage (“manyzigzags”)

The final design has good coverage over the whole study area and would be the ideal realised design. Shown
in the left panel of Figure 3.

Design 2: zig-zag with straight line (“zzl”)

This is supposed to mimic the situation in which a zig-zag design went well on the left side of the study area,
but not realised in the middle of the survey (perhaps due to bad weather), then to the left we have a lonely
transect (perhaps weather picked-up). Shown in the second panel of Figure 3.

Design 3: two di↵erent zig-zags (“twozigzags”)

To show how designs often consist of di↵erent coverages in di↵erent areas of the survey region, a design with
more e↵ort (many zig-zags) is placed next to that with much less coverage (a single zig-zag). This is shown in
the third panel of 3.

Design 4: corner (“corner”)

This design concentrates along two sides of the study area, this design mimics the commonly used technique
where near-coast transects are used to extrapolate well beyond the covered area. Shown in the right panel of
Figure 3.

4.4 Models

Both spatially explicit models and HT methods were used to estimate abundance for each simulation. These
are enumerated below. Since we only include spatial terms in our simulations and we believe that in general
our spatial e↵ects can be estimated by bivariate smooths (even if in this example the underlying densities
are better suited to univariate smooths, we never know this a priori). The spatial models are separated into
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two classes: those which have the isotropy property (that a unit change in one direction is considered to be
equivalent to a unit change in an orthogonal direction, sometimes referred to as rotational invariance) and
those which do not; these are constructed by a tensor product of univariate splines. We also test that the
setup of the smoother isn’t unduly advantageous to a particular model by rotating the coordinate system by
45 using the rotation matrix:

R =

✓
cos(⇡/4) � sin(⇡/4)
sin(⇡/4) cos(⇡/4)

◆
.

The models tested were (starting with their shorthand code used for plots later):

Isotropic smooths

– TP: thin plate spline, bs="tp" (Wood, 2003)

– TPSH: thin plate spline with shrinkage, bs="ts" (Marra and Wood, 2011)

– Duchon: Duchon spline, bs="ds", m=c(1, 0.5) (Miller and Wood, 2014)

Tensor product smooths (smooths listed below were used in both directions)

– TPTE: thin plate spline, bs="tp"

– TPTER: thin plate spline with rotated covariates, bs="tp"

Non-spatially explicit models

– HT: Horvitz-Thompson (assuming one stratum, using 1)

– HTstrat: stratified Horvitz-Thompson using strata as shown in Figure 3

– HTcovar: Horvitz-Thompson with covariates included (where applicable)

– HTstratcovar: stratified Horvitz-Thompson with covariates using strata as shown in Figure 3 (where
applicable)

Note that for the detection function part of each model we fit a model of the same form as the generating
model, we do not consider model uncertainty or selection for the detection function. For simulations where the
weather covariate was simulated, all spatial models use a detection function with the covariate included, we
include estimates for HT-based methods both including and not including the weather covariate. The spatial
models used are not all the ones that might be considered in practice for a full-on bona fide spatial analysis
(e.g., we did not consider soap-film smooths, because there are more application-specific insights to set up
appropriately), but we expect that they should encompass a wide range of ways to respond to data.

4.5 Software

All simulations were generated using DSsim (R package version 1.0.6), with a wrapper scripts used to generate
data that could be easily analysed, these are collected in the R package ltdesigntester (available at http:
//github.com/dill/ltdesigntester); a vignette is provided with the package to illustrate its use. Detection
functions were fitted in Distance (R package version 0.9.6) and spatial models were fitted using dsm (R package
version 2.2.12). Code for the simulations and this paper is available at http://github.com/dill/spatlaugh.

4.6 Metrics

In order to assess the performance of the abundance estimates, we use two graphical methods.
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Figure 4: Illustration of the “self-confidence” measure. From left to right: “ok” denotes shows a plot with flat
quantile distribution (no problems), “+ve bias” shows the spike at 1 indicating positive bias, “-ve bias” shows
a large spike at zero indicating negative bias, “overconfident” shows a spike with little spread, “conservative”
shows behaviour where the confidence intervals are slightly too wide, which we might prefer.

4.6.1 Bias

We can simply calculate the bias (N̂ �Ntruth) and plot boxplots of these values. Bias may only be interesting
in certain situations, for example when we are very uncertain about abundance, the bias may not be our main
concern.

4.6.2 Where does the truth lie in the distribution of the model?

If we know the true abundance in our simulation (Ntruth), then we can derive a useful diagnostic measure by
asking at what quantile does Ntruth lie in the distribution implied by the model (i.e., find P[Ntruth  N̂ ]).
Here we assume log-normally distributed N̂ , so use the usual formulae to find the resulting quantiles. This
summary “self-confidence” statistic gives some idea of both bias and variance. If the model is working as it
should, then the self-confidence quantile should be uniformly distributed across simulations. If the distribution
of the statistic is skewed to either end then we can infer under- or over- estimation of abundance for a particular
estimator. Skew to both ends indicates overconfidence. A flat distribution shows good performance, whereas
a “dome” in the middle indicates a conservative estimate in the sense that confidence intervals are slightly too
wide. This more conservative behaviour seems desirable, since in practice we probably have not accounted for
all of the sources of uncertainty in our model. An example of plots of this statistic is given in Figure 4.

5 Results

We experimented with possible combinations of simulation scenarios based on the models above. In each
scenario, we tested all of the modelling options listed above and recorded the metrics from the previous
section. The density surfaces described in Section 4.1 only describe the relative density of the population in
question. We (arbitrarily) fixed the total population size to be 500 individuals for each simulation.

Note that the aim here is not to show which spatial model is best out of those presented here, it is to show
that there are large di↵erences between the HT estimators and the spatial models in particular situations.
Di↵erences between the spatial models can be attributed to the model formulation process, for example in
the cases where the gradient was simply right-left, left-right or flat, fitting a bivariate spatial model will likely
not perform particularly well as it is too flexible. Additionally, none of the models underwent model checking
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in the usual way (e.g., Miller, Burt et al., 2013; Winiarski et al., 2014), so the spatial models represent the
“dumbest possible” spatial model, without any thought to checking or calibration.

We summarise the results in the remaining subsections of this section. Bias and “self-confidence” plots
for all simulations are provided in Appendix 2, results (in RData format) are include in the project GitHub
repository.

5.1 General comments

Before looking at where particular models succeeded or failed, we first look at general trends in the results.
First we note that for any design, flat densities are easy to estimate for HT-type methods. We note that
the rotated coordinate spatial models (TPTER) sometimes perform better than their non-rotated variants;
we believe this is down to the non-rotated models having another direction of variability (in the y direction)
that is e↵ectively unused (and which we would therefore like to be estimated as a zero e↵ect), but that may
pick up on minor variations due to sampling variability. In the rotated models both coordinates are used, so
estimating an e↵ect of exactly zero for the y component is not an issue.

5.2 Designs with good coverage work well

As expected, when coverage is even (Appendix 2, plots labelled “manyzigzags”), the methods based on HT
estimators perform well in terms of bias in estimating N̂ . Only when the detectability becomes particularly
bad does the “self-confidence” diagnostic start to look bad for the HT estimators (at which point it also begins
to look worse for the spatial models).

5.3 Uneven coverage is bad

Moving to an uneven design like“zzl” or “twozigzag”makes unbiased estimation of abundance much harder and
we see all models perform worse. Though in particular, we see that the unstratified HT estimate (HT) perform
much worse and the stratified HT also perform poorly — this is particularly revealing as in our simulations,
the “correct” stratification was provided to the estimator, a luxury that we do not have in real life. The
“self-confidence” diagnostic plots also show a shift in all models, though again the HT-based methods perform
worse than the spatial models on the whole. If performance is poor with the correct stratification, then we can
assume that things will be much worse when stratifications are decided a priori based on logistical constraints
rather than information on true distribution. This is likely amplified when density is not a simple gradient.

Things get substantially worse across the board if the gradient runs against a poor design. This gets even
worse when weather confounds the problem. For example, Figure 17 right panel (“zzl” design with right-left
density, weather covariate) shows poor performance for all models. In this case the combination of confounding
and low e↵ort where there are lots of animals means that nothing can be done — it is probably best to give
up on such data.

5.4 Covariates make things complicated

Ignoring the even coverage design, once the weather covariate is included in the data generation process,
things look much worse for the models which do not include it. Both bias and “self-confidence” show that
stratification and including the covariate do improve the HT estimates, though again we are assuming the
correct stratification scheme.

The most complicated simulation setup (corner design with diagonal density gradient and weather covariate)
highlights a more usual situation than the others — we are often confronted with uneven coverage (non)-
designs, densities that are complex and weather is almost always an issue. Given the performance in the
simpler situations, this scenario was bound to be more taxing for the HT-based estimation methods (Figure

11



8). The “self-confidence” measure is rather bad for all HT-based methods, but the performance of the spatial
models (Figure 18) looks like the “conservative” example shown in Figure 4 .

6 Discussion

Simulations presented here highlight potential issues when HT estimators are used in the case where animal
distribution is not constant within a given stratum. Violation of the assumption of flat density within a
stratum causes issues when coverage is uneven. Though the designs and densities presented here are relatively
simple, the problems that arise only become amplified with added complexity. We do not believe that the
most complex scenario (corner design with diagonal density gradient and weather covariate) is in any way
pathological — on the contrary, we think it represents a fairly mild version of what is often seen in the field.
A more realistic version of this scenario would involve incomplete transects (holes in the transects) and a more
complex density surface.

In general we see that spatial models, even when applied in a very näıve way, provide a coherent way
to think about modelling phenomena that are, by their very nature, spatial. Although formulating, fitting,
checking and validating spatial models is more complex than simply using HT-type methods to obtain density,
the added time and resources clearly leads to more reliable results. It is worth noting that here for the majority
of the density surfaces tested (aside from diagonal case) the spatial models were all overparameterised, in that
the “correct” model would be a single smooth of x for the left-right and right-left gradients, not a bivariate
smooth of x and y. Nevertheless, the spatial models performed well. If the true density is flat, estimating that
density surface (equivalently estimating almost all of the coe�cients of the bivariate smooths to be zero), as
would be assumed by HT, when sampling of the density surface is not even, is very di�cult (not to mention
an unrealistic situation). In these cases the spatial model performed almost as well as the HT estimator.

The ltdesigntester package developed for this paper is quite general and can be used for any design or
density surface. We considered only a two-level “weather” covariate. We encourage investigators to input their
current designs and use the supplied simple density surfaces to test how well abundance can be estimated. The
software could potentially be adapted and extended in numerous ways, perhaps linked to planned developments
in the dsm package such as allowance for spatial variation in group size.

We envisage three possible outcomes from testing HT-acceptability, starting with the approaches/software
described here, but not necessarily finishing there:

1. An HT analysis should be OK;

2. HT would be risky, but spatial modelling might deliver an acceptable point estimate and variance estim-
ate;

3. The data are so imbalanced that spatial modelling is unlikely to deliver a reliable estimate.

Clearly, the analyses and software proposed here can only di↵erentiate directly between 1. and 2./3. If a
spatial model is to be used instead of HT, then the appropriate model — which will use the real locations of
sightings, not just the total number — may well be outside the range of simple models in our tests (e.g., if
there are edge e↵ects requiring the use of, e.g., soap film smoothers). It may of course also be necessary to
enlarge the model to deal with group size etc. Selecting a preferred spatial model, and reporting appropriate
diagnostics for it, is beyond the scope of this particular document, but see (IWC/65b/RMP11; Chandler, 2005;
Wood, 2006b; Augustin, Musio et al., 2009; Augustin, Sauleau and Wood, 2012; Augustin, Trenkel et al., 2013;
Miller, Burt et al., 2013; Winiarski et al., 2014).

It is worth pointing out that we have deliberately avoided using the actual location of sightings. Of course,
the sighting-locations themselves could be used to directly fit a spatial model, so why not use that as the
point-of-comparison with HT? Our motivation is twofold: first, actually picking a good spatial model for a
real dataset is not something that can be automated; second, especially if there are not many sightings, the
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real density surface is very uncertain, and it is “putting the cart before the horse” to assume that a spatial
model fitted to limited data will actually pick the truth accurately. Instead, our approach is a robustness
test to assess the survey tracks against a range of density surface scenarios, and as such should be safer. The
possible downside is that, if animal density really is quite uniform, then an uneven sampling design might fail
our HT-acceptability checks even though the actual estimate would be OK. But this is hardly a disaster; all
that would be needed to rescue the data, is to proceed to fitting a spatial model “for real”. For many datasets,
this is certainly not an overwhelming task with modern software such as dsm.

Appendices

Appendix 1 - Data format for Distance and dsm

In this appendix we describe the data format required for the two packages used above. The text below is
adapted from their respective manuals.

Distance

A single data.frame should be provided to Distance to fit a detection function, or to estimate abundance
using the HT estimator. To simply fit a detection function we require the following columns in our data:

distance observed perpendicular distance to observation from the line

object an unique identifier for the observation

If one wishes to estimate abundance, the following columns are also required:

Sample.Label Identifier for the sample (transect)

Effort e↵ort for this transect (transect length)

Region.Label label for a given stratum

Area area of the strata

Each row corresponds to one observation. In some cases a given transect or even stratum may contain zero
observations. In this case the transect(s) are still included, along with their e↵ort, but their corresponding
object and distance fields are set to “not available” (in R “NA”).

dsm

Two data.frames must be provided to dsm. They are referred to as observation.data and segment.data.
The segment.data table has the sample identifiers which define the segments, the corresponding e↵ort (line
length) expended and the environmental covariates that will be used to model abundance/density. obser-

vation.data provides a link table between the observations used in the detection function and the samples
(segments), so that we can aggregate the observations to the segments (i.e. observation.data is a ”look-up
table” between the observations and the segments).
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observation.data

The observation data.frame must have (at least) the following columns:

object unique object identifier

Sample.Label the identifier for the segment that the observation occurred in

size the size of each observed group (e.g 1 if all animals occurred individually)

distance distance to observation

One can often also use observation.data to fit a detection function (so additional columns for detection
function covariates are allowed in this table).

segment.data

The segment data.frame must have (at least) the following columns:

Effort the e↵ort (in terms of length of the segment)

Sample.Label identifier for the segment (unique!)

??? environmental covariates, for example: location (projected latitude and longitude), and other relevant
covariates (sea surface temperature, bathymetry etc).

Appendix 2 - Full simulation results

This appendix gives all plots of results from the simulations that were run. Plots are aggregated by underlying
density used to generate the data. Note that boxplots are clipped at their limits, so some extreme outliers
may not be shown.
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Figure 5: Bias in abundance for each of the models per simulation scenario for the flat density. Columns
give the detection function type (see Section4.2) and rows give the design used (see Section 4.3). With a flat
density all models perform relatively well, even when the detectability is low (though there is some negative
bias).
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Figure 6: Bias in abundance for each of the models per simulation scenario for the left-right gradient density.
Columns give the detection function type (see Section4.2) and rows give the design used (see Section 4.3). In
this case for the “zzl” design, most of the e↵ort is concentrated on the higher densities, the low e↵ort side is
where there are fewer animals, the HT-based methods perform poorly here, as do some of the spatial models.
With such a small amount of e↵ort, it would be hard to detect that the gradient was to blame for low numbers
of sightings. For the covariate analysis, high detectability coincides with high density and high e↵ort, so the
good performance of the stratified HT and spatial models is likely down to a feature of the confounding between
density and covariate value (hence the poorer performance of the non-rotationally invariant TPTER model).
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Figure 7: Bias in abundance for each of the models per simulation scenario for the right-left gradient density.
Columns give the detection function type (see Section4.2) and rows give the design used (see Section 4.3).
Here the “zzl” design allocates more e↵ort to the low density areas, this leads to the non-stratified HT-based
estimators to overestimate abundance (assuming high abundance everywhere); stratification improves this
somewhat (assuming the correct stratification) but the spatial models are able to pick up on the distribution
gradient. For the covariate analysis, high detectability coincides with low density and high e↵ort, leading to
bias in the abundance estimates; spatial models have a much greater spread of estimates, obtaining the true
abundance at least some of the time.
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Figure 8: Bias in abundance for each of the models per simulation scenario for the diagonal gradient density.
In this case the stratification of the corner design is somewhat arbitrary and there is a large extrapolation to
the top right of the survey area (see Figure 3) where the flat density assumption of the HT-based methods
fail. Spatial models perform well, aside from the tensor product of thin plate splines (TPTE).
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Figure 9: Histograms of the “self-confidence”measure for each model for the flat density surface with a “good”
detection function. Rows are the models (see Section 4.4) and columns give the design (see Section 4.3). Here
we see generally good behaviour in all models, though the spatial models are slightly positively biased, which
is likely down to model over parametrisation (smooths should be estimated with zero e↵ects, which is hard).
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Figure 10: Histograms of the “self-confidence”measure for each model for the left-right density surface with a
“good”detection function. Rows are the models (see Section 4.4) and columns give the design (see Section 4.3).
In this case for the “zzl” design, most of the e↵ort is concentrated on the higher densities, the low e↵ort side
is where there are fewer animals, as seen in Figure 6, stratification improves things somewhat, though using
the rotated covariates makes the spatial model’s job easier (again there is an issue with model specification,
as we should really only build a model with a smooth of x in this case).
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Figure 11: Histograms of the “self-confidence” measure for each model for the right-left density surface with
a “good” detection function. Rows are the models (see Section 4.4) and columns give the design (see Section
4.3). Here the “zzl” design allocates more e↵ort to the low density areas, as in Figure 7 non-stratified HT
estimation is positively biased, stratification improves this but the spatial models are better able to estimate
the gradient.
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Figure 12: Histograms of the “self-confidence” measure for each model for the flat density surface with a
“bad” detection function. Rows are the models (see Section 4.4) and columns give the design (see Section
4.3). Here we see generally good behaviour in all models (some negative bias across the board, perhaps more
severe for the HT-based methods than Figure 5 would have us believe), though the spatial models are slightly
positively biased (though more spread out than with the good detectability), which is likely down to model
overparamatrisation (smooths should be estimated with zero e↵ects, which is hard).
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Figure 13: Histograms of the “self-confidence” measure for each model for the left-right density surface with
a “bad” detection function. Rows are the models (see Section 4.4) and columns give the design (see Section
4.3). As in Figure 5 we see negative bias in the results, though again this is more extreme for the HT-based
methods for the “zzl” design.
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Figure 14: Histograms of the “self-confidence”measure for each model for the right-left density surface with a
“bad” detection function. Rows are the models (see Section 4.4) and columns give the design (see Section 4.3).
As in Figure 5 we see negative bias in the results, though again this is more extreme for the HT-based stratified
method for the “zzl” design, for the unstratified HT estimate we see positive bias for the “zzl” design as the
model thinks that there is low detectability everywhere and hence underestimates detectability, overestimating
abundance.
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Figure 15: Histograms of the “self-confidence” measure for each model for the flat density surface when the
weather covariate was used to generate data. Here we see generally good behaviour in all models, though
the spatial models are slightly positively biased, which is likely down to model overparamatrisation (smooths
should be estimated with zero e↵ects, which is hard). Rows are the models (see Section 4.4) and columns give
the design (see Section 4.3).
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Figure 16: Histograms of the “self-confidence” measure for each model for the left-right density surface when
the weather covariate was used to generate data. Rows are the models (see Section 4.4) and columns give the
design (see Section 4.3). For the“zzl”design the stratification (which acts as spatial and covariate stratification)
is quite important, giving much better results (again predicated on the correct stratification being selected).
Spatial model results seem reasonable with the notable exception of the Duchon and shrinkage (TPSH) methods
for the “twozigzag” design.
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Figure 17: Histograms of the “self-confidence” measure for each model for the right-left density surface when
the weather covariate was used to generate data. Rows are the models (see Section 4.4) and columns give the
design (see 4.3). Here the “zzl” design allocates more e↵ort to the low density areas, since there are many
detections in the high e↵ort area, the HT estimator overestimates abundance, the stratification improves this
a little but causes underestimation, even including the covariate doesn’t improve things much. We again see
more erratic behaviour from the Duchon and shrinkage smoothers (TPSH) for the “twozigzag” design.
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Figure 18: Histograms of the “self-confidence” measure for each model for the diagonal density surface when
the weather covariate was used to generate data. Rows are the models (see Section 4.4) and columns give the
design (see 4.3). As in Figure 8, the HT-based methods perform poorly, generally overestimating abundance,
the spatial models (now not su↵ering from model overparamatrisation) perform very well, exhibiting the
“conservative” behaviour referred to in Figure 4.
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