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Abstract  

The current anthropogenic impacts on nature necessitate more research for nature 

conservation and restoration purposes. To answer ecological and conservation questions 

concerning endangered species, individual based modelling is an obvious choice. Individual 

based models provide reliable results that can be used to predict the effects of different future 

conservation strategies, once calibrated correctly. However, proper parameterization of these 

models is challenging and time consuming. Here, we calibrate an individual based model of 

Maui dolphin movement, which generates Maui dolphin probability distribution maps. We 

used sighting data for validation of the chosen parameter combinations. For each simulation 

run, collected simulated data was compared to the empirical survey data, resulting in BoF 

estimates. First, each of four uncertain parameters was tested in a one-at-a-time sensitivity 

analysis. Three of the four parameters had a significant effect on the model’s BoF. Second, 

different combinations of these three parameters were simulated. Using BoF on four different 

aspects of dolphin behaviour, we estimated the most likely parameter combinations. With 

optimized parameter values, Maui dolphin probability distribution maps were created, which 

can be used for conservation efforts. Using this approach, one is able to reliably calibrate an 

individual based model to fit the natural population that it should simulate.  



 

 

Introduction 

For the conservation of species vulnerable to extinction, it can be useful to explore the 

effectiveness of different restoration scenarios. Predicting the effects of different protection 

measures is of great importance, as policy makers can adjust their actions accordingly and 

adopt the management actions that will provide the best possible outcome (Cash et al. 2002). 

To deliver high quality predictions for possible scenarios, models are needed that represent 

the study system in a credible, salient, and legitimate fashion (Cash et al. 2002). Yet, many 

ecological questions are too complex for simple deduction or successful modelling with 

spatially implicit population models. Custom-made individual based models (IBMs) are often 

the best analysis tool for these kinds of questions. 

 

A very urgent case in which high quality model projections are needed is that of the Maui 

dolphin (Cephalorhynchus hectori maui). The Maui dolphin is, with its current estimated 

population size of 63 individuals (95% CI 57-75; Baker et al. 2016), classified as critically 

endangered by the IUCN (Reeves et al. 2008). The declining population (Martien et al. 1999; 

Slooten et al. 2000; Baker et al. 2013a; Wade et al. 2014) that was once distributed along the 

west and south coasts of New Zealand’s North Island (Du Fresne 2010; Dawson et al. 2001) 

is now restricted to a much smaller area of approximately 300km along the west coast, with 

most recent sightings within an area of about 140km length (Oremus et al. 2012). Besides 

their small coastal geographic range and population size, Maui dolphins have a slow 

reproduction rate, which makes them extremely vulnerable to extinction (Davidson et al. 

2012). Although the New Zealand government has increased restrictions to fishing activities 

in a zone along the west coast after the death of a Maui dolphin in 2012 (Hamner, 



 

 

Constantine, et al. 2014), current restrictions are not yet sufficient to result in population 

recovery.  

 

Spatially implicit, population level models have successfully demonstrated the link between 

the Maui dolphin population decline and gillnet fishing (Martien et al. 1999; Slooten et al. 

2000; Baker et al. 2013a; Wade et al. 2014), brought insight in the maximum by-catch that 

can be supported (Wade 1998; Wade et al. 2014), and have prompted policy measures 

(Slooten and Lad 1991; Martien et al. 1999; Slooten et al. 2000; Burkhart and Slooten 2003; 

Slooten and Dawson 2010; Slooten and Davies 2012). However, population level models do 

not predict where and when these policy measures should be in place. To be able to provide 

policy advice at high spatial resolutions, spatially explicit, individual based models are 

needed.  

 

We developed a tailor-made individual based model of Maui dolphin movement, which can 

later be used to project the impact of fishing activities on the Maui dolphin population under 

alternative policy scenarios (e.g. van Beest et al. 2017; Nabe-Nielsen et al. 2018). We model 

hourly movement of individual dolphins at a 1 km2 resolution for a duration of 90 days, to 

account for the small spatial and temporal scales at which dolphin behaviour and human 

impacts occur in real life. This model will be useful for (i) spatially explicit modelling of 

interactions between fishery activities and dolphins and (ii) informing the spatially implicit 

models on values for parameters with high spatial and temporal sensitivity. Dolphin 

behaviour in our model is based on bathymetry, social drivers, and internal drivers. Because 

accurate data on the distribution and dynamics of prey species is insufficient, foraging is not 

explicitly included in the model.    



 

 

 

Two of the downsides of spatially explicit individual based modelling are that it is 

computationally and data intensive (Grimm and Railsback 2005). Each run of a well thought-

out model requires at least several minutes to weeks in extreme cases, while simple 

population models may take seconds or less. Due to these long running times, parameter 

estimation and model calibration become challenging. Furthermore, the data that is required 

to base the model on should be highly detailed at both the spatial and temporal scale (as these 

would be the resolutions at which behaviour and interactions are modelled in IBMs). Models 

that provide a good representation of a study system generally include several parameters 

whose value cannot be determined directly by empirical data. To calibrate a model, results 

from simulation runs with different combinations of parameter estimates need to be compared 

to real data. Yet, the number of simulation runs required for such an analysis increases 

exponentially with the number of parameters. Different approaches have been used to 

optimize model calibration, such as manual calibration, statistical calibration techniques using 

maximum likelihood or Bayesian approaches, or inverse modelling (Grimm and Railsback, 

2005). However, calibration remains a modelling process that is often neglected, but which 

should be incorporated in individual based modelling to generate more accurate predictions.   

 

Here, we demonstrate our approach of model calibration: we first used a one-at-a-time 

sensitivity analysis to eliminate unnecessary dimensions and regions in the parameter space 

and subsequently sampled orthogonally within the parameter space that was left after the 

sensitivity analysis. We used data on distance moved per hour, grouping behaviour, home 

range sizes, and depth preferences from field observations (Dawson et al. 2004; Slooten et al. 

2004, 2006; Rayment et al. 2009) to calibrate our four model parameters: the move-length 



 

 

distribution’s exponent, the incentive to join conspecifics, the drive to remain close to the 

home range centre, and the importance of local ocean depth. The calibrated model also 

provides more detailed insight into the locations where Maui dolphins are expected to occur. 

This information can be used for further collection of survey data and adjustment of the 

protection zones (where certain fishing methods are prohibited) by the New Zealand 

government.      

 

Methods 

The study system: Maui dolphins 

The Maui dolphin population is distributed within a small range along the west coast of the 

North Island of New Zealand, ranging from Maunganui Bluff to Whanganui (Slooten et al. 

2005; Slooten et al. 2006; Currey et al. 2012). The model was set up to represent the habitat 

of Maui dolphins (Fig. 1). In the northern part of Maui dolphin’s range, protection 

implemented in 2008 prohibits gillnetting to 7 nautical miles (nmi) offshore and trawling to a 

maximum of 4 nmi offshore. Further south, between New Plymouth and Hawera, gillnets are 

banned to 2 rather than 7 nmi offshore and trawling is permitted regardless of distance from 

shore. The southernmost part of the Maui dolphin range, from Hawera to Whanganui remains 

unprotected. Dolphins range throughout the area, from the shoreline to the 100 m depth 

contour, and occasionally enter harbours (Rayment et al. 2011). Maui dolphins were observed 

to prefer inshore waters in population surveys with equal survey effort with respect to 

distance from shore (Slooten et al. 2004, 2006; Rayment and du Fresne 2007). Dolphin 

movement behaviours depend on local environmental factors, including water depth, distance 

to the coast and the presence of other dolphins and fishing vessels (Rayment and Webster 

2009; Rayment et al. 2009). Maui dolphins are not attracted to gillnets, as the fish caught in 



 

 

these nets are too large for them to eat (Miller et al. 2013). But they are strongly attracted to 

trawlers, often aggregating in large groups behind trawling vessels and diving down to the net 

(Rayment and Webster 2009).  

  

The model 

The objective of this paper is to accurately simulate hourly movements of Maui dolphins as a 

function of dolphin swimming activity, water depth, distance to their home range centres, and 

the distribution of nearby conspecifics. We created an individual based model to simulate the 

spatial distribution of dolphins over the coastal waters along the west coast of New Zealand’s 

North Island. Figure 1 represents the area of approximately 180 by 465 km that was used for 

the spatial configuration of the model. Based on a detailed bathymetry map, we included 

average ocean depth for each 0.75 by 0.75 km grid cell. 

 

During a simulation run, dolphins are initially placed in the landscape and iteratively move 

across the landscape by choosing the number of patch displacements per hour and choosing 

the directions of these displacements for a set number of hourly steps. First, 63 dolphins were 

initially placed within the simulated area. These dolphins are distributed along the coastline, 

with a doubled probability of initial placement in the centre area (see Fig. 1). Depth at which 

dolphins occur follows an exponential distribution with λ = -0.05 (based on field data). After 

the initial distribution of dolphins along the coastline, hourly movements were simulated at a 

1km resolution. The number of moves per hour varies for each dolphin and every hour. We 

assumed that the distribution of the number of moves per hour can be described by a Poisson 

distribution, of which the scaling exponent λ is equal for all dolphins per simulation. The 

movement direction depends on a dolphin’s preference for shallow waters, staying close to its 



 

 

home range centre, and joining other dolphins. Within a 1km range, the weights of these three 

factors are multiplied: 

Wpatch = Wdepth · Whome · Wschooling,      (eq. 1) 

where Wpatch is the overall weight of a patch and Wdepth, Whome, and Wschooling are the weights 

assigned to a patch for its depth, closeness to the focal dolphin’s home range centre, and the 

presence of dolphins, respectively. Wdepth follows a sigmoid function: 

Wdepth = (1 + 0.011-d/δ)-1,       (eq. 2) 

where d is the depth (in m) and δ is the depth-preference exponent, which equals the depth 

where Wdepth = 0.5. At 0m depth, Wdepth is kept at a constant value (0.99). Whome also follows a 

sigmoid function:  

Whome = (1 + 0.011-h/η)-1,       (eq. 3) 

where h is the distance to the home range centre (in km) and η is the home-range exponent, 

which equals the distance where Whome = 0.5. At the home range centre, Whome is kept at a 

constant value (0.99). Wschooling is a simple step function of the number of dolphins at a patch:  

𝑊𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔  =  {
1         𝑖𝑓 𝑛 =  0,
1 +  𝜎 𝑖𝑓 𝑛 >  0

 ,      (eq. 4) 

where σ is the schooling preference and n is the number of dolphins present. When running a 

simulation, dolphin’s home range centres were set as the centre of all visited locations during 

a spin-up phase of 30 days, after which dolphin movements were recorded for 90 days. 

Afterwards, a summary including home range characteristics and distributions of hourly 

displacements, group sizes, and depth was created. More detailed information on the model 

can be found in the appended ODD (Suppl. Methods A); a summary of parameters and their 

descriptions is given in Table 2.  



 

 

 

Calibration  

Values of the movement exponent (λ), depth-preference exponent (δ), home-range exponent 

(η), and schooling preference (σ) needed to be calibrated to optimize the accuracy of the 

model. For this calibration process, we performed (i) a one-at-a-time sensitivity analysis 

(OAT) and (ii) a full assessment of simulation results from a wide range of parameter 

combinations. For the OAT, we simulated dolphin movement for a range of each of the four 

parameter values at a time, keeping the other three constant at the minimum, average and 

maximum values of the to-be simulated parameter space (Table 3). Using simple linear 

regression, we examined which of the four parameters had a significant effect on the 

simulation results. Those parameters that had no effect on the results would not be fully 

represented by a range of parameter values in the next set of simulations, thereby reducing the 

number of dimensions in the multidimensional parameter space. For this full assessment, we 

used orthogonal sampling of the different parameter values (Table 4). Simulations were 

replicated 50 times. 

 

A parameter combination’s accuracy for providing simulation results that closely resemble 

survey data was measured as a BoF (BoF) using χ2 statistics for all recorded values that fall 

outside the ranges shown in table 1. Dolphin behaviour in our model is based on survey data 

for Maui dolphin (the North Island subspecies) and Hector’s dolphin (the species as a whole). 

Data has been collected on i) depth preferences, ii) move length distributions, iii) grouping 

behaviour, and iv) home range sizes.  

 



 

 

For depth preference BoF, the frequencies of dolphin occurrence in 0-25m, 25-50m, and 50-

100m deep water observed in a model simulation was compared with those of field 

observations (Fig. 2a) using a χ2-test. Depth preferences were based on population surveys 

with equal sampling effort with respect to distance from shore (Fig. 2a; Slooten et al. 2004, 

2006; Rayment and du Fresne 2007).  

 

For group size distribution BoF, the frequencies of groups of 1, 2, 3, 4, and > 4 observed in a 

simulation were compared to frequencies expected from field data (Fig. 2b). Information on 

Maui dolphin group size was obtained by Webster and Edwards (2008) and Oremus et al. 

(2012, table 1). Webster and Edwards’ data was based on 13 aerial surveys conducted in 2008 

alongshore the west coast of New Zealand’s North Island, between Manukau Harbour and 

Cape Egmont. During these surveys, 23 groups of Maui dolphin were sighted. The group size 

distribution resulting from Webster and Edwards’ study varies substantially from the 

distributions observed by Oremus et al. in 2010 and 2011. Their study resulted in larger group 

sizes than found by Webster and Edwards (2008) and was conducted by boat surveys, along 

the west coast of New Zealand’s North Island between North Kaipara (about 100km north of 

Manukau Harbour) and New Plymouth (appr. 45km north of Cape Egmont). To account for 

all three observed group size distributions, we aim for our model’s simulation results to fall 

within this range after calibration (table 1). 

 

Home range BoF was calculated by comparing the minimal, mean, and maximum mean radii 

of the simulated dolphin home ranges to those found in literature (Stone et al. 2005; Table 1). 

Home range sizes have been estimated for Hector’s dolphins by Stone et al. (2005) and 

Rayment et al. (2009). Stone et al. (2005) tagged 3 Hector’s dolphins with satellite 



 

 

transmitters in 2004, which provided about 3 months of GPS information. They estimated the 

average home range size to be between 10.35 and 13.77 km, with minimum mean home range 

sizes between 9.91 and 13.33 km and maximum mean home range sizes between 10.79 and 

14.21 km. Rayment et al. (2009) used coastal photo-ID surveys in and around the Banks 

Peninsula Marine Mammal Sanctuary along the east coast of New Zealand’s South Island. 

Locations of the 20 individuals with the largest numbers of sightings, collected between 1985 

and 2006, were used to calculate the 50 (K50) and 95 (K95) percent density estimates of their 

home ranges. Estimates of K50 and K95 ranged between 15.2 and 19.0 km and 44.4 and 55.0 

km, respectively. Because no data on home range parameters is available for Maui dolphin 

and the two subspecies are very similar, we used these estimates for model calibration. 

Estimates of the maximum distance between sightings of individual Maui dolphins in boat 

surveys was 80.4 km (Hamner et al. 2012) compared to 107.4 km for Hector's dolphin 

(Rayment et al. 2009). 

 

Furthermore, the frequencies of hourly displacement distances, grouped in 0-0.75km, 0.75-

1.5km, 1.5-2.25km, 2.25-3km, 3-5.25km, and >5.25km, observed in a simulation was 

compared with field observations to calculate the hourly displacement BoF. Data on distance 

moved per hour (move-length) was collected during Hector's dolphin surveys for behavioural 

and photographic identification research (Fig. 2b; e.g. Slooten et al. 1992, 1993; Slooten 

1994). The primary purpose of these surveys is to estimate survival and reproductive rates, as 

well as behavioural and social association data. The start and end of each dolphin encounter 

was used for this study to provide a distribution of estimates of distance moved per hour. 

 



 

 

To compare χ2-values between the different BoF measures, the values were rescaled, by 

which a BoF of 1 indicates a deviation double the expected value. A BoF of zero would 

indicate an optimal fit of the model to actual observations of Maui dolphin behaviour. 

Assuming BoF follows a quadratic form through the 3-parameter space, we calculated the 

parameter combination that minimizes the total BoF (i.e. sum of the four BoFs) using an 

analytical approach (Suppl. Methods B).    

 

Interpretation 

Once the model parameters were calibrated, simulations with parameter values that 

minimized BoF were run to generate probability distribution maps of dolphin presence in the 

study area. To create these maps, dolphin locations were recorded during a single season 

(summer). To examine the robustness of our results, we repeated simulations 100 times for 

each likely parameter combination, as well as for parameter combinations at the edges of the 

simulated parameter space.     

 

Results 

Calibration 

The results of the one-at-a-time sensitivity analysis indicate which parameters are most 

important in terms of influencing the model’s performance. The movement activity exponent 

λ, schooling preference σ, and home-range exponent η significantly affected the BoF of the 

model (Fig. 3, Table 5, and Supplementary Figs. 2-5). Taking the average BoF of the four 

different proxies (Fig. 3), the dolphin movement activity exponent, schooling preference, and 

home range exponent all significantly correlate with the average BoF in a simple linear model 

(R2 = 0.811, df = 994, p < 0.001). The depth preference exponent did not have any significant 



 

 

effect on the average BoF of the simulation results to the survey data (p = 0.829). When 

separating the four individual BoF components, varying the home range exponent 

significantly affected home range BoF (R2 = 0.057, df = 994, p < 0.001) and group size BoF 

(R2= 0.860, df = 994, p < 0.001). The movement activity exponent had a significant effect on 

hourly displacement BoF (R2 = 0.135, df = 994, p < 0.001) and home range BoF (R2 = 0.057, 

df = 994, p < 0.001), whereas schooling preference significantly influenced hourly 

displacement BoF (R2 = 0.135, df = 994, p < 0.001), home range BoF (R2 = 0.057, df = 994, p 

< 0.001), and group size BoF (R2= 0.860, df = 994, p < 0.001). Varying the depth preference 

exponent did not result in any significant trend in BoF and was therefore kept at a constant 

value throughout subsequent calibration runs.  

 

Second, we ran a total of 81900 simulations (50 repetitions of different parameter 

combinations) in order to locate the parameter settings that will minimize the difference 

between modelled and observed dolphin behaviour. BoF in hourly displacement was 

minimized most in simulations with λ = 5.1, η = 62.2, and σ = 336 (Table 6, Fig. 4, Suppl. 

Fig. 6). For home range characteristics and depth preference, the BoF landscapes were less 

pronounced (Fig. 4; Suppl. Figs. 7-8); most parameter combinations provided a similar BoF. 

The analytical solutions for home range and depth BoFs resulted in the parameter 

combinations λ = 3.8, η = 30.1, and σ = 545, and λ = 0.8, η = 20.4, and σ = 214, respectively 

(Table 6). Group size distributions resembled those observed in real Maui dolphins most 

when λ = 3.1, η = 34.4, and σ = 328  (Table 6, Fig. 4; Suppl. Fig. 9). To locate the parameter 

combinations that provide the best model of Maui dolphin behaviour, we calculated the 

maximum BoF of the four BoF measures, for all parameter combinations (Table 6, Fig. 5). In 

the simulated parameter space, BoF was minimized when λ = 5.1, η = 27.5, and σ = 322.  



 

 

             

Interpretation 

Using the parameter combination that minimized the deviation between modelled and 

observed dolphin behaviour (λ = 5.1, η = 27.5, and σ = 322), we estimated the area used by 

Maui dolphins within the study site. Figure 6 illustrates the K50 (red), K95 (orange), and K99 

(yellow) of dolphins in 100 separate runs. Our estimates of the K95 and K99 lie well beyond 

the boundaries of the current marine mammal sanctuary.  

 

To check the robustness of our model, we also ran 8 x 100 simulations with parameter 

combinations from the edges of the parameter space (λ = 1 or 7, η = 10 or 50, and σ = 10 or 

500; Fig. 7). The poorly parameterized model simulations (with λ = 1, top panels Fig. 7) result 

in a more spread out dolphin distribution compared to the calibrated model.  

 

Discussion  

To promote the survival of the critically endangered Maui dolphin population, conservation 

policies regarding restrictions on fishing and trawling activities need to be fine-tuned on the 

currently only coarsely known Maui dolphin distribution. We used an individual based model 

to estimate the occurrence of Maui dolphins along the west coast of New Zealand’s North 

Island and thereby predict local interactions between Maui dolphins and fishing activities. To 

provide high quality results, four model parameters had to be calibrated. Using a one-at-a-

time sensitivity analysis, we observed that one of these parameters, the depth preference 

exponent, did not significantly affect any of the four BoF estimates. Exclusion of this 

parameter resulted in a more efficient search for the optimal parameter combination in three 



 

 

dimensions. By means of orthogonal sampling of different parameter combinations, we were 

able to find the parameter combination which minimizes BoF for all four behavioural aspects 

(i.e. hourly displacement, group size, depth preference, and home range characteristics).  

 

Results from the calibrated model demonstrate that Maui dolphins stay close to the shoreline 

and can be found in high densities in the areas around Kapaira Harbour and Manukau 

Harbour. It should be noted that, in its current form, the model does not incorporate any 

interactions between dolphins and vessels. The dolphin distribution estimated with the 

calibrated model results in most of the dolphins being found inside the gillnet restricted zone; 

yet the dolphin distribution extends far beyond the current limits of this area (Fig. 6). This is 

consistent with sightings outside the protected area, at least as far as Whanganui, with 

occasional sightings as far as Wellington and up the east coast of the North Island of New 

Zealand. 

 

More data on dolphin and fish distribution would help to further improve the model. Fish are 

usually clustered in patches of high nutritional value. Dolphins subsequently search for such 

dense aggregations, a behaviour which is currently not incorporated in our model. Information 

on fish distributions would much improve the current Maui dolphin movement model.    

 

We focus on calibrating our individual based model to observed real world patterns. In such a 

pattern oriented approach (Grimm et al. 2005) we need to be aware of potential interactions 

between processes (and their associated parameter values). Even if a direct relation exists 

between a single process and a pattern (e.g., movement activity process and hourly 

displacements), other processes (e.g. attraction by dolphins) cause interactions while 



 

 

generating the pattern (de Jager et al. 2014). Hence, parameter values which were given at 

first, but interact with other modelling assumptions, should be incorporated in the calibration 

process as parameters of unknown value. 

 

Our model incorporates small-scale spatial detail in the estimates of the spatial distribution of 

Maui dolphins that can be used to estimate the effect of human (fishery) activity on 

population dynamics. By calibrating the model, we increased the credibility of the simulation 

results, as the model mimics the observed Maui dolphin behaviour best when using the 

calibrated parameter values. Furthermore, the high spatial resolution of the model can 

increase the legitimacy of applying models in policy design. 

 

Distribution maps generated with this model will improve the current spatial distribution 

estimates of the Maui dolphin population and provide key input for comparison of different 

conservation measures. By overlaying the estimated Maui dolphin distribution map with a 

map indicating current fishing activities, we can pinpoint the areas where human-dolphin 

interactions are most likely to cause casualties. Furthermore, for different future scenarios of 

protection zones, we will be able to estimate the impact on the Maui dolphin population (e.g. 

van Beest et al. 2017; Nabe-Nielsen et al. 2018). Calculation of the overlap between Maui 

dolphin habitat and fishing activity as well as predictions of future scenarios will be important 

future directions of research. 
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Tables 

Table 1: Target values, obtained from field observation studies, for model output. Depth 

distribution data was obtained from population surveys (Slooten et al. 2004, 2006; Rayment 

and du Fresne 2007). We collected group size distribution data from Webster and Edwards 

(2008) and Oresmus et al. (2012). The home range characteristics have been estimated by 

Stone et al. (2005) and the distribution of hourly displacements was collected from 

behavioural and photo-identification surveys (Slooten et al. 1992, 1993; Slooten 1994).     

Data type  Values 

Depth distribution 0-25m 59.2 % 

 25-50m 34.7 % 

 50-100m 6.1 % 

Group size distribution N = 1 8.3 - 25.6 % 

 N = 2 4.8 - 32.6 % 

 N = 3 12.5 - 19.0 % 

 N = 4 16.3 - 29.4 % 

 N ≥ 5 9.3 - 37.4 % 

Home range characteristics Minimal mean radius 9.9 - 13.3 km 

 Mean mean radius 10.4 – 13.8 km 

 Maximum mean radius 10.8 – 14.2 km 

 K50 15.2 – 19 km 

 K95 44.4 – 55.0 km 

Hourly displacement distribution 0 – 0.75 km 25.4 % 

 0.75 – 1.5 km 35.9 % 

 1.5 – 2.25 km 26.7 % 



 

 

 2.25 – 3 km 19.8 % 

 3 – 5.25 km 7.2 % 

 ≥ 5.25 km 0.5 % 

  



 

 

Table 2: Parameter names and descriptions.  

Parameter name Description 

d depth of a patch in metres  

δ depth-preference exponent 

h distance of a patch to a dolphin’s home range centre in km 

η home-range exponent 

n number of dolphins present at a patch 

σ schooling preference 

  



 

 

Table 3: Parameter combinations used in the one-at-a-time sensitivity analysis.  

Varying parameter λ δ η σ 

Movement exponent (λ) 0.1-5 25, 50, 100 10, 30, 50 1, 5, 50 

Depth-preference exponent (δ) 1, 3, 5 2-100 10, 30, 50 1, 5, 50 

Home-range exponent (η) 1, 3, 5 25, 50, 100 2-50 1, 5, 50 

Schooling preference (σ) 1, 3, 5 25, 50, 100 10, 30, 50 1-50 

  



 

 

Table 4: Parameter values used in assessment of the full parameter space. 

Parameter Values 

Movement exponent (λ) 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 

Depth-preference exponent (δ) 50 

Home-range exponent (η) 10, 15, 20, 25, 30, 35, 40, 45, 50 

Schooling preference (σ) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 

150, 200, 500 

  



 

 

Table 5: Results of the linear regression models, indicating the effect of the four parameters 

(movement, depth preference, home-range, and schooling preference) on BoF. The depth-

preference exponent had no significant linear impact on the BoF.   
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Parameter 

R2 = 0.135 

df = 994 

R2 = 0.057 

df = 994 

R2 = 0.860 

df = 994 

R2 = 0.003 

df = 994 

R2 = 0.811  

df = 994 

Movement exponent (λ) < 0.001 < 0.001 0.181 0.430 < 0.001 

Depth-preference exponent (δ) 0.559 0.776 0.530 0.790 0.829 

Home-range exponent (η) 0.141 < 0.001 < 0.001 0.033 < 0.001 

Schooling preference (σ) < 0.001 < 0.001 <0.001 0.165 < 0.001 



 

 

Table 6: Parameter values that minimize BoF, estimated with a semi-analytical solution.  

BoF-test Movement exp. Home-range exp. Schooling preference 

Depth 0.8 20.4 214 

Group size 3.1 34.4 328 

Home range 3.8 30.1 545 

Hourly displacement 5.1 62.2 336 

All  5.1 27.5 322 

  



 

 

Figure legends 

Figure 1: Map of the study area. Yellow lines indicate the central area, where approximately 

50% of all dolphins have the core of their home range. 

 

Figure 2: Depth preference distribution and hourly displacement distribution obtained from 

field data (e.g. Slooten 1994; Slooten et al. 1992, 1993, 2005, 2006). 

 

Figure 3: Results of the one-at-a-time sensitivity analyses, showing BoF averaged over 

simulated data fit to observed hourly displacements, group sizes, depth preference, and home 

range characteristics. The different coloured lines indicate sets of simulations with different 

parameter combinations. 

  

Figure 4: BoFs for home range characteristics, hourly displacements, depth preference, and 

group size distribution for all simulation runs with home range exponent = 10 (for depth 

preference), 30 (for home range), 35 (for group size), and 50 (for hourly displacement), 

averaged per parameter combination (movement exponent ranging between 1 and 7 and 

schooling preference ranging between 10 and 500, here shown logarithmically). Colours 

indicate BoF, where dark green represents those parameter combinations that provide the 

most accurate representation of dolphin behaviour in the model and dark red the least. A BoF 

of 1 indicates a deviation from the field data that is double the average field observation. 

Asterisks mark the parameter combinations that minimize the four BoFs, according to a semi-

analytical solution (table 6).  

 



 

 

Figure 5: Maximum BoF of the four BoF measures averaged per parameter combination. In 

all panels, the movement activity exponent is displayed on the x-axis (ranging between 1 and 

7) and schooling preference on the y-axes (ranging between 10 and 500, shown here 

logarithmically). The panels differ in home range exponent, ranging from η = 10 in the 

bottom left panel to η = 50 in the upper right panel. The asterisk marks the parameter 

combination that minimizes BoF, according to a semi-analytical solution (table 6). 

 

Figure 6: Probability distribution of the occurrence of Maui dolphins along the west coast of 

New Zealand’s North Island, according to our calibrated model (λ = 4.1, δ = 50, η = 17.6, and 

σ = 328; depth BoF = 0.028, home range BoF = 0.076, Hourly displacement BoF = 0.105, and 

group size BoF = 0.023). The map represents the total probability distribution of 100 

simulations. Colours indicate estimates of K50 (red), K95 (orange), and K99 (yellow). The 

dashed and blocked areas represent the current gillnet prohibition and trawling and gillnet 

prohibition zones, respectively.  



 

 

Figure 7: Probability distribution of the occurrence of Maui dolphins along the west coast of 

New Zealand’s North Island, according to our model using the parameter combinations from 

the edges of our simulated parameter space  (λ = 1 & 7, δ = 50, η = 10 & 50, and δ = 10 & 

500). From top left to bottom right, depth BoF = 0.025, 0.030, 0.026, 0.026, 0.024, 0.018, 

0.031, and 0.025; home range BoF = 0.267, 0.101, 0.267, 0.157, 0.260, 0.184, 0.257, and 

0.272; hourly displacement BoF = 0.390, 0.387, 0.532, 0.553, 0.385, 0.424, 0.089, and 0.103; 

and group size BoF = 1.236, 1.354, 0.033, 0.020, 1.220, 1.361, 0.021, and 0.050, respectively. 

The maps represents the total probability distributions of 100 simulations. Colours indicate 

estimates of K50 (red), K95 (orange), and K99 (yellow). The dashed and blocked areas represent 

the current gillnet prohibition and trawling and gillnet prohibition zones, respectively.  
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Figure 1: Map of the study area. Yellow lines indicate the central area, where approximately 

50% of all dolphins have the core of their home range.  



 

 

 

Figure 2: Depth preference distribution and hourly displacement distribution obtained from 

field data (e.g. Slooten 1994; Slooten et al. 1992, 1993, 2005, 2006).   



 

 

 

Figure 3: Results of the one-at-a-time sensitivity analyses, showing BoF averaged over 

simulated data fit to observed hourly displacements, group sizes, depth preference, and home 

range characteristics. The different coloured lines indicate sets of simulations with different 

parameter combinations.  



 

 

 

Figure 4: BoFs for home range characteristics, hourly displacements, depth preference, and 

group size distribution for all simulation runs with home range exponent = 10 (for depth 

preference), 30 (for home range), 35 (for group size), and 50 (for hourly displacement), 

averaged per parameter combination (movement exponent ranging between 1 and 7 and 

schooling preference ranging between 10 and 500, here shown logarithmically). Colours 

indicate BoF, where dark green represents those parameter combinations that provide the 

most accurate representation of dolphin behaviour in the model and dark red the least. A BoF 

of 1 indicates a deviation from the field data that is double the average field observation. 

Asterisks mark the parameter combinations that minimize the four BoFs, according to a semi-

analytical solution (table 6).  



 

 

 

Figure 5: Maximum BoF of the four BoF measures averaged per parameter combination. In 

all panels, the movement activity exponent is displayed on the x-axis (ranging between 1 and 

7) and schooling preference on the y-axes (ranging between 10 and 500, shown here 

logarithmically). The panels differ in home range exponent, ranging from η = 10 in the 

bottom left panel to η = 50 in the upper right panel. The asterisk marks the parameter 

combination that minimizes BoF, according to a semi-analytical solution (table 6).   



 

 

 

Figure 6: Probability distribution of the occurrence of Maui dolphins along the west coast of 

New Zealand’s North Island, according to our calibrated model (λ = 4.1, δ = 50, η = 17.6, and 

σ = 328; depth BoF = 0.028, home range BoF = 0.076, Hourly displacement BoF = 0.105, and 

group size BoF = 0.023). The map represents the total probability distribution of 100 

simulations. Colours indicate estimates of K50 (red), K95 (orange), and K99 (yellow). The 

single-hashed and double-hashed areas represent areas where gillnets or both gillnets and 

trawling are prohibited, respectively.  



 

 

  

 

Figure 7: Probability distribution of the occurrence of Maui dolphins along the west coast of 

New Zealand’s North Island, according to our model using the parameter combinations from 

the edges of our simulated parameter space  (λ = 1 & 7, δ = 50, η = 10 & 50, and σ = 10 & 

500). From top left to bottom right, depth BoF = 0.025, 0.030, 0.026, 0.026, 0.024, 0.018, 

0.031, and 0.025; home range BoF = 0.267, 0.101, 0.267, 0.157, 0.260, 0.184, 0.257, and 

0.272; hourly displacement BoF = 0.390, 0.387, 0.532, 0.553, 0.385, 0.424, 0.089, and 0.103; 



 

 

and group size BoF = 1.236, 1.354, 0.033, 0.020, 1.220, 1.361, 0.021, and 0.050, respectively. 

The maps represents the total probability distributions of 100 simulations. Colours indicate 

estimates of K50 (red), K95 (orange), and K99 (yellow). The dashed and blocked areas represent 

the current gillnet prohibition and trawling and gillnet prohibition zones, respectively.  



 

 

Supplementary Figures 

 

Supplementary Figure 1: Schematic illustration of the model. After initialization, dolphins 

iteratively move by (i) setting the number of moves that will be made to neighbouring patches 

within the hour-step (drawn from a Poisson distribution), and (ii) choosing a neighbouring 

patch to move to for the number of moves drawn in (i). Choice of destination is based on the 

patch depth, its distance to a dolphin’s home range centre, and the presence of other dolphins.    



 

 

 

 

Supplementary Figure 2: BoF for step length distribution (a), home range characteristics (b), 

group size distribution (c), and depth distribution (d), for results of simulations varying in the 

depth preference exponent. No significant effects of depth preference exponent on BoF was 

found.    



 

 

 

Supplementary Figure 3: BoF for step length distribution (a), home range characteristics (b), 

group size distribution (c), and depth distribution (d), for results of simulations varying in the 

home range exponent. Home range exponent has a significant effect on the home range BoF 

(R2 = 0.057, df = 994, p < 0.001), the group size BoF (R2= 0.860, df = 994, p < 0.001), and 

the depth distribution BoF (R2= 0.003, df = 994, p < 0.033).    



 

 

 

Supplementary Figure 4: BoF for step length distribution (a), home range characteristics (b), 

group size distribution (c), and depth distribution (d), for results of simulations varying in the 

movement activity exponent. The movement activity exponent has a significant effect on the 

step length BoF (R2 = 0.135, df = 994, p < 0.001) and home range BoF (R2 = 0.057, df = 994, 

p < 0.001).    

 



 

 

 

 

Supplementary Figure 5: BoF for step length distribution (a), home range characteristics (b), 

group size distribution (c), and depth distribution (d), for results of simulations varying in the 

schooling preference. Schooling preference has a significant effect on the step length BoF (R2 

= 0.135, df = 994, p < 0.001), home range BoF (R2 = 0.057, df = 994, p < 0.001), and the 

group size BoF (R2= 0.860, df = 994, p < 0.001). 



 

 

 

Supplementary Figure 6: BoF of hourly displacement averaged per parameter combination. 

In all panels, the movement activity exponent is displayed on the x-axis (ranging between 1 

and 7) and schooling preference on the y-axes (ranging between 10 and 500, shown here 

logarithmically). The panels differ in home range exponent, ranging from η = 10 in the 

bottom left panel to η = 50 in the upper right panel. The asterisk marks the parameter 

combination that minimizes BoF, according to a semi-analytical solution (table 6).  



 

 

  

Supplementary Figure 7: BoF of home range characteristics averaged per parameter 

combination. In all panels, the movement activity exponent is displayed on the x-axis 

(ranging between 1 and 7) and schooling preference on the y-axes (ranging between 10 and 

500, shown here logarithmically). The panels differ in home range exponent, ranging from η 

= 10 in the bottom left panel to η = 50 in the upper right panel. The asterisk marks the 

parameter combination that minimizes BoF, according to a semi-analytical solution (table 6).  



 

 

 

Supplementary Figure 8: BoF of depth preference averaged per parameter combination. In 

all panels, the movement activity exponent is displayed on the x-axis (ranging between 1 and 

7) and schooling preference on the y-axes (ranging between 10 and 500, shown here 

logarithmically). The panels differ in home range exponent, ranging from η = 10 in the 

bottom left panel to η = 50 in the upper right panel. The asterisk marks the parameter 

combination that minimizes BoF, according to a semi-analytical solution (table 6).  



 

 

 

Supplementary Figure 9: BoF of group sizes averaged per parameter combination. In all 

panels, the movement activity exponent is displayed on the x-axis (ranging between 1 and 7) 

and schooling preference on the y-axes (ranging between 10 and 500, shown here 

logarithmically). The panels differ in home range exponent, ranging from η = 10 in the 

bottom left panel to η = 50 in the upper right panel. The asterisk marks the parameter 

combination that minimizes BoF, according to a semi-analytical solution (table 6).  



 

 

Supplementary methods A: Overview, design concepts, and details (ODD) of an 

individual based model for Maui dolphin movement 

1. Overview 

Purpose 

The netlogo model (Mauidolphin.nlogo) was designed to model the movements and spatial 

distribution of Maui dolphins over the coastal waters along the west coast of New Zealand’s 

North Island. The model simulates hourly movements of dolphins as a function of water 

depth, distance from its home range centre, and the nearby presence of conspecifics.  

Entities, state variables and scales 

Two types of entities exist in the model: dolphins and one final collector. The dolphins are the 

main agents in this program, while the final collector has been created to collect, record, and 

write all useful data to an output file. Dolphins move around on patches, i.e. 0.75 by 0.75 km 

grid cells, during a set number of simulation steps.   

Dolphins – Dolphins have a setup and a move procedure. During the setup procedure, the 

desired number of dolphins is created and distributed over the coastal waters in three steps. 

First, a random number is generated to indicate whether a dolphin will be positioned in the 

centre area, between Kaipara Harbour and Kawhia (yellow outlined area in Fig. 1), with a 

50% probability, or north or south of this area (both p = 0.25). Second, the depth (d) of the 

cell at which a dolphin is randomly placed is drawn from an exponential distribution: d = - 

ln(x)/ 0.05, where x is a random number (0 ≤ x ≤ 1) and the value 0.05 is based on an 

exponential fit to depth distribution data obtained from surveys with equal survey effort with 

respect to distance from shore (Slooten et al. 2004, 2006; Rayment and du Fresne 2007). 

Third, a starting location is then drawn from all cells that meet these two requirements. In the 

move procedure, dolphin movement is simulated at a 1km resolution. Dolphins move towards 



 

 

one of their neighbouring cells based on the cells’ depth, distance to the dolphins’ home range 

centre, and the presence of conspecifics. For each cell, a weight is calculated from these three 

components:  

Wpatch = Wdepth · Whome · Wschooling, 

where Wpatch is the overall weight of a patch and Wdepth, Whome, and Wschooling are the weights 

assigned to a patch for its depth, closeness to the focal dolphin’s home range centre, and the 

presence of dolphins, respectively. Wdepth follows a sigmoid function: 

Wdepth = (1 + 0.011-d/δ)-1, 

where d is the depth (in m) and δ is the depth-preference exponent, which equals the depth 

where Wdepth = 0.5. Whome follows a sigmoid function:  

Whome = (1 + 0.011-h/η)-1, 

where h is the distance to the home range centre (in km) and η is the home-range exponent, 

which equals the distance where Whome = 0.5. Wschooling is a simple step function of the number 

of dolphins at a patch:  

𝑊𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔  =  {
1         𝑖𝑓 𝑛 =  0,
1 +  𝜎 𝑖𝑓 𝑛 >  0

 ,      

where σ is the schooling preference and n is the number of dolphins present. The total weight 

of a cell is used in a random biased selection of neighbouring cells to move to. The number of 

moves per hour is randomly drawn from a Poisson distribution, whose scaling exponent is the 

variable pmove. Each dolphin has a location (x-y coordinates) recorded at every time step (1 

hour). 

Final collector – A final collector is created to keep record of group size distributions, 

analyse home range characteristics, and summarize the recorded measurements on hourly 



 

 

displacement distributions, depth distributions, group size distributions, and home range 

characteristics. Final collector writes the summarized output to a file. 

Patches – The spatial units in Netlogo are the patches, which represent land or ocean surface 

in a 0.75 x 0.75 km resolution. The patches have the properties p_depth (the average water 

depth of the patch) and p_visits (an indicator of the number of hourly steps at which dolphins 

were present at the focal patch). There are no patch-specific actions; patches do however 

report their weights to dolphins in the dolphin move procedure.  

Global parameters – Dolphin-specific global parameters, defined on the GUI as sliders or 

input fields, are: pmove (the movement activity exponent λ which determines the number of 

moves a dolphin makes per hour, by random selection of a number from a Poisson 

distribution with exponent λ), home-range-exponent (η, the parameter that is used to describe 

the patch home range weight), depth-preference-exponent (δ, the parameter that is used to 

describe patch depth weight), and pjoin (σ, the parameter that is used to describe patch 

dolphin weight). These parameters influence dolphin movement activity (λ) and direction (η, 

δ, and σ; see section ‘Dolphins’ above). 

Scales – The spatial configuration of the patches in the netlogo model is set to a 286 km by 

600 km GIS map of the west coast of the North Island of New Zealand. The spatial units are 

proportioned to 0.75 by 0.75 km and the temporal grain is 1 hour. This means that the 

standard move procedure takes time steps of an hour. Although no hard run limit is set, the 

model is designed to cover the movements of dolphins over a single season. No difference is 

made in the model between day and night as dolphins are active both day and night. 

Process overview and scheduling 

The model is run through the move procedure each hour, in which dolphins are displaced. For 

each dolphin, the following procedure is used: 



 

 

• A random number of steps to be taken to neighbouring patches within an hour is 

drawn from a Poisson distribution with movement activity exponent λ.  

• For each step, a neighbouring patch to move towards is selected using a biased 

random selection procedure, based on the patch weight of the neighbouring patches 

(see Table 2).  

• Land patches (p_depth < 0) are excluded from the list of neighbouring patches to 

potentially move to.  

The go-season procedure consists of three phases: 

• First, dolphins move around during the spin-up phase, in which the home range centre 

is determined as the centre location of a dolphin's movements. The length of the spin-

up phase can be set using the slider in the interface.  

• Second, movements are simulated for 90 days (one "season"). Simulation length in 

days can also be adjusted with a slider in the interface.  

• Third, data (i.e. group size distribution, hourly displacement length distribution, home 

range characteristics, and depth distribution) is collected for all movements during the 

simulation by the FinalCollector.  

The go-season-dolphin-distribution procedure consists of the following phases: 

• For a number of iterations given by the number-of-seasons slider on the GUI, (i) an 

initial setup of dolphin locations is made, (ii) a spin-up phase is run (in which 

dolphins’ home range centres are set), and (iii) movements are simulated for a number 

of iterations given by the season-length slider in the GUI.  

• After the simulation, the number of times hourly displacements ended up on a certain 

patch (i.e. p_visits) is written to a file for all patches with p_visits > 0, by the 

FinalCollector. This file can be used to make estimates of K99, K95, and K50 



 

 

distribution maps in R (‘ProbabilityDistributionMaker2.1.R’ in ‘Output/Probability 

distribution’).  

   

2. Design concepts 

Here, we highlight the design concepts of the model: 

• Dolphins are aware of conspecifics, ocean depth, and distance from the home range 

centre within a detection radius of approximately < 1 km, thereby spanning the 8 

neighbouring patches.  

• Dolphins are attracted to other dolphins, shallow waters, and prefer to stay close to 

their home range centres.  

• The starting position and displacements of dolphins are stochastic procedures.  

• Dolphins are attracted to each other, however no additional active collective behaviour 

is modelled. Dolphins moving to the same location are drawn in by the same attractor.  

• Dolphins keep track of their own path. At the end of the simulation, the FinalCollector 

uses these dolphin-specific paths to calculate home range characteristics.  

   

3. Details 

Initialization 

Water depth initialization –The GIS map is based on a GIS layer showing the northwest of 

the North Island of New Zealand with the outline of the North Island and information on 

water depth. The GIS data are stored in txt files in the subfolder Rasters. These are asci grids 

with a custom read-function.  



 

 

Dolphin location initialization – There are 63 dolphins present in the modelled area; the 

number of simulated dolphins can be set using a slider in the interface. During the setup 

procedure, the desired number of dolphins is created and distributed over the coastal waters in 

three steps. First, a random number is generated to indicate whether a dolphin will be 

positioned in the centre area, between Kaipara Harbour and Kawhia (yellow outlined area in 

Fig. 1), with a 50% probability, or north or south of this area (both p = 0.25). Second, the 

depth (d) of the cell at which a dolphin is randomly placed is drawn from an exponential 

distribution: d = - ln(x)/ 0.05, where x is a random number (0 ≤ x ≤ 1) and the value 0.05 is 

based on an exponential fit to depth distribution data obtained from surveys with equal survey 

effort with respect to distance from shore (Slooten et al. 2004, 2006; Rayment and du Fresne 

2007). Third, a starting location is then drawn from all cells that meet these two requirements.  

Dolphin movement – For dolphin movement, the parameters are set in sliders and input 

boxes in the interface and are thereby user defined.   

Input 

GIS data for bathymetry was used as input for the model (see initialization).  

  



 

 

Supplementary Methods B 

Assuming BoF follows a quadratic form through the 3-parameter space, we calculated the 

parameter combination that minimizes the total BoF (i.e. sum of the four BoFs) using an 

analytical approach.  

 

Our quadratic form lies in a three dimensional space, based on the home-range exponent, 

movement activity exponent, and schooling preference. Here we refer to these parameters as 

x1, x2, and x3 for simplicity. Let the parameter values that minimize BoF be α1, α2, and α3. 

These are the deviations from the centre point (0,0,0), at which the quadratic form should 

have its minimum. The quadratic form in three dimensions with an offset of the centre point 

can be written as: 

 𝑦 =  [(𝑥1 − 𝛼1) (𝑥2 − 𝛼2) (𝑥3 − 𝛼3)] [
𝑎 𝑏 𝑐
𝑏 𝑑 𝑒
𝑐 𝑒 𝑓

] [

(𝑥1 − 𝛼1)
(𝑥2 − 𝛼2)
(𝑥3 − 𝛼3)

] ,  (eq. 1) 

which can be rephrased as: 

 𝑦 =  𝑎𝛼1 + 𝑑𝛼2 + 𝑓𝛼3 + 2𝑏𝛼1𝛼2 + 2𝑐𝛼1𝛼3 + 2𝑒𝛼2𝛼3⏟                                
𝛽0

+ −2(𝑎𝛼1 + 𝑏𝛼2 + 𝑐𝛼3)⏟              
𝛽1

∙

𝑥1 + 𝑎⏟
𝛽2

∙  𝑥1
2 + −2(𝑏𝛼1 +  𝑑𝛼2 + 𝑒𝛼3)⏟              

𝛽3

 ∙  𝑥2 + 𝑑⏟
𝛽4

 ∙  𝑥2
2 + −2(𝑐𝛼1 +  𝑒𝛼2 + 𝑓𝛼3)⏟              

𝛽5

 ∙  𝑥3 +

 𝑓⏟
𝛽6

 ∙  𝑥3
2 + 2𝑏⏟

𝛽7

 ∙  𝑥1𝑥2 + 2𝑐⏟
𝛽8

 ∙  𝑥1𝑥3 + 2𝑒⏟
𝛽9

 ∙  𝑥2𝑥3.      (eq. 2) 

We use a linear regression model in R to estimate β0, β1, ... , β9. These estimates are used to 

calculate α1, α2, and α3 with the following approach: 

 𝛽1 = −2𝛽2𝛼1 − 𝛽7𝛼2 − 𝛽8𝛼3, hence, 

 𝛼1 = 
𝛽1+ 𝛽7𝛼2+ 𝛽8𝛼3

−2𝛽2
.         (eq. 3) 



 

 

 𝛽3 =  −𝛽7𝛼1 − 2𝛽4𝛼2 − 𝛽9𝛼3, hence, 

 𝛼1 = 
𝛽3+ 2𝛽4𝛼2+ 𝛽9𝛼3

−𝛽7
.         (eq. 4) 

Combining eq. 3 and 4 gives: 

 𝛼2 = 𝑘1(2𝛽2𝛽3 − 𝛽1𝛽7) + 𝛼3𝑘1 ∙ (2𝛽2𝛽9 − 𝛽7𝛽8),   (eq. 5) 

where 𝑘1 = 
1

𝛽7
2−4𝛽2𝛽4

 .  

 𝛽5 =  −𝛽8𝛼1 − 𝛽9𝛼2 −  2𝛽6𝛼3, hence, 

 𝛼1 = 
𝛽5+ 𝛽9𝛼2+ 2𝛽6𝛼3

−𝛽8
.         (eq. 6) 

Combining eq. 4 and 6 gives: 

 𝛼2 = 𝑘2(𝛽5𝛽7 − 𝛽3𝛽8) + 𝛼3𝑘2 ∙ (2𝛽6𝛽7 − 𝛽8𝛽9),    (eq. 5) 

where 𝑘2 = 
1

2𝛽4𝛽8−𝛽7𝛽9
 .  

We now calculate the last minimizing parameter value, α3, from eq. 3 and 5: 

  𝛼3 = 𝑘3(𝑘2(𝛽5𝛽7 − 𝛽3𝛽8) − 𝑘1 ∙ (2𝛽2𝛽3 − 𝛽1𝛽7)),   (eq. 6) 

where 𝑘3 = 
1

𝑘1(2𝛽2𝛽9−𝛽7𝛽8)− 𝑘2(2𝛽6𝛽7−𝛽8𝛽9
 .  

 


