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Abstract 21	

Quantifying the distribution and abundance of wildlife is key for developing sound 22	

management and conservation plans. Throughout the last decades much effort has been 23	

invested into freshwater dolphin surveys in the Amazon and Orinoco basins. However, 24	

the large dimensions of the river systems, the complex and expensive logistics required, 25	

and the lack of funds limit the replication of such studies across the entire region. As a 26	

response, we evaluated the effectiveness of the use of UAVs in the detection of two 27	

Amazon dolphin species, Sotalia fluviatilis (tucuxi) and Inia geoffrensis (pink river 28	

dolphin). This study has demonstrated that the use of UAVs can improve population 29	

estimates of Amazon river dolphin species that are traditionally carried out through 30	

visual surveys. The use of UAVs could provide a less expensive method, be more 31	

accurate and record more dolphin groups and individuals than visual surveys. 32	

33	
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Introduction 34	

 35	

River dolphins are a particularly vulnerable group of exclusively freshwater 36	

mammals, distributed in certain South American and Asian deltas and rivers (Vidal et 37	

al. 1997; Sanderson et al. 2002; Smith and Reeves 2012) with the largest populations on 38	

the planet living in the Amazon and Orinoco basins. These populations have been 39	

threatened by interactions with commercial and artisanal fisheries (Mosquera-Guerra et 40	

al. 2015b; Williams et al. 2016), the growing number of hydroelectric dams in Brazil, 41	

Peru and Bolivia (Trujillo et al. 2010; Pavanato et al. 2016; Latrubesse et al. 2017), 42	

mercury contamination (Rosas and Lehti 1996; Gómez et al. 2008; Mosquera-Guerra et 43	

al. 2015a, c; Williams et al. 2016), habitat degradation (Utreras et al. 2013), and 44	

climate change through changes in flood pulse and consequently food availability 45	

(Mosquera-Guerra et al. 2015b). 46	

Although conservation plans have been developed for the Amazon river 47	

dolphins (Trujillo et al. 2010, 2014; Utreras et al. 2013), they have been hampered by 48	

the lack of knowledge about ecology, distribution and behaviour of those species. 49	

Quantifying the distribution and abundance of wildlife is key for developing sound 50	

management and conservation plans (Trujillo et al. 2010; Goebel et al. 2015; Gonzalez 51	

et al. 2016; Adame et al. 2017). For this reason, throughout the last decades much effort 52	

has been invested into freshwater dolphin surveys in the Amazon (Vidal et al. 1997; 53	

Gómez-Salazar et al. 2010, 2011a; Gómez-Salazar 2012; Pavanato et al. 2016, in 54	

press).                 However, the large dimensions of the river systems in the Amazon, the 55	

complex and expensive logistics required, and the lack of funds limit the replication of 56	

such studies across the entire region. Current methodology is highly based on distance 57	

sampling, originally developed for marine species. However, the specific characteristics 58	

of a freshwater river system imposes the need to adapt the traditional method to take 59	

into account, for example, the fact that the horizon is not seen, meanders are a common 60	

feature of Amazonian systems, and a range of habitats is available for distribution and 61	

sampling (e.g., islands, channels, oxbow lakes). Furthermore, distribution of river 62	

dolphin species is highly heterogeneous with preferences for specific habitats such as 63	

confluences, lakes and channels (Gómez-Salazar et al., 2011) requiring different 64	

research methodologies. 65	

 66	
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In order to address these issues, researchers agreed on the importance of 67	

improving survey techniques to estimate the distribution and density of freshwater 68	

wildlife species (Perrin et al. 1989; Vidal et al. 1997), including the adoption of 69	

innovative approaches and technologies for data collection (Anderson and Gaston 2013; 70	

Mulero-Pázmány et al. 2014). Recent developments in the industry of Unmanned Aerial 71	

Vehicles (UAVs or drones) have been increasingly recognized as a game changer for 72	

environmental monitoring (Hardin and Hardin 2010; Getzin et al. 2012; Koh and Wich 73	

2012; Mulero-Pázmán et al. 2014; Chabot and Bird, 2015; Linchant et al. 2015; 74	

Gonzalez et al. 2016; Hodgson et al. 2016; Adame et al. 2017), including surveys on 75	

aquatic mammals (Jones et al. 2006; Koski et al. 2009; Martin et al. 2012; Hodgson et 76	

al. 2013, 2017; Goebel et al. 2015; Durban et al. 2016). Animal detection is claimed as 77	

the first step for accessing the feasibility of the UAVs for studying wildlife species 78	

(Hodgson et al. 2017). Therefore, the aim of our study was to evaluate the effectiveness 79	

of the use of UAVs in the detection of two Amazon dolphin species, Sotalia fluviatilis 80	

(tucuxi) and Inia geoffrensis (pink river dolphin). 81	

 82	

Material and Methods 83	

 84	

Over six days in November 2016, we conducted river dolphin sampling in the 85	

Juruá River, Amazonas state, Brazil (Fig. 1). Two small off-the-shelf quadcopters (DJI 86	

Phantom 3 and Phantom 4) were deployed in turns, taking off and landing from the 87	

upper deck of a regional Amazonian boat traveling at a constant speed. Drones were 88	

positioned at a fixed altitude of 20 m above water level and 50 m from the side of the 89	

vessel, in order to monitor a 100-m strip band to the river margin (Fig. 2A). 90	

The UAVs were controlled remotely by the pilot using live video. At least two 91	

flights were carried out per hour between 6 am and 6 pm, totalling 41 flights with 92	

duration of 10 minutes each. The videos were recorded using 12 megapixel, 35 mm, 93	

f/2.8 Sony cameras positioned at an approximate angle of 35º to the water surface. The 94	

camera was set up for automatic adjustment of ISO, shutter speed, and diaphragm 95	

aperture. In order to access the UAV detectability performance, a boat-based survey was 96	

simultaneously performed. 97	
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 98	

Figure 1. A. Location of site within the Amazon region where field expeditions for dolphin 99	

abundance estimation in association with drones were conducted in 2016; B. Detail of 100	

study site showing sampled stretches within the Juruá River. 101	

 102	

 103	

We used a 23-m long, 5.4-m wide double decker with two observation platforms 104	

positioned 8 m above water level. There were three observers at the bow and two at the 105	

stern of the boat. In both platforms, there was one (additional) data recorder. The 106	

observers were actively searching for dolphins from 90° to 10º from their perspectives, 107	

positioned at port and starboard sides of the vessel. The vessel navigated at an average 108	

speed of 10 km/h, following the line transect sampling protocol (Gómez-Salazar et al. 109	

2012) with a combination of 2.5-km long transects, placed 100 m parallel to the river 110	

margin (with an equivalent 100 m to the other side of the boat) and cross-channel 111	

transects, crossing from one margin to another in a zig-zag pattern (Vidal et al. 1997; 112	

Martin and da Silva 2004; Martin et al. 2004; Gómez-Salazar et al. 2012). 113	

For each sighting, the observers reported the species, the group size, presence of 114	

calves, the sighting angle related to the trackline, the estimated distance from the 115	

observer to the center of the dolphin group and from them to the margin. The type of 116	

river margin that the group was associated with (highland, floodplain, floating grass or 117	

beach), the type of environment (stratum: main river, tributary, channel, lake, island), 118	

and GPS location were registered. 119	
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 120	

Figure 2. A. Illustrative representation of position of boat and drone under survey 121	

conditions (not to scale); B. Pink river dolphin detected by the drone; C. Detail of the 122	

animal (Inia geoffrensis) detected. 123	

 124	

At first, footages were systematically and independently analysed by three 125	

experienced river dolphin observers on 15-17 inch computer screens. After this first 126	

step, three observers watched the videos systematically and simultaneously on a 50-inch 127	

screen. The drone-generated detections were then compared with the data generated by 128	

the boat-based survey. Thus, information regarding the time of sighting and dolphin 129	

location – both in the footages and in the records from observers - such as angle of 130	

sighting, distance from the margin and distance from the boat were fundamental for 131	

comparisons. 132	

 133	

 134	

Results 135	

 136	

The UAVs detected 124 animals, while 175 animals were recorded by visual 137	

counting (Fig. 3A). Considering the number of observations (groupings of individuals 138	

sighted), in total 151 observations were made. On-board observers registered 119 139	

observations of which 76 were confirmed by the UAV platform. On the other hand, the 140	

UAV platform registered 108 observations, of which 32 were exclusively made by this 141	

platform, with no confirmation by the observers. 142	

 143	
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A B 

 144	

Figure 3. A. Variation between the number of animals detected by each platform; B. 145	

Variation in the number of observations made by UAV, Visual counting and both 146	

combined. 147	

 148	

A total of 68 km of the Juruá River was monitored using the two platforms 149	

(visual counting and UAV). Seven hours of footages were recorded and differentiating 150	

between species using the analysed images was relatively simple (Fig. 2B, C). 151	

 152	

 153	

Discussion 154	

 155	

Much of the difference in counts between the two methods was due to the 156	

limited range of the camera attached to the drone. The maximum distance for animal 157	

detection was approximately 100 m, while the sightings by the observers were made up 158	

to 300 m from the boat. In the records in which the animals were not clearly visible, 159	

identification was based on the behavioural differences between species. Due to the 160	

erratic and brief surfacing behaviour (Vidal et al. 1997; Reeves et al. 2000), many 161	

individuals may be missed or else double-counted with either method applied here 162	

(Fürstenau Oliveira et al. 2017). 163	

There were important variations in the results obtained through the two screens. 164	

The large screen not only allows the recognition of groups of individuals with greater 165	

acuity, but also facilitates the identification of species through "clues" or behavioural 166	

signals, thus increasing the number of observations through the UAV. 167	
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The footage UAVs produce constitutes systematic and permanent data, which 168	

can be later reviewed for confirmations (Koski et al. 2009; Hodgson et al. 2013; 169	

Linchant et al. 2015; Adame et al. 2017). The aerial survey provided higher accuracy in 170	

counting individuals during the detection of groups. Video analysis was used to confirm 171	

and, sometimes, correct mistaken identifications made through visual survey. The 172	

images captured by the drones also allowed for the correlation between species and use 173	

of habitats with a high degree of precision (Martin et al. 2012). The use of UAVs can 174	

also reduce the bias caused by responsive movement (Dawson et al. 2008).	175	

The small multi-rotor off-the-shelf UAVs were chosen because of their vertical 176	

take-off and landing capability required to operate from a boat in movement, and their 177	

stability in flight. which allows for stable image capturing (Jones et al. 2006; Goebel et 178	

al. 2015; Linchant et al. 2015). However, under strong wind situations, the take-off and 179	

landing operations with the moving boat were challenging. Experienced pilots are thus a 180	

necessity and this should be taken into account in future studies. In addition, it is 181	

recommended that waterproof aerial vehicles be tested, as sudden rainfall or any 182	

equipment failure during operation could compromise data collection should a system 183	

need to make an emergency landing on the river. 184	

Other limitations to this emerging technology becoming a viable alternative are 185	

related to their short flight endurance, sensor resolution and legislation (Linchant et al. 186	

2015; Vincent et al. 2015; Hodgson et al. 2017). However, recent off-the-shelf multi-187	

rotors already have increased flight duration and the rapid advances we are seeing in 188	

sensor, battery, and communications technology make it clear that neither data quality 189	

nor flight extent should be assumed as limited by where we are now (Jones et al. 2006). 190	

Regarding the legislation, in Brazil flights below 400 ft carried out in remote areas 191	

using aircraft duly registered on the national UAV system, and which are controlled 192	

manually through visual line-of-sight do not require any specific authorisation. This 193	

means that the use of UAVs within the flight parameters established for this study 194	

would be simple. 195	

The use of UAVs during the study followed well-defined operational protocols, 196	

including the best practice described in the literature (Hodgson and Koh 2016), in order 197	

to ensure minimal disturbance to wildlife and the safety of operators and researchers. 198	

Experimental flights were carried out in areas around the confluence of rivers. These 199	

areas have high population densities of both species, enabling any interference in the 200	

behaviour of the animals to be evaluated. No signs of disturbance were observed among 201	
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the animals as a result of the operation of the UAVs at altitudes varying from 30 to 10 202	

meters. During the flights at the standard altitude of 20 m, some bird species 203	

demonstrated defensive territorial behaviour and followed the aircraft for varying 204	

amounts of time, although no incidents were registered. Our study also confirmed the 205	

use of drones as an outstanding behavioural observation technique, from which very 206	

detailed information can be extracted (Linchant et al. 2015; Hodgson et al. 2017) for 207	

river dolphin studies. 208	

The use of emerging technology for wildlife abundance surveys generates a 209	

large quantity of data. Manual processing and revision of the collected data is time 210	

consuming and susceptible to human error. Nevertheless, this can be overcome through 211	

automated counting of animals in imagery (Hodgson et al. 2017; Seymour et al. 2017), 212	

which can provide better precision and accuracy (van Gemert et al. 2014; Hodgson et 213	

al. 2016). As yet there is no universal solution for automatically detecting and counting 214	

a wide variety of wildlife species (Chabot and Bird, 2015), requiring solutions to the 215	

particular species surveyed. Furthermore, with the adoption of novel survey approaches, 216	

new statistical methods will be required for population studies (Linchant et al. 2015). 217	

Moreover, because of the thermal signature that mammals have there is also potential in 218	

evaluating whether thermal cameras can capture large river mammals such as dolphins 219	

and whether counting can be automated (Longmore et al. 2017). 220	

             Our study has demonstrated that the use of UAVs can improve population 221	

estimates of Amazon river dolphin species that are traditionally carried out through 222	

visual surveys. The use of UAVs could provide a less expensive method (Kudo et al. 223	

2012) when compared to the traditional method of collecting demographic data. 224	

            We suggest that further studies are performed to evaluate the use of UAVs and 225	

develop an alternative method to estimation studies in narrow waterways (<200 m), 226	

where visual surveys are held from canoes and cross-channel transects are not feasible, 227	

hampering the use of the distance model (Buckland et al. 2001). Therefore, detection of 228	

river dolphins through aerial survey could be more accurate and record more dolphin 229	

groups and individuals than visual surveys (Fürstenau Oliveira et al. 2017). In addition, 230	

comparison of full counts of UAV with distance sampling estimates is critical to 231	

understand the effectiveness of the technology, perhaps even contributing for the 232	

development of a new method to estimate populations of Amazonian river dolphins 233	

with the use of UAVs to be used by small teams to overcome the huge gaps remaining 234	

in the Amazon. 235	
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