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ABSTRACT

The performance of the Gray Whale SLA is evaluated based on an operating model conditioned on available information for the eastern North
Pacific stock of gray whales including: survey estimates of 1+ abundance; calf counts; strandings data; and the extent of sea-ice in the feeding
grounds in the Bering Sea in the early season. Multiple scenarios are considered in the analyses to explore the impact of different sources of
environmental variation, including scenarios in which future environmental forcing and episodic events are driven by the relationships between
reproductive success and survival to sea ice. A variety of sources of uncertainty are considered, including parameter uncertainty, the uncertainty
about the relationship between the extent of sea-ice and population dynamics, and observation error. The impact of these sources of uncertainty on
the performance of the Gray Whale SLA is small. For all scenarios considered in the simulations, application of the SLA results in the stock being
at or near carrying capacity at the end of a 92 year projection period for which sea-ice cover forecasts are available, while still satisfying the needs
of aboriginal whalers. 
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grounds in the Bering Sea in the early season (Perryman et
al., 2002). 

Accordingly, in this paper the performance of the Gray
Whale SLA is tested given scenarios when future population
dynamics are subject to environmental forcing and episodic
events, using an operating model that integrates these sources
of new information and the hypothesis of environmental
forcing on the population dynamics (Brandon and Punt,
2009). A forecast of relevant sea-ice conditions based on
global climate model output (Overland and Wang, 2007) is
used to modify the future stochastic birth and survival rates
generated when testing the SLA, given the estimated
relationships of calf production and strandings data to
observed variations in recent sea-ice. This technique involves
the incorporation of climate-model-based forecasts into the
operating model. The same basic framework is also being
used to test the performance of alternative management
approaches in other fisheries (e.g. Gulf of Alaska and Eastern
Bering Sea walleye pollock, Theragra chalcogramma; A’mar
et al., 2009; Ianelli et al., 2011).

Standard summary statistics are provided for the trials
investigated here, and these are compared to results from the
Evaluation Trials provided by Punt and Breiwick (2008) to
the extent possible. The analyses presented here should help
to ensure that the anticipated performance of the current
Gray Whale SLA remains satisfactory (or else provide insight
into potential weaknesses), given the new information that
has become available since the phase of testing and adoption
reported in IWC (2005a). 

METHODS

Operating model

The population dynamics model developed by Brandon and
Punt (2009) (corresponding to their ‘Full’ scenario) was used
as the operating model. This model is sex- and age-based,
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INTRODUCTION

The IWC has established a procedure (an ‘Implementation’)
to provide scientific advice on catch limits for different
whale stocks (e.g. IWC, 2012). The eastern North Pacific
(ENP) population of gray whales is currently subject to
aboriginal hunting, with recommended strike limits based on
the Gray Whale Strike Limit Algorithm (Gray Whale SLA)
under the Aboriginal Subsistence Whaling Management
Procedure (AWMP) of the IWC (IWC, 2003).
Implementation Reviews are scheduled under the AWMP
every five years. The goal of Implementation Reviews is 
to evaluate new information that has become available 
since the last Implementation Review (or the original
Implementation), inter alia to determine whether the current
state of nature is outside the realm of plausibility envisioned
during the simulation testing of the original SLA. If this is
the case, additional simulation trials may be conducted to
assess whether the anticipated performance of the SLA
adopted remains reasonable, and if not, what changes to the
SLA are needed.

New or updated sources of information pertaining to the
population dynamics of ENP gray whales have become
available in recent years, including: (1) new abundance
estimates (Rugh et. al., 2008); (2) new estimates of calf
production during 1994–2008 from the northbound
migration at Point Piedras Blancas, California (Perryman et
al., 2002; Perryman, unpublished data); and (3) the number
of stranded animals on the coasts of California, Oregon and
Washington states, for which a combined annual count is
available for 1975–2006 (Brownell et al., 2007). The last
data source potentially contains information on the
magnitude of the mortality event during 1999/2000 (Gulland
et al., 2005). In addition to these data sets, it has been
hypothesised that observed variability in the calf counts is a
function of the amount of sea-ice covering the feeding



with an annual time-step. The dynamics include stochastic
birth and survival rates, and explicitly consider the transition
between receptive and calving stages for mature females
(Fig. 1). For consistency, the notation of Brandon and Punt
(2009) is adopted below. 

Density dependence was assumed to act through the birth
rate according to a Pella-Tomlinson function of 1+ depletion:

where bmax is the maximum birth rate (in the limit of zero
population size); K1 is the carrying capacity in terms of the
1+ component of the population (all animals aged 1 year 
and older)1; beq is the equilibrium birth rate at carrying
capacity; z is the degree of density-dependent compensation
(assumed to equal 2.39, which implies maximum sustainable
yield at a population size approximately 60% of K1, 
the conventional value for MSYL assumed for whale
populations, e.g. IWC, 2005a); and N1+,t is the size of the 1+
component of the population (both sexes combined) at the
start of year t.

Selectivity was assumed to be knife-edged and uniform
for ages 5+, catches were assumed to be taken at the start of
the year, before natural mortality, and the population
trajectories were initialised in 1930, under the assumption of
a stable-age-distribution given some level of hunting
mortality in 1930 (as in Brandon and Punt, 2009). Process
error after 1930 ensures that the age-structure by the time
data are available is non-equilibrium. 

Deviations from expected birth and survival rates were
allowed to be functions of sea-ice variability in the Bering
Sea. Thus, the operating model is an adaptation of the
hypothesis that the variability in calf production the
following year may be related to the amount of sea-ice in the
Bering Sea early during the feeding season (Perryman et al.,
2002). Birth rates were assumed to vary annually about the
deterministic value given by Equation (1). Since this rate
must lie between zero and one, its realisation in any one year
was calculated using a logistic transformation: 

bt = max 0,  beq + (bmax � beq ) 1�
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Where Φ–1 is the inverse standard normal cumulative
distribution function; εt is the process error deviation for year
t , εt ~ N(0;σε

2), σε is a measure of the extent of variability in
process error and; allows for additional process error in the
birth (and survival) rate during years with extraordinary
dynamics, such as 1999 and 2000 (in other years before
2009, this parameter was set equal to zero; see below for how
future catastrophic events are generated). This formulation
of stochastic birth rates (e.g. the 2.76 factor) ensures that 
the expected birth rate in a given year equals the
deterministic value from Equation (1) (see Appendix A of
Brandon and Punt, 2009). The form of Equation (2) (and (3))
is such that ‘positive’ catastrophic events can lead to very
high survival and birth rates (where the maximum birth rate
is bounded by 0.99). However, it should be noted that
Equation (2) only applies to receptive females and that a high
birth rate in one year will result in a decrease in receptive
females and hence a lower pregnancy rate the following year
(Fig. 1).

Survival rates were also allowed to vary annually with the
same process error deviations as birth rates to reflect the
assumption that survival and birth rate covary. The effects
of process error on survival and birth rate are assumed to be
the same in the absence of data to distinguish these sources
of process error. It was assumed that process error in survival
rates were independent of sex and perfectly correlated
between ages in a given year, so that:

where S*
a,t is the realised age-specific survival rate during year

t; and Sa is the expected survival rate from age a to age a+1. 

Conditioning

The operating model was conditioned on available data,
including: (1) estimates of population size during 1967–2006
(covering the years of surveys) from the southbound
migration at Granite Canyon, California (Rugh et al., 2005;
2008); (2) estimates of calf production during 1994–20082

from the northbound migration at Point Piedras Blancas,
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1 Strictly, K1+ is only the carrying capacity in the deterministic case (no
fluctuations in birth rate and no catastrophic events). It should be interpreted
here as a parameter which relates to stochastic carrying capacity. The latter
could be defined as the average long-term population size in the absence of
catches.

2 The two early estimates of calf production during 1980–1981 (Poole, 1984)
were not used in these analyses.

Fig. 1. Life cycle graph of the model used to track the number of females in each reproductive stage though
time. This life cycle refers to the underlying deterministic model, with transition probabilities shown as
functions of life history parameters. However, it should be noted that the birth and survival rates were
modified to be stochastic in the all analyses except for ‘H0’. The arrow from immature to calf arises
because some immatures may mature and give birth (i.e. become pregnant at first estrous) during the
projection interval from time t to t+1. 



California (Perryman et al., 2002; Perryman, unpublished
data); (3) the number of stranded animals on the coasts of
California, Oregon and Washington states, for which a
combined annual count is available for 1975–2006
(Brownell et al., 2007)3; and (4) estimated sea-ice area cover
in the Bering Sea, averaged over March and April during
1953–2008, as calculated by the Hadley Center for their sea
ice and sea surface temperature data set version 1
(‘HadSST’) (Rayner et al., 2003) (see Fig. 2, left panel). The
conditioning process involves fitting the operating model to
the data and estimating posterior distributions from the basis
for probabilistic projections of future population dynamics.

The deviations of birth and survival rates about the
deterministic relationship each year were allowed to be
related to an environmental index It (the amount of sea-ice
covering the Bering Sea) during the conditioning. It was
assumed that It was measured subject to observation error
(or there was some error in the relationship between the
process error deviations and the environmental index).
Consequently, It was a state variable, like the model
prediction of population size. Hence, the measurements of
the environmental index were treated as data and were
consequently included as a component of the likelihood
function when the model was fit. The expected
environmental index in a given year was assumed to be
related to process error residuals for that year, such that the
observed index was normally distributed about its
expectation:

where It
obs is the observed value of the environmental index

in year t; β is a scaling parameter for the influence of the
environment on the process error residuals; γt the difference
between the observed and model-predicted amount of sea ice

It
obs

= �� t + � t (4)

in year t, such that γt ~ N(0;σI
2); and σI is the standard

deviation of the residual error for the environmental index:

This formulation takes a fixed input value for (assumed to
be 0.30 for these analyses, corresponding to the ‘Full’ model
of Brandon and Punt, 2009) and scales the expected standard
deviation of the fits to the environmental index by the
estimated absolute value for β.

Future projections

Once the operating model was conditioned on the available
data, it was possible to project simulated population
trajectories into the future. Each forward projection was
initialised in 2009, based on the estimated status of the
simulated population and the parameter values (e.g. K1+, bmax

etc…) for a given trajectory from the joint Bayesian posterior
distribution. The posterior was constructed using the MCMC
algorithm during the conditioning phase (Brandon and Punt,
2009). 

Future values for the sea-ice index were based on an
ensemble mean forecast of sea-ice in the Bering Sea (March–
April average) (Overland and Wang, 2007). The trials were
based on a 92-year time horizon (T = 92), because the time
series of forecasted sea-ice was only available until 2098. In
a given year, the process error deviations about the expected
birth and survival rates were a function of forecasted sea-ice
according to: 

where It
obs is the forecasted value of the sea-ice index for year

t (Fig. 2, left panel); and γt ~ N(0;σI
2)

Future abundance estimates were assumed to become
available every 10 years. Observation error was assumed to
be log-normal:

� t = It
obs �( )� � t (6)

� I =
 | � |� I

* (5)

N1+,t

obs
= N1+, t e

�t (7)
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3 Data on strandings are collected in other locations (e.g. Mexico and
Alaska), but the stranding network effort in California, Oregon and
Washington has been more consistent over time.

Fig. 2. Left panel: The standardised index for the March–April average sea-ice area covering the Bering Sea. The vertical dashed
line denotes 2009 and the start of that portion of the time series which is based on the ensemble global climate model mean
predictions provided by Overland and Wang (2007). Prior to 2009, the time series is based on the HadSST observations of sea-
ice (Rayner et al., 2003). The horizontal dashed line at zero is shown for reference; positive values indicate years with greater
than average sea-ice over the entire time period and vice versa. Right panel: The distribution for the probability of a future
catastrophe in any one year. This distribution is conditioned on the number of years for which the depletion of each trajectory
is greater 0.40 during 1930–2008, divided by 2 (the number of years with observed catastrophes, corresponding to 1999 and
2000) (Brandon and Punt, 2009). The dashed vertical line denotes the probability as calculated from the strandings index
(Brownell, et al., 2007).



where Iobs
1+, t is the survey estimate of 1+ abundance for year 

t; N1+, t is the ‘true’ 1+ abundance at the start of year t; 
φt ~ N(0;σ 2); where σ = √ C—–V 2

est+ CV 2
addA; CVaddA is the extent 

of additional error about the abundance estimates (sampled
from the joint posterior), and; C—–Vest is the expected (sampling)
standard deviation of the logarithm of Nobs

1+, t:

where y indexes years for which there are survey data up to
2008; CVy is the sampling CV associated with the abundance
estimate for year y; and Y is the total number of years with
past surveys. The estimates of abundance and C—–Vest (as
distinct from σ) were passed to the SLA. No attempt was
made to account for further estimation error in the abundance
estimates (i.e. mean school size estimation error calculations
were ignored). 

Need4

The annual need Qt for year t was calculated according to
the ‘need envelope’:

where Q2009 (= 150) is the present need; and Q2098 is the final
need (in year 2098). The level of need supplied to the SLA
was the total (block) need for the 5-year period for which the
strike limits were to be set. Two values were assumed for
final need (in year 2098), corresponding to the ‘base case’
(Q2098 = 340) and ‘high need’ (Q2098 = 530) trial levels used
in previous testing of the SLA (IWC, 2003).

Trials

The set of trials is listed in Table 1. In addition to the two
levels of final need, six scenarios were explored with respect
to p*, the future probability (if any) of catastrophic (otherwise
known as ‘episodic’) events, and the nature of stochastic (or
deterministic) population dynamics.

(1) (H0) Deterministic population dynamics with no future
catastrophic events5; 

(2) (H1) Environmental stochasticity (as a function of sea-
ice) with no future catastrophic events; 

(3) (H2) Environmental stochasticity (as a function of sea-
ice), with probability of future catastrophic events
conditioned on the stranding index (0.0625, the
proportion of years for which an episodic event was
observed, divided by the total number of years in the
strandings index (2yr/32yr) (Brownell et al., 2007));

(4) (H3) Environmental stochasticity (as a function of sea-
ice) with the probability of future catastrophic events
conditioned on the percentage of times they occurred
during the fitting process when 1+ depletion was greater
than 0.40 (Eqn. 9; Fig. 2 right); 

Qt =Q2009 +
t � 2009

91
Q2098 �Q2009( ) (9)

CV est =
1
Y CVy

2

y=1

Y

� (8)

(5) (H4) As for H3, but the environmental stochasticity was
independent of the sea-ice index, i.e. simply εt ~ N(0,σε

2);
and 

(6) (H5) As for H4 but with no future catastrophes. 

A depletion level of 0.40 during the conditioning phase
was used for calculating the probability of future episodic
events for scenarios H3 and H4 because the population
almost always recovers to 40% of carrying capacity by when
the catastrophes occur. The probability of future catastrophes
p* conditioned on the percentage of times they occurred
during the fitting process when 1+ depletion was greater than
0.40 was then: 

where I() is the indicator function. Hence, a future year was
determined to be either normal (εadd = 0) or catastrophic by
drawing a random variate from a Bernoulli distribution with
probability p* for these scenarios if the 1+ depletion was
greater than 0.40. Future catastrophic years were modelled
through the inclusion of the estimated εadd parameter into
Eqn. 2 and 3 for birth and survival rates during those years
(Fig. 2, right). 

No attempt was made to model correlation between years
with catastrophes, i.e. the probability of a catastrophe
occurring did not depend on the whether or not there was
one the previous year. 

Performance statistics

The performance statistics were calculated based on future
block quotas returned from the standalone version of the
‘GUP2’ SLA (IWC, 2005b; Punt and Breiwick, 2008). All
performance statistics were computed in terms of the age 1+
component of the population following the standard methods
and notation of the AWMP (IWC, 2003). Specifically, four
performance statistics were calculated:

(1) (D1) Final depletion: N1+,2098/K1+;

(2) (D8) Rescaled final population size: N1+,2098/N*
1+,2098,

where N1+,2098 is the 1+ population size in 2098, under a
scenario of zero future catches; 

(3) (D10) Relative increase: N1+,2098/N1+,2009; and 

where T is the number of years in the projection period; and
Ct is the catch during year t, which is determined by the SLA
through the 5-year block quota system.

RESULTS

1,601 simulations were run for each scenario, corresponding
to the number of samples from the posterior provided by
Brandon and Punt (2009). In general, the Gray Whale SLA
was able to satisfy need and maintain a population size near
carrying capacity for all of scenarios examined in these
analyses. For example, all of the scenarios with base need
had an average need satisfaction of 100% and the lowest
median final 1+ depletion was 0.874 (Table 2). Not

(4) (N9) Average need satisfaction: 
1

T

Ct

Qtt=2009

2098

�  

p
*
= 2 I(N1+, t / K > 0.4)

t=1930

2008
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�
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4 This is the number of whales a country or the Commission specifies is
required to satisfy cultural and subsistence ‘needs’ before taking the
conservation situation into account
5 The two deterministic trials are most comparable with the base case
operating models in IWC (2004).



surprisingly, those scenarios based on higher final need
resulted in lower final depletion levels and lower average
need satisfaction. However, the differences were not large
(e.g. the lowest median 1+ depletion for the high need
scenarios was 0.817). Moreover, none of the scenarios
resulted in a lower 5th percentile for the final 1+ depletion
less than 0.60. The relative increase statistic (D10) was close
to 1 for all scenarios. The increase in population size is
somewhat constrained because even under decreases in ice
cover, Eqn. 1 still imposes an upper bound on abundance. 

The distribution of probabilities of future catastrophes for
the ‘H3’ and ‘H4’ scenarios is shown in Fig. 2 (right panel).
The probability of future catastrophe ranged between 0.025
and 0.222 for those scenarios, with a median of 0.043, which
was less than that when conditioned on the stranding index.
However, the average difference between these two

approaches was relatively small, as evidenced by the nearly
identical results for these two assumptions (Table 2; Fig. 3). 

The predicted area of sea-ice on the Bering Sea feeding
grounds is forecast to decrease dramatically, with less than
50% of the average observed area of sea-ice in March–April
during future decades (Fig. 2, left panel; Overland and Wang,
2007). The scenarios H1, H2, and H3 with population
dynamics that are a function of this sea-ice index resulted in
the most optimistic outcomes (Table 2), with some final
depletion levels slightly greater than 1.0. On the other hand,
the two scenarios that modelled generic environmental
stochasticity independent of sea-ice (H4 and H5) resulted in
the most pessimistic final depletion levels of any of the
scenarios investigated (Table 2). Likewise, the trend in
process error deviations was very different between these
two sets of scenarios. Those scenarios which modelled
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Table 1 

The scenarios considered. The trials are denoted by an ‘H’ followed with the trial number and then ‘BN’ or ‘HN’ for base or high final need. Descriptions 

are given for each scenario in terms of the stochastic or deterministic nature of the population dynamics and the probability of future catastrophes. 

Trial Description  Final need 

Probability of future 
catastrophe Future stochasticity 

H0:BN Deterministic + no future catastrophes N/A 340 0 None (deterministic) 

H1:BN Environmental stochasticity + no future catastrophes 0.5 340 0 Environmental 

H2:BN Environmental stochasticity + p(future catastrophe) = 0.0625 0.5 340 0.0625 Environmental 

H3:BN Environmental stochasticity + p(future catastrophe) = p* 0.5 340 p* (Eqn. 10) Environmental 

H4:BN Stochasticity (no sea-ice) + p(future catastrophe) = p* 0.5 340 p* (Eqn. 10) Environmental (no sea-ice) 

H5:BN Stochasticity (no sea-ice) + no future catastrophes 0.5 340 0 Environmental (no sea-ice) 

H0:HN Deterministic + no future catastrophes N/A 530 0 None (deterministic) 

H1:HN Environmental stochasticity + no future catastrophes 0.5 530 0 Environmental 

H2:HN Environmental stochasticity + p(future catastrophe) = 0.0625 0.5 530 0.0625 Environmental 

H3:HN Environmental stochasticity + p(future catastrophe) = p* 0.5 530 p* (Eqn. 10) Environmental 

H4:HN Stochasticity (no sea-ice) + p(future catastrophe) = p* 0.5 530 p* (Eqn. 10) Environmental (no sea-ice) 

H5:HN Stochasticity (no sea-ice) + no future catastrophes 0.5 530 0 Environmental (no sea-ice) 

 

Table 2 

The medians, and upper and lower 5th percentiles of the performance statistics for each scenario. See text for the definitions for each of the performance 

statistics. 

  D1: 
Final 1+ depletion 

 D8: 
Rescaled 1+ depletion 

 D10: 
1+ relative increase 

 N9: 
Avg. need satisfaction 

Trial Description 5% Median 95% 5% Median 95% 5% Median 95% 5% Median 95% 

H0:BN Deterministic + no future 

catastrophes 

0.908 0.933 0.950 0.875 0.918 0.948 0.947 0.986 1.095 1.000 1.000 1.000 

H1:BN Environmental stochasticity +  

no future catastrophes 

0.940 0.981 1.030 0.910 0.965 1.019 0.973 1.041 1.179 1.000 1.000 1.000 

H2:BN Environmental stochasticity + 

p(future catastrophe) = 0.0625 

0.914 0.974 1.026 0.886 0.959 1.016 0.954 1.032 1.158 1.000 1.000 1.000 

H3:BN Environmental stochasticity + 

p(future catastrophe) = p* 

0.922 0.976 1.027 0.896 0.961 1.017 0.960 1.034 1.167 1.000 1.000 1.000 

H4:BN Stochasticity (no sea-ice) +  

p(future catastrophe) = p* 

0.745 0.874 0.953 0.731 0.861 0.945 0.807 0.932 1.050 1.000 1.000 1.000 

H5:BN Stochasticity (no sea-ice) + no 

future catastrophes 

0.802 0.897 0.960 0.775 0.883 0.954 0.846 0.952 1.066 1.000 1.000 1.000 

H0:HN Deterministic + no future 

catastrophes 

0.855 0.899 0.927 0.833 0.884 0.921 0.913 0.950 1.038 0.971 0.980 0.988 

H1:HN Environmental stochasticity +  

no future catastrophes 

0.913 0.963 1.017 0.889 0.946 1.006 0.951 1.022 1.156 0.974 0.981 0.988 

H2:HN Environmental stochasticity + 

p(future catastrophe) = 0.0625 

0.880 0.954 1.011 0.858 0.937 1.001 0.927 1.011 1.132 0.973 0.981 0.988 

H3:HN Environmental stochasticity + 

p(future catastrophe) = p* 

0.894 0.957 1.013 0.868 0.941 1.002 0.932 1.015 1.138 0.973 0.981 0.988 

H4:HN Stochasticity (no sea-ice) + 

p(future catastrophe) = p* 

0.657 0.817 0.917 0.649 0.805 0.909 0.725 0.873 0.989 0.959 0.979 0.987 

H5:HN Stochasticity (no sea-ice) + no 
future catastrophes 

0.722 0.847 0.927 0.707 0.834 0.921 0.776 0.901 1.013 0.964 0.980 0.988 

 



process error as a function of future sea-ice resulted in an
increasing trend in the size of process error deviations, while
those scenarios which modelled environmental stochasticity
as an independent process led to no such trend (Fig. 4).
However, in terms of the median average need satisfaction,
there was essentially no difference amongst all the scenarios;
the SLA was able to achieve high need satisfaction for all of
those examined here (Table 2). 

The results of the ‘deterministic’ trials (H0) were more
optimistic than those of the corresponding trials on which
the Gray Whale SLA was based (GE01 and GE14) (compare
table 2 of Breiwick et al. (2009) with the results for the two
H0 trials in Table 2 of this paper). However, the differences
in the values for the performance statistics are slight, and
qualitatively the results of trial H0 and GE01 are identical.
The differences in results are attributable to a variety of

causes, including differences in the population dynamics
models, in the data used to condition the operating model,
and in the priors for the parameters of that model.

DISCUSSION

The approach taken here allows a forecast for an index of
environmental variability to be incorporated into an
operating model, which can be used to test management
approaches given hypothesized interactions between the
environment and population dynamics. These trials differ
slightly from the standard set designed by the Standing
Working Group of the AWMP during the original
Implementation of the Gray Whale SLA (IWC, 2005a) in that
they are conditioned on updated and newly available data,
as well as a hypothesis regarding the effect of sea-ice on
deviations in demographic rates. Hence, these analyses serve
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Fig. 3. Time-trajectories of future catches (first and third columns) and population trajectories from 1930–2098 (second and fourth columns) for the twelve
scenarios (Table 1). The left and right pairs of columns are respectively for a final need levels of 340 and 530 whales per year. The results for each simulation
are plotted as an individual line (thus a single visible line for catches represents a series of years where future catches were identical across scenarios). 



to take account of new information that has become available
since the original Implementation. The results provide
evidence that the current state of nature is not outside the
realm of plausibility envisioned during the simulation testing
of the original SLA. 

The magnitude of future additional mortality events was
assigned in an ad hoc manner during the original
Implementation of the Gray Whale SLA, i.e. future events
were assumed to result in 20% declines in abundance (a likely
large value, chosen to test the robustness of the SLA). In these
analyses however, the operating model is conditioned in part
on the strandings data, which allows the deviations in survival
rates during the 1999/2000 mortality event and the resulting
population size at the start of the future trajectories to be
estimated directly. Likewise, the observed frequency and
magnitude of those mortality events determined when
conditioning are used to model the potential impact of future
events. A set of several alternative trials was also preformed,
to compare the results of the environmental forcing scenario
to those for which future population dynamics were assumed
to be deterministic, or to be subject to random environmental
stochasticity (i.e. ignoring possible sea-ice impacts). For all
of the scenarios considered here, the Gray Whale SLA was
able to maintain stock size and satisfy need at higher levels.
Therefore, there is no indication from these analyses that any
revisions to the SLA are necessary. 

While the SLA performed well under the scenarios
considered in these analyses, there is still considerable
uncertainty about how changes in sea-ice (or other
environmental conditions) will affect future population
dynamics. At present, the available information about the
affects of environmental variability on cetacean population
dynamics is largely correlative in nature, with the underlying
mechanisms responsible for fluctuations in birth and survival
rates not well understood. Although a plausible explanation
has been hypothesised for ENP gray whales (i.e. that sea-ice
may act as a physical barrier to prime feeding habitat), it is
not straightforward to predict how other changes resulting
from reductions in sea-ice will interact with the mechanisms
that are currently influencing the dynamics of this
population. Therefore, the conclusion that the Gray Whale

SLA is robust to predicted changes in sea-ice should be
tempered by uncertainty regarding the underlying
assumption that current ecological processes will remain
unchanged in the future, especially when so many other
fundamental changes in ecosystems are expected as a result
of climate change. Indeed, this one is one of the reasons
Implementation Reviews are mandatory.

The assumption that the population dynamics were related
to sea-ice led to more optimistic results. This was essentially
the result of extrapolating (based on those years for which
calf production and strandings data exist) a recent
relationship between the environment and population
dynamics into the future, under the assumption that such an
effect (if it exists) would be invariant over time and
independent of population density, among other factors.
While more optimistic results would have been expected
given the nature of the relationship between calf production
and sea-ice cover, the magnitude of the effect could not be
determined a priori. In addition, it was possible that the
impact of trends in birth rate and survival could have
‘confused’ the SLA and led to poorer performance (e.g. the
models underlying the SLAs could have concluded that the
stock was depleted rather than close to carrying capacity)
and reduced the strike limit.

The operating model used here could be modified to take
into account alternative hypotheses with respect to predicted
changes in the relationship between future environmental
variability and population dynamics. For example, it would
be relatively straightforward to model a change-point in 
the relationship between deviations in demographic rates 
and sea-ice, such that a loss of sea-ice might be beneficial
up to some future time, after which the continued loss of sea-
ice results in negative effects on population dynamics (e.g.
by changing the sign of β after some future year). The
operating model could then be used to test the performance
of the SLA under such scenarios. A disadvantage of this
approach would be that there are no data to determine the
magnitude of negative effects, so any results would be
speculative. 

One of the appealing attributes of the framework for
incorporating environmental data is its flexibility. As
continuing research provides more insight into the
mechanisms underlying the impacts of environmental
variability on the population dynamics of ENP gray whales,
the basic operating model used here can provide a basis for
integrating this new information into assessments and
evaluating alternative management approaches. For example,
alternative environmental data (e.g. an index of El
Niño/Southern Oscillation, a sea-ice index on the Chukchi
Seas feeding grounds, or some weighted combination 
of different indices) could be substituted during the 
model fitting process to take alternative hypothesised
relationships between environmental variability and
population dynamics into account. Likewise, the framework
could, with some modification, be applied to other
populations of cetaceans for which environmental
fluctuations are hypothesised to be an important determinant
of population dynamics. Therefore, this framework should
help to ensure that management strategies are robust to
hypothesised impacts of future environmental variability on
cetacean population dynamics.
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Fig. 4. The time-trajectories of future process error deviations for a case
where these deviations are a function of future sea-ice (H1:BN; left panel)
and where they are independent of the sea-ice index (H5: BN; right
panel). The annual median is plotted as the solid line, the 90% probability
interval envelope is shaded in gray, and the horizontal dashed line at zero
is shown for reference. 
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