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Constantine, et al. 2014), current restrictions are not yet sufficient to result in population 

recovery.  

 

Spatially implicit, population level models have successfully demonstrated the link between 

the Maui dolphin population decline and gillnet fishing (Martien et al. 1999; Slooten et al. 

2000; Baker et al. 2013a; Wade et al. 2014), brought insight in the maximum by-catch that 

can be supported (Wade 1998; Wade et al. 2014), and have prompted policy measures 

(Slooten and Lad 1991; Martien et al. 1999; Slooten et al. 2000; Burkhart and Slooten 2003; 

Slooten and Dawson 2010; Slooten and Davies 2012). However, population level models do 

not predict where and when these policy measures should be in place. To be able to provide 

policy advice at high spatial resolutions, spatially explicit, individual based models are 

needed.  

 

We developed a tailor-made individual based model of Maui dolphin movement, which can 

later be used to project the impact of fishing activities on the Maui dolphin population under 

alternative policy scenarios (e.g. van Beest et al. 2017; Nabe-Nielsen et al. 2018). We model 

hourly movement of individual dolphins at a 1 km2 resolution for a duration of 90 days, to 

account for the small spatial and temporal scales at which dolphin behaviour and human 

impacts occur in real life. This model will be useful for (i) spatially explicit modelling of 

interactions between fishery activities and dolphins and (ii) informing the spatially implicit 

models on values for parameters with high spatial and temporal sensitivity. Dolphin 

behaviour in our model is based on bathymetry, social drivers, and internal drivers. Because 

accurate data on the distribution and dynamics of prey species is insufficient, foraging is not 

explicitly included in the model.    



 

 

 

Two of the downsides of spatially explicit individual based modelling are that it is 

computationally and data intensive (Grimm and Railsback 2005). Each run of a well thought-

out model requires at least several minutes to weeks in extreme cases, while simple 

population models may take seconds or less. Due to these long running times, parameter 

estimation and model calibration become challenging. Furthermore, the data that is required 

to base the model on should be highly detailed at both the spatial and temporal scale (as these 

would be the resolutions at which behaviour and interactions are modelled in IBMs). Models 

that provide a good representation of a study system generally include several parameters 

whose value cannot be determined directly by empirical data. To calibrate a model, results 

from simulation runs with different combinations of parameter estimates need to be compared 

to real data. Yet, the number of simulation runs required for such an analysis increases 

exponentially with the number of parameters. Different approaches have been used to 

optimize model calibration, such as manual calibration, statistical calibration techniques using 

maximum likelihood or Bayesian approaches, or inverse modelling (Grimm and Railsback, 

2005). However, calibration remains a modelling process that is often neglected, but which 

should be incorporated in individual based modelling to generate more accurate predictions.   

 

Here, we demonstrate our approach of model calibration: we first used a one-at-a-time 

sensitivity analysis to eliminate unnecessary dimensions and regions in the parameter space 

and subsequently sampled orthogonally within the parameter space that was left after the 

sensitivity analysis. We used data on distance moved per hour, grouping behaviour, home 

range sizes, and depth preferences from field observations (Dawson et al. 2004; Slooten et al. 

2004, 2006; Rayment et al. 2009) to calibrate our four model parameters: the move-length 





















 

 

dimensions. By means of orthogonal sampling of different parameter combinations, we were 

able to find the parameter combination which minimizes BoF for all four behavioural aspects 

(i.e. hourly displacement, group size, depth preference, and home range characteristics).  

 

Results from the calibrated model demonstrate that Maui dolphins stay close to the shoreline 

and can be found in high densities in the areas around Kapaira Harbour and Manukau 

Harbour. It should be noted that, in its current form, the model does not incorporate any 

interactions between dolphins and vessels. The dolphin distribution estimated with the 

calibrated model results in most of the dolphins being found inside the gillnet restricted zone; 

yet the dolphin distribution extends far beyond the current limits of this area (Fig. 6). This is 

consistent with sightings outside the protected area, at least as far as Whanganui, with 

occasional sightings as far as Wellington and up the east coast of the North Island of New 

Zealand. 

 

More data on dolphin and fish distribution would help to further improve the model. Fish are 

usually clustered in patches of high nutritional value. Dolphins subsequently search for such 

dense aggregations, a behaviour which is currently not incorporated in our model. Information 

on fish distributions would much improve the current Maui dolphin movement model.    

 

We focus on calibrating our individual based model to observed real world patterns. In such a 

pattern oriented approach (Grimm et al. 2005) we need to be aware of potential interactions 

between processes (and their associated parameter values). Even if a direct relation exists 

between a single process and a pattern (e.g., movement activity process and hourly 

displacements), other processes (e.g. attraction by dolphins) cause interactions while 



 

 

generating the pattern (de Jager et al. 2014). Hence, parameter values which were given at 

first, but interact with other modelling assumptions, should be incorporated in the calibration 

process as parameters of unknown value. 

 

Our model incorporates small-scale spatial detail in the estimates of the spatial distribution of 

Maui dolphins that can be used to estimate the effect of human (fishery) activity on 

population dynamics. By calibrating the model, we increased the credibility of the simulation 

results, as the model mimics the observed Maui dolphin behaviour best when using the 

calibrated parameter values. Furthermore, the high spatial resolution of the model can 

increase the legitimacy of applying models in policy design. 

 

Distribution maps generated with this model will improve the current spatial distribution 

estimates of the Maui dolphin population and provide key input for comparison of different 

conservation measures. By overlaying the estimated Maui dolphin distribution map with a 

map indicating current fishing activities, we can pinpoint the areas where human-dolphin 

interactions are most likely to cause casualties. Furthermore, for different future scenarios of 

protection zones, we will be able to estimate the impact on the Maui dolphin population (e.g. 

van Beest et al. 2017; Nabe-Nielsen et al. 2018). Calculation of the overlap between Maui 

dolphin habitat and fishing activity as well as predictions of future scenarios will be important 

future directions of research. 
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Table 6: Parameter values that minimize BoF, estimated with a semi-analytical solution.  

BoF-test Movement exp. Home-range exp. Schooling preference 
Depth 0.8 20.4 214 
Group size 3.1 34.4 328 
Home range 3.8 30.1 545 
Hourly displacement 5.1 62.2 336 
All  5.1 27.5 322 

  



 

 

Figure legends 

Figure 1: Map of the study area. Yellow lines indicate the central area, where approximately 

50% of all dolphins have the core of their home range. 

 

Figure 2: Depth preference distribution and hourly displacement distribution obtained from 

field data (e.g. Slooten 1994; Slooten et al. 1992, 1993, 2005, 2006). 

 

Figure 3: Results of the one-at-a-time sensitivity analyses, showing BoF averaged over 

simulated data fit to observed hourly displacements, group sizes, depth preference, and home 

range characteristics. The different coloured lines indicate sets of simulations with different 

parameter combinations. 

  

Figure 4: BoFs for home range characteristics, hourly displacements, depth preference, and 

group size distribution for all simulation runs with home range exponent = 10 (for depth 

preference), 30 (for home range), 35 (for group size), and 50 (for hourly displacement), 

averaged per parameter combination (movement exponent ranging between 1 and 7 and 

schooling preference ranging between 10 and 500, here shown logarithmically). Colours 

indicate BoF, where dark green represents those parameter combinations that provide the 

most accurate representation of dolphin behaviour in the model and dark red the least. A BoF 

of 1 indicates a deviation from the field data that is double the average field observation. 

Asterisks mark the parameter combinations that minimize the four BoFs, according to a semi-

analytical solution (table 6).  
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Figure 2: Depth preference distribution and hourly displacement distribution obtained from 

field data (e.g. Slooten 1994; Slooten et al. 1992, 1993, 2005, 2006).   



 

 

 

Figure 3: Results of the one-at-a-time sensitivity analyses, showing BoF averaged over 

simulated data fit to observed hourly displacements, group sizes, depth preference, and home 

range characteristics. The different coloured lines indicate sets of simulations with different 

parameter combinations.  
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