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ABSTRACT 

An intersessional correspondence group has been established since IWC/SC65b to contribute development of a guideline on the 
techniques and underlying assumptions of SDMs (species distribution models) based on up-to-date and comprehensive knowledge 
(IWC, 2015). The group conducted a preliminary review of SDMs applied to baleen whales (Murase et al., 2015) and preliminary 
reviews of machine learning methods which are commonly used as SDMs (Murase et al., 2016). During the intersessional period 
from IWC/SC 66b to 67a, the group updates Murase et al. (2015) adding information from Murase et al. (2016) as well as 12 peer-
reviewed papers published after March 2015. A total of 48 papers are now considered in the updated review. The group intends to 
finish the work during the intersessional period from IWC/SC 67a to 67b. 

INTRODUCTION 
The intersessional correspondence group “Applications of species distribution models (SDMs)” has been 
established by the EM working group since IWC/SC 65b (IWC, 2015). Terms of reference of the intersessional 
corresponding group ("SDM group" hereafter) are to "develop guidelines and recommendations for best practice 
in species distribution modelling". In the first year, the SDM group conducted a preliminary review of SDMs 
applied to baleen whales and submitted the results to IWC/SC 66a (Murase et al., 2015). In the second year, the 
SDM group conducted preliminary reviews of machine learning methods applied as SDM and submitted the results 
to IWCSC/66b (Mursae et al., 2016). During the intersessional period from IWC/SC 66b to 67a, the SDM group 
updated Murase et al. (2015), adding information from Murase et al. (2016) as well as 12 peer-reviewed papers 
published after March 2015. This paper presents the results of the update. 

 Within the Scientific Committee of the International Whaling Commission (IWC/SC), a generalized 
additive model (GAM) based SDM was developed in the late 1990s for generating an abundance estimate for 
Antarctic minke whales (Balaenoptera bonaerensis) (Hedley et al., 1999). Traditionally, abundance of baleen 
whales for the purpose of management under the Revised Management Procedure (RMP) has been estimated using 
statistical design-based methods, such as distance sampling (Thomas et al., 2010), according to a guideline from 
the IWC/SC (IWC, 2012). The Sub-Committee on the RMP of the IWC/SC is currently trying to develop a 
guideline for model-based abundance estimation methods, mainly focusing on GAMs and a pre-meeting is to be 
held prior to IWC/SC 67a to test the proposed new guideline against test cases. 

Together with the review conducted by the SDM group and the outcome from the pre-meeting on the 
proposed new guideline for model-based abundance estimation methods, the SDM group plans to complete the 
task assigned to the group during the intersessional period from IWC/SC 67a to 67b. 

GENERAL REVIEW OF SDMS 

Background 
Spatial distribution of biological organisms is one of the fundamental information sources used for management 
and conservation of the target species. Classically, geographic locations of target species’ occurrence are plotted 
on maps to understand their spatial distributions. Application of species distribution models (SDMs) has 
proliferated since the 1990s in parallel with the advancement of computing power, software such as geographic 
information systems (GIS) and statistical techniques (Palacios et al., 2013). Application of SDMs to baleen whales 
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started in the late 1990s and the number of studies has been increasing in recent years. In this manuscript, a 
statistical model relating occurrence of a species to its environment within a certain time period is termed an SDM. 
Such a model can be used to predict spatial distributions of the target species once the model is constructed. An 
SDM is not a mechanistic model that can deal with dynamic processes of the spatial distributions but an empirical 
model that can incorporate observed relationships between occurrence of species and their environment at a certain 
time period (Palacios et al., 2013). A SDM can also be called as a snapshot model, being static rather than dynamic. 

 Other terms, such as habitat distribution model (Guisan and Zimmermann, 2000), ecological niche 
model (Peterson et al., 2011) and resource selection function (Manly et al., 2002), are sometimes used 
interchangeably with SDM. Habitat, niche and resource selection modelling are important and interesting topics 
in the field of ecology, but the definition of these terms can be bewildering and the interpretation of output from 
models in these contexts is sometimes difficult, especially for baleen whales as they can use a large geographic 
area and display complex behaviour such as migration between breeding and feeding grounds. A GAM-based 
spatial model estimating abundance which has been corrected for uncertain detection via the distance sampling 
method is specifically called a density surface model (DSM) (Miller et al., 2013). The term “SDM” is used 
throughout this manuscript because the main focus is prediction of spatial distribution of target species. However, 
it should be noted that within the SDM framework, there is also scope for addressing ecological questions and 
hypotheses, but one does have to be careful about the selection and interpretation of explanatory and/predictor 
variables. Detailed textbooks dealing with these kinds of models are available, such as Franklin (2009) and 
Peterson et al. (2011), and these are referred throughout this manuscript. 

A review paper of habitat modelling techniques for cetaceans was published in Marine Ecology 
Progress Series in 2006 (Redfern et al., 2006), and a later review of the application of SDMs to marine species 
was also published by Robinson et al. (2011). A series of workshops on habitat modelling for marine mammals 
have been held at the Biennial Conference of the Society for Marine Mammalogy since 2001, and these activities 
led to the theme section in the journal Endangered Species Research titled “Beyond Marine Mammal Habitat 
Modeling” (Gregr et al., 2013). Several papers in that theme section are reviewed in this manuscript. 

 The aim of this review is threefold. First, general aspects of SDMs are briefly reviewed. Second, 
applications of SDMs on baleen whales are reviewed. To accomplish the second aim, a total of 48 published papers 
are reviewed. Finally, preliminary recommendations are provided to develop practical guidelines. Some habitat 
modelling studies did not predict spatial distributions, even if similar statistical models to SDMs were used (e.g., 
Friedlaender et al., 2006). Habitat modeling studies without prediction of spatial distribution are not considered 
fully in this manuscript. Similarly, geostatistical methods such as inverse distance weighting and kriging have also 
been used to predict spatial distributions of baleen whales. However, geostatistical methods are not reviewed fully 
in this manuscript because, with this method, spatial distribution of species are predicted based on geographic 
coordinates without consideration of environmental factors/drivers. 

Data for SDMs 

Data on occurrence/abundance of species (response variable)  
To construct SDMs, data on geographic locations of observed species (i.e., response variable) and environmental 
data at the time of observations (i.e., explanatory or predictor variables) is required. Geographic locations and 
timestamps of the observations are fundamental data for SDMs. There are two basic types of response variables: 
(i) occurrence (when and where individuals and groups were detected during a survey) and (ii) abundance (i.e., 
number of individuals detected). Abundance (or, equally, density) data can be considered an extension of 
occurrence data. Probability of occurrence can be estimated if occurrence data are used, while abundance can be 
estimated if abundance data are used. 

If occurrence or abundance data are obtained from a target area based on survey activity recording when 
and where search effort was undertaken (regardless of whether such a survey is based on a predetermined statistical 
survey design, or an opportunistic, non-random design), both occurrence (i.e. presence) and absence data can be 
obtained. In contrast, data such as telemetry and catch-without-effort data can only provide occurrence data. SDMs 
can be categorized by four approaches based on available response variables: (i) presence/absence, (ii) presence 
only, (iii) presence/background, and (iv) presence/pseudo-absence. Background data implies the existence of co-
collected environmental data in a target area. Pseudo-absence implies existence of environmental data in a target 
area, but environmental data at occurrence positions are excluded. Presence/background and presence/pseudo-
absence approaches were developed to compensate cases when absence data are not available (see Phillips and 
Elith (2013) or Hastie and Fithian (2013) for further discussion). 
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Environmental data (explanatory/predictor variables) 
There are three categories of environmental data which can be used in SDMs targeting marine species: (i) seafloor 
topographic variables, (ii) physical and chemical oceanographic variables, and (iii) biological variables. One of 
the main topographic variables used is bottom depth. Several variables can be calculated using bottom depth data 
such as slope, bottom complexity and isobath. Application of topographic variables to studies on mobile vertebrate 
was reviewed by Bouchet et al. (2014). Bottom substrate can also be considered as a topographic variable. Distance 
from topographic features, such as a coastline or a shelf break, can be used as explanatory variables, as these can 
be assumed to be potentially informative aliases or proxies for biological/ecological processes influencing the 
distribution of target species. Examples of physical and chemical oceanographic variables are temperature, salinity, 
sea surface height, current speed and direction, frontal boundary, mixed layer depth, dissolved chemicals and sea 
ice concentration; some of these variables were reviewed by Hobday and Hartong (2014). Chlorophyll-a (Chl-a) 
concentrations and prey densities are commonly used biological variables, but information on predators and 
competitors can also be used as variables if available. Some of the satellite-derived sea surface variables, such as 
temperate (SST), sea-surface height (SSH) and its anomalies (SSHa), current and sea ice concentrations, are 
available through a number of agencies without cost for non-commercial use (e.g., National Snow and Ice Data 
Center: www.nsidc.org). Satellite data are potentially useful explanatory variables for baleen whales as spatial 
coverage of most of them are global, often with frequent re-sampling over days, weeks or months. However, some 
of satellite data such as Chl-a and SST are susceptible to cloud cover (i.e. missing data due to cloud cover). To 
overcome such a problem, output from ocean models are now being used in SDM (e.g. Becker et al., 2016). Output 
of ocean models can be used both retrospective and forecast analyses. Geographic coordinates (e.g. longitude and 
latitude) might be used as explanatory variables to take account of spatial variations that cannot be captured by 
environmental factors alone, but, of course, such relationships are of little or no use in testing ecological hypotheses 
if there are no inferences upon the actual underlying ecological processes at work across geographical space. As 
well, spatial coordinates are critical for analyses that can account for spatial autocorrelation amongst 
environmental variables (e.g. Mantel’s tests) when considering their effect on distribution patterns of species (e.g. 
Friedlaender et al., 2006; see below for more details). 

Spatial and temporal scales of data 
It is ideal that both response and explanatory variables are recorded simultaneously. However, necessary 
environmental data might not be recorded at the time of observation of species because of availability of 
measurement instruments or logistical constraints. Furthermore, environmental data covering the entire target area 
is required to predict, via interpolation and/or extrapolation, the spatial distribution of the target species. In this 
way, environmental data are generally more useful than geographical coordinates for interpolation and/or 
extrapolation if one assumes relationships between environmental covariates and densities of target species remain 
stable over the study area. Principally, selection of spatial and temporal scales of environmental data should be 
based on sound ecological reasoning as well as objective of the analysis. However, availability of data could limit 
such a selection. For instance, if the coarsest spatial and temporal scales of environmental data are 5×5 km grid 
cell and month, respectively, resolutions of other data with finer resolutions should be resampled to match the 
coarsest resolutions. 

Types of SDMs 
Several types of statistical models are used as SDMs. These models can be classified into three methods according 
to Hijmans and Elith (2017): (i) regression methods, (ii) profile methods and (iii) machine learning methods. 
However, some methods are not easily slotted into this classification, and these are grouped under other methods 
in this manuscript. Ensembles of models are also mentioned here briefly. As mentioned in the previous section, 
SDMs can be classified based on type of response variables. Classification of some major SDMs by statistical 
models and types of response variables is summarized in Table 1. The presence/pseudo-absence approach can be 
considered as a special case of the presence/absence approach. Statistical models which can deal with 
presence/absence data can basically deal with presence/pseudo-absence data. 

Regression methods 
A general linear model is a fundamental regression method that assumes a linear relationship between response 
and explanatory variables. A general linear model assumes the response variable is continuous and normally 
distributed. However, relationship between spatial distribution of species and their environment could be more 
complex. A generalized linear model (GLM; McCullagh and Nelder 1989) allows a relaxing of the assumptions 
of a general linear model. A GAM (Wood, 2006) further allows non-linear relationships. A GAM is now 
commonly used as SDMs for whales to deal with such complexities. GLM and GAM require presence/absence 
data. Abundance and density, instead of presence data, can also be used in these models. GAMs are particularly 
favoured owing to their flexibility for allowing relationships (existing or, admittedly, spurious) between response 
and independent variables to drive the fitting process, and not pre-conceived constraints on model format. As noted 
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above, a GAM-based spatial model for estimating whale abundance (density surface model; DSM) has also been 
developed (Miller et al., 2013). 

Profile methods 
In the profile method, distinctive environmental conditions at locations of presence are identified through values, 
such as means and ranges. The profile method is best suited to presence-only data. The habitat suitability index 
(HSI) (Verner et al., 1986), the bioclimatic analysis and prediction system (BIOCLIM) (Busby, 1991), and 
DOMAIN (Carpenter et al., 1993) are used as SDMs. Relative environmental suitability model (RES) (Kaschner 
et al., 2006) can be considered as a type of HSI. 

Machine learning methods 
In the machine learning method, species distributions in relation to their environment are determined based on 
certain rules. Basically, presence/absence data are required in the machine learning methods. Decision-tree based 
models such as random forest (RF) (Breiman, 2001) and boosted regression tree (BRT) (Elith et al., 2008) are 
categorized as machine learning methods (see also De’ath (2007) and De’ath and Fabricius (2000) for further 
details). Other models, such as Genetic Algorithms (GA) (Holland, 1975), Bayesian Networks (BN) and support 
vector machine (SVM) (Guo et al., 2005) are also used as SDMs. A maximum entropy-based method called 
MaxEnt (Elith et al., 2011) is specifically designed to use presence/background data. Because models categorized 
as the machine learning method are diverse, their characteristics are briefly described below. 

Random forests 
Random forests (RF) is part of a family of robust methods known as non-parametric. RF was developed by 
Brieman (2001) and, like other machine learning techniques, it has quickly become popular among the data science 
community because of its ability to model the complex structure of high-dimensional data sets. At its core, RF is 
a classification technique that combines many single decision trees in an embedded way to calculate the importance 
of each predictor. RF is also considered an ensemble method because it aggregates the results of multiple, 
independently generated classification trees into an averaged prediction. 

 RF is a classification and regression tree (CART) method based on bagging. Bagging generates n 
bootstrap samples, builds a model for each, and then averages the resulting models across bootstrap aggregates. 
The RF algorithm is executed by bootstrapping (with replacement) 63% of the data and generating a “weak learner” 
based on a CART for each bootstrap replicate. Within the pre-set specification (e.g. node depth and number of 
samples per node) each CART is unconstrained (grown to fullest) and prediction is accomplished by taking the 
“majority votes” across all nodes in all random trees. At each replicate the data not used to construct the tree [out 
of bag (OOB)] are used for validation, providing a quasi-independent validation of model fit. Covariates are 
randomly selected at each node and variable importance is assessed using the mean decrease in accuracy (MDA) 
by dividing the standard error by the misclassification rate. The number of covariates randomly selected at each 
node is defined by m (commonly defined as the square root of the number of covariates). The contribution of 
covariates can also be obtained with the Gini Index. Each time a node split occurs based on a particular variable, 
the Gini impurity criterion for the two descendent nodes is less than the parent node. The Gini index is calculated 
by summing the Gini decreases for each individual variable over all trees in the forest. 

 Owing to its unique approach to modelling, the use of RF in SDM has proven robust and stable. For 
marine taxa, several studies have successfully applied RF to seabird survey (Oppel and Huettmann 2010, Oppel et 
al. 2012, Renner et al. 2013, Liske et al. 2014) as well as tracking data (Scales et al. 2015). These studies should 
constitute excellent background material for applications with cetaceans. An area of focus in SDM has been the 
assessment of the performance of RF relative to various other modelling techniques (Marmion et al. 2009a, b). RF 
also has been used to assess the relative performance of models trained on abundance data and those trained on 
presence-absence data (Howard et al. 2014). RF is included in the suite of techniques for ensemble forecasting of 
species distributions [along with Generalized Additive Models (GAM), Maximum Entropy (MaxEnt), and Boosted 
Regression Trees (BRT)] that are implemented in the extremely popular BIOMOD platform (Araujo and New 
2007, Thuiller et al. 2009, Thuiller 2014). To the best of our knowledge, RF has not been used directly as a SDM 
approach with cetaceans, but this is only a matter of time since the methodology is well established and is well 
suited for cetacean data sets, either as abundance or as presence-absence. Because seabirds have great similarities 
with cetaceans in terms of ecology and data collection techniques, the studies of Oppel and Huettmann (2010), 
Oppel et al. (2012), Renner et al. (2013), Liske et al. (2014), and Scales et al. (2015) provide excellent background 
material for applications of RF as SDM with cetaceans. We also note that a recent SDM study used GAM to 
generate habitat-based cetacean density predictions for a large number of cetacean species in waters of the U.S. 
Atlantic and Gulf of Mexico, and then implemented RF to resolve ambiguity in models containing similar species 
due to difficulties in field identification (Roberts et al. 2016). 
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Genetic algorithms 
Originally developed by Holland (1975), genetic algorithms (GA) are a rule-based optimisation technique for 
supervised classification. They are thought to work well in situations involving complex interactions between 
many variables, particularly when derivative-based techniques prove problematic and complete enumeration of a 
search space for an optimal solution is not practical (Haupt and Haupt, 2004). Advances in computing power over 
the last 30 years have seen widespread uptake of GA in a variety of disciplines, including for species distribution 
modelling (SDM) in ecology. Stockwell and Noble (1992) introduced the earliest system for GA-based rule-set 
classification of species distributions according to environmental predictors. Termed GARP (Genetic Algorithm 
for Rule set Production), the Stockwell framework has proved a popular modelling choice in the applied ecological 
literature, showing over 1,000 Google Scholar citations over the period 2000-2015 for Stockwell and Peters’ 
(1999) exposition of the technique. Variants of GARP, DK-GARP (Stockwell and Noble, 1992) and OM-GARP 
(Muñoz et al., 2009) were also developed  

 Genetic algorithms are a stochastic search algorithm motivated by the success of biological evolution 
and the processes of natural selection. They work to iteratively “evolve” a set of rules, evaluated against an 
objective function, to achieve some defined optimisation goal (Haupt and Haupt, 2004). For purposes of clarity, it 
is useful to immediately frame this in the context of SDM, in which: 

i) The optimisation goal is to obtain the best predictive model of species occurrence based on point locations 
of species observations and a suite of geographically referenced environmental covariates; 

ii) The objective function is typically formulated as the predictive accuracy of a model evaluated against an 
independent set of test data (i.e. data not used in forming the model rules); and, 

iii) The set of rules defines the way predictors relate to the probability of species’ occurrence. 

At each iteration (i.e. generation), selection is achieved by choosing optimal rule sets from among many candidates 
based on improvement of the objective function. To a restricted set of the best solutions, GA then applies analogues 
of reproductive processes, such as mutation and crossover, to create subsequent generations of solutions (Mitchell, 
1996). Mutation modifies one or more aspect of a rule from its initial state in order to decrease the likelihood that 
candidate solutions become trapped at local minima. Genetic recombination is simulated via crossover operations, 
in which characteristics from two or more “parent” solutions are combined to form a “child” for the next generation. 
The basic premise of crossover is that combining several good solutions has the potential to come up with an even 
better one. Candidate solutions evolve through iterative modification of rule sets, either for a pre-specified (large) 
number of iterations or until no further improvements in the objective function can be found. GARP belongs to 
the class of SDM known as presence/background methods (sometimes called presence/pseudo-absence; see 
Renner et al., 2015 for a review of terminology) that make use of species occurrence data but must infer species’ 
absences from areas within the study domain where the species has not been reported (Franklin, 2009).  

 Cetacean SDM based on GA are relatively rare, but not unknown. For a variety of fish and cetacean 
species, Ready et al. (2010) compare several different methods for SDM including GARP, RES, MaxEnt, GLM 
and GAM. Of direct relevance to this review, data were modelled for southern bottlenose whale (Hyperoodon 
planifrons) and fin whale (Balaenoptera physalus) from the Southern Ocean, and harbour porpoise (Phocoena 
phocoena) from the North East Atlantic. Results from different SDM methods were variable across fish and 
mammal species, but GARP consistently performed poorly. MacLeod et al. (2008) compared four SDM methods 
for modelling the occurrence of the harbour porpoise (Phoceoena phocoena) in the Sea of Hebrides, Scotland. The 
methods compared were GARP (using the default settings of DK-GARP), GLM, a PCA-based approach 
(Robertson et al., 2001) and ENFA (see below for ENFA). The study showed that all four techniques produced 
statistically equivalent results, with point estimates of AUC in the range 0.74-0.82. Similarly, spatial predictions 
for the 12 sub-areas were strongly and significantly correlated between all four modelling techniques.  

 There are no known advantages to using GA (including GARP) in relation to SDM studies of cetacean 
species. Many of the issues associated with applying SDM to cetaceans are unlikely to be able to be directly 
addressed through a GA framework, including issues related to paucity of data, observer biases, and a lack of 
direct links between sightings and environmental correlates during migratory behaviour. In light of these 
limitations, including the poor predictive performance of GARP shown in several studies, the approach is currently 
not recommended for developing SDM for cetacean species. 

Support Vector Machines 
The Support Vector Machine (SVM) method is a type of machine learning method for statistical pattern 
recognition. That is, supervised learning is performed when a training dataset is analyzed to develop an algorithm 
that is used to assign results to new examples in a test dataset. SVMs were originally introduced as a binary 
classifier (Vapnik 1998). Since then it has been extended to situations involving multiple classes, 1-class present 
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only (e.g., untrained algorithms), partially identified classes, and even regressions. Basically SVM uses a 
functional relationship known as a kernel to map data onto a new hyperspace in which complicated patterns can 
be more simply represented. Because SVM are not based on characteristics of statistical distributions there is no 
theoretical requirement for observed data to be independent, thereby overcoming the problem of auto-correlated 
observations, although model performance will be affected by how well the observed data represent the range of 
environmental variables. In its classical implementation, a 2-class SVM uses two classes (e.g., presence/absence) 
of training samples within a multidimensional feature space to fit an optimal separating hyperplane in each 
dimension. In this way, SVM tries to maximize the margin that is the distance between the closest training samples, 
or support vectors, and the hyperplane itself. The classification can be modeled with a linear or non-linear 
algorithm. For example, presence of known locations of rare tree species and absent locations without these rare 
trees, along with the physical and biological characteristics of both types of locations, were used to predict the 
potential spatial distribution of the rare tree species (Pouteau et al. 2012). Distribution maps of a fish species were 
modeled from presence/absence data and 19 physical-chemical and environmental variables from freshwater rivers 
in northern Italy (Tirelli et al. 2012). The 2-class SVM has been generalized to a multiclass SVM to accommodate 
data that have been labeled into a finite set of classes. The dominant approach for doing so is to reduce the 
single multiclass problem into multiple binary classification problems, though one step likelihoods have also been 
attempted. Typically if absence data are not available or unreliable, then pseudo-absence data are generated.  An 
example of presence only data are museum-collected locations of animals.  An example of potentially unreliable 
absence data is absence of a mobile species since it is possible the survey just by chance did not see a mobile 
animals in a particular type of habitat or absence of an invasive species that has not yet spread to an area.  To 
analyze the present-only format data Scholkopf et al. (1999) developed a one-class SVM.  For example, Guo et 
al. (2005) used the one-class SVM methods to map the potential distribution in California of a tree virulent 
pathogen called Sudden Oak Death. Drake et al. (2006) used presence of 106 species in mountains of the Swiss 
alps along with nine environmental variables to model their distributions, thus interpreting this as the species 
ecological niche (a multidimensional environmental space). If the data are not labeled into categories or only some 
of the data are labeled, the SVM methodology was expanded to support vector clustering (SVC) which attempts 
to find natural clustering of the data to groups, and then map new data to these formed groups.  An advantage of 
this method is there are no assumptions on the number or shape of the clusters in the data (Ben-Hur et al. 2001).  
In SVC, data points are mapped from data space to a high dimensional feature space using a kernel function. In 
feature space the smallest sphere is searched for that encloses the image of the data using the Support Vector 
Domain Description algorithm. This sphere, when mapped back to data space, forms a set of contours which 
enclose the data points. These contours are interpreted as cluster boundaries, and points enclosed by each contour 
are associated by SVC to the same cluster. The basic idea behind support vector regression is to map the data into 
a high-dimensional feature space via a nonlinear mapping and do linear regression in this space. In essence, linear 
regression in a high dimensional feature space corresponds to nonlinear regression in a low dimensional space. 

 SVMs have been applied successfully to text categorization, handwriting recognition, gene-function 
prediction, and remote sensing classification, demonstrating the utility of the method across disciplines, proving 
that SVMs produce very competitive results with the best available classification methods. However, they have 
been applied to ecological predications only in the last decade and not frequently (examples were mentioned 
above). To date, SVMs have not been used as SDMs of cetaceans. Though, it appears to be an appropriate tool to 
investigate developing cetacean SDMs for rarely encountered species or in situations with limited or unreliable 
effort information. 

Bayesian Networks 
Bayesian networks (BN) are a kind of probabilistic graphical models that correlative and causal relationship among 
variables are represented graphically and probabilistically. BN are categorized as a kind of machine learning 
methods. BN also called in different names like directed Acyclic Graphical Models, Bayesian belief networks and 
Bayes network. Text books of BNs are available such as Nielsen and Jensen (2009), Pourret et al. (2008) and 
Scutari and Denis (2014). Several reviews and guidelines for BNs in the context of environmental and ecological 
studies are also available (Aguilera et al., 2011; Chen and Pollino, 2012; Marcot et al., 2006; McCann et al., 2006; 
Uusitalo, 2007). BN have used as species distribution models (SDMs) since early 2000s. BN mainly consist of 
qualitative and qualitative components. In the qualitative component, causal relationships among variables are 
represented as directed acyclic graphs (DAGs). In DAGs, nodes (variables in ellipses) are linked by arcs (also 
called as edges and arrows) to show causal relationship between nodes. The initial structures of DAGs can be 
constructed based on known causal relationship (e.g. information from literature) and/or expert knowledge. In the 
qualitative component, degree of belief expressed as probability of a node in a particular state given states of parent 
node assuming that conditionally independent of all its non-descendants, given its parents.  

 BN have been applied as SDMs to a variety of inland vertebrates since early 2000s (e.g. Raphael et al., 
2001; Tantipisanuh et al., 2014). The response variables of these studies were not abundance but presence and 
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absence. Number of published papers using BN as SDMs is small in comparison with other machine learning 
methods. To date, BN have not been used as SDMs of cetaceans. Because of the limitation that variables should 
be discretized in some extent, utility of BN for management of cetaceans could be limited as detailed information 
is lost due the discretization. However, BNs could be useful tool for exploratory research to investigate causal 
relationship among variables based on expert knowledge which cannot be handled by other SDMs. 

Maxent 
Maxent is, at its most basic level, a method for making predictions or inferences from incomplete information 
(Phillips et al. 2006). Maxent generates presence-only models of species distributions by estimating the probability 
of distribution relative to maximum entropy (i.e. uniformity). The probability of a species occurrence is constrained 
as a function of environmental variables included as predictor variables. More precise and detailed explanations 
of the mathematical models used in Maxent are reviewed in Phillips et al. (2006), Phillips and Dudik (2008), and 
in Elith et al. (2011). In order to generate a model of a species’ environmental requirements, Maxent uses a set of 
occurrence localities (presences). The environmental features that can be used in Maxent to predict a species 
distribution can be derived from both continuous and categorical variables. Maxent employs a number of features 
to fit a function of the covariates that include linear, product, quadratic, hinge threshold, and categorical. 
Explanations of the differences in how these are used by Maxent to derive relationships to covariates are provided 
in Elith et al. (2011). To date, Maxent has been used in a number of whale studies as reviewed in this paper. 
Because of the types of data that are required (or not required), it is amenable to a wide range of objectives, study 
areas, and species. 

Other methods 
Hierarchical Bayesian model (HBM) is used as a SDM to deal explicitly with heterogeneity in detection of species 
(Royle and Dorazio, 2008). Other advantages of HBM are as follows: allowing for the explicit propagation of 
uncertainty, and for several sub-models to be seamlessly integrated; allowing for the estimation of abundance 
(through Distance sampling) simultaneously with the estimation of association with environmental variables as 
separate sub-models (see Pardo et al., 2015 for more details). 

In Ecological Niche Factor Analysis (ENFA), species distribution is characterized to take account of contrasts 
between environmental conditions at presence of species and the background in (Hirzel et al., 2002). 

Ensemble modelling 
It was documented that different SDMs applied to the same data sets created different prediction results (Elith et 
al., 2006; Segurado and Araújo, 2004). Ensemble modelling (Araújo and New, 2007) is applied to deal with errors 
and uncertainties of each SDM. Four ensemble methods are proposed by Araújo and New (2007): (i) bounding 
box or generating a consensus forecast for small ensemble size; (ii) showing number of models forecasting 
presence using histogram; (iii) showing probability density function of likelihood of species presence for large 
ensembles and (iv) measuring central tendency (e.g. mean and median).  

Notes on input data 

Sampling of response variable 
It is desirable that the response variable (occurrence of species) be randomly sampled from a target area based on 
robust statistical design, or, if this is too strong an assumption, at least randomly sampled in relation to the 
environmental covariates. Even if data are not sampled randomly, it is ideal to ensure broad coverage, perhaps via 
a systematic survey design, throughout a target area, particularly if distributions of a target species have, in that 
area, have previously not been studied. Obviously, the survey costs, logistics, and requirements for minimum 
useful sample sizes will also influence survey design. However, commercial catch and telemetry data could violate 
such assumptions as the nature of these data sets is basically non-random, and spatial and temporal coverage is 
likely to be limited. It is necessary to check whether the data are potentially biased, both spatially and temporally, 
before the modelling. Careful interpretations of the outcomes of SDMs are necessary if there are such biases. It is 
desirable to use both presence and absence data in SDMs whenever these data are available as it is expected that 
these data contained much information on environmental conditions that constrain presence of species in 
comparison with presence only data.  

Reliability of response variable 
Occurrence of species must be recorded correctly. However, it might not be in some cases such as miss-
identification of species (Conn et al., 2013) and imperfect detection (Laake et al., 2008). Appropriate analytical 
treatment is necessary if either are suspected. Much has been written about biases introduced via heterogeneity in 
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detection probabilities in fauna and flora surveys (e.g., Borchers et al. (2006), Ramsey and Harrison (2004) and 
Thomson et al. (2012) to name but a few examples).  

Spatial autocorrelation of response variable 
Spatial autocorrelation (SAC) in the context of SDMs was reviewed by Dormann et al. (2007). SAC occurs when 
data sampled in close proximity are not independent from each other. In a general sense, samples that are too 
similar, in this example, because they are adjacent in space and time, will yield falsely low variance estimates. 
Independence among data, which is assumed in standard statistical models, is violated if SAC exists and it can 
lead to type I error. Existence of SAC can be checked by some indices such as Moran’s I and Geary’s C, or 
explored using geostatistical or mixed-effects modelling. Several statistical models which can deal with SAC are 
available (Table 2). Whilst it is likely that telemetry data are susceptible to SAC, as the data obtained continuously 
from tagged species, it is possible to minimise this problem via methods such as blocking in space and time (Aarts 
et al. 2008). 

Ecological validity of explanatory variables 
Ideally, selection of explanatory variables should be at least broadly based on ecological reasoning, which can be 
obtained qualitatively as expert knowledge. However, the selection would be arbitrary if such information is not 
available before the modelling. In a predictive modelling context, there may be little or no desire to capture 
information about actual ecological/biological processes—but if it is captured in models, this can probably only 
help. With predictive modelling, the aim is produce models optimised for accurate predictions within the bounds 
of the system of interest (i.e., with little to no extrapolation). Ideally, predictor variables are cheap to collect, and 
plentiful, as the more information will lead to more accurate predictions—any relation they have to the variable of 
interest (here, the presence or densities of species) can be purely coincidental, just as long as it is useful for accurate 
prediction. For more thorough discussions on the differences between predictive and explanatory modelling, see 
Mac Nally (2000) and Shmueli (2010).  

Collinearity among explanatory variables 
Collinearity in the context of SDMs was reviewed by Dormann et al. (2012). Collinearity implies that some of 
explanatory variables, especially in regression methods, are related. If collinearly related variables exist in a model, 
explanatory power of one of the collinearly related variables might be reduced and/or the model can be unstable. 
Collinearity can be serious problem when a selected model is used for prediction where structure of collinearity is 
unknown. Existence of collinearity can be checked using some indices such as variance inflation factor (VIF). 
Several methods which can be applied before modelling or during modelling are available to deal with collinearity, 
as reviewed in Dormann et al. (2012). Hierarchical partitioning is one method that assists in teasing out the effects 
of collinearity with the aim of identifying potentially important explanatory variables (Mac Nally 2000).   

Model Evaluation 
Model evaluation methods for presence/absence data was reviewed by Fielding and Bell (1997). Area under the 
curve (AUC) of receiver operating characteristic curve (ROC) is one commonly used method. For abundance data, 
predictions and overall model performance were compared using explained deviance, average squared prediction 
error (ASPE), and ratios of observed to predicted densities to identify the best models (Forney et al., 2012). 

REVIEW OF APPLICATIONS OF SDMS TO BALEEN WHALES 
A total of 48 published in scientific journals from December 1997 to December 2016 are considered to review 
applications of SDMs to baleen whales.  

Target species, regions and areas 
Target species, regions and areas considered in the published papers are summarized in Table 3. SDMs were 
applied to all baleen whales except pygmy right (Caperea marginata) and Omura’s (B. omurai) whales. SDMs 
were applied to a wide variety of regions and areas, but there are few applications in the Indian Ocean and South 
Pacific. No study was conducted in the South Atlantic. Some papers dealt with multi-species and/or multi-regions.  

Data 

Response variable 
Response variables used in the published papers are summarized in Table 4. Data sets obtained by dedicated 
sighting surveys were used in 24 papers followed by data sets obtained by opportunistic sighting surveys (18 
papers). In this review, surveys conducted based on the DISTANCE sampling method were defined as dedicated 
surveys. Catch data and published data were also used in SDMs. Count (number of animals or abundance) data 
sets were used in 26 papers followed by presence only (12 papers) and presence/absence (9 papers) data sets.  
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Explanatory variables 
Explanatory variables used in the published papers are summarized in Table 5. A total of 31 types of explanatory 
variables were used in the published papers. Bottom depth was the most commonly used variable in the SDMs (39 
papers) followed by sea surface temperature (SST) (31 papers), seafloor slope (24 papers), surface chlorophyll-a 
concentrations/primary production (23 papers), longitude (17 papers), latitude (16 papers), distance to shore (12 
papers) and sea surface height (12 papers). Other variables were used in less than 10 papers.  

Statistical models used as SDMs 
Statistical models used in the published papers are summarized in Table 6. Only two papers considered two 
different statistical models. Other papers used only one statistical model per analysis. GAMs, including one paper 
that used mixed-effects GAM (GAMM), were the most used models (27 papers) followed by MaxEnt (10 papers). 
Other models (BRT, CART, ENFA, GLM, HBM, logistic regression and RES) were used in 4 or fewer papers. 
One paper used a geostatistical method, kernel density smoothing, to predict spatial distribution of baleen whales 
(Laidre et al., 2010). Forney et al. (2012) and Víkingsson et al. (2015) used GAMs as SDMs, but the spatial 
distributions were predicted by geostatistical methods, namely inverse distance weighting (IDW) and kriging, 
respectively. SACs were considered in 6 papers, using various methods. Collinearity was considered in 7 papers. 
Resolutions of grid cells used for spatial distributions were varied among papers (approximately from 1 to 50 km). 

Parameter setting for GAMs 
Some key parameter settings for GAMs are reviewed here as GAMs have been used frequently as SDMs for baleen 
whales. Common parameter settings for GAMs were summarized in Table 7. Some of the settings are specific to 
the mgcv package (Wood, 2006) of the R software (R Development Core Team, 2015). 

Response variables based on animal count data often suffer from overdispersion and zero inflation (i.e., 
more variation than can be explained by a Poisson distribution). To account for this, GAMs (and GLMs) can use 
quasi-Poisson, negative binomial or Tweedie distributions.  

Some GAM parameter settings were not reported in several papers but it was likely that they used default 
settings (which, in general, should not lead to completely incorrect outcomes as Simon Wood, the author of mgcv, 
worked hard to set the defaults to represent an overall reasonable compromise across manifold complex 
considerations). Model selections were based on either GCV, AIC, BIC (Bayesian information criterion) or REML 
(restricted maximum likelihood).  

Whilst GAMs allow flexibility, and for features of the data to drive model parameterisation, it is often 
the case that relationships between explanatory and response variables can be either under or over-described or 
‘smoothed’. For example, a GAM might indicate that density of some species has three or more ‘maxima’ over a 
range of a given environmental covariate. If the covariate represents a biological gradient, is it likely that a 
particular species has several optimal values over such a variable? Therefore, care does need to be taken in pre-
defining (or not) assumptions about ‘wiggliness’ of densities along gradients. 

A GUIDELINE FOR SPECIES DISTRIBUTION MODELLING 
Although there is a number of guidelines for modelling in the context of environmental/ecological studies, ten 
iterative steps in development and evaluation of models proposed by Jakeman et al. (2006) can be considered as a 
good starting point for development of a guideline for SDMs applied to cetaceans. Written statement of these steps 
will help reviewers. The following are general comments on each steps for the purpose of the review of SDMs.  

First step: Definition of purposes for modelling 
In border context, there are at least three purposes of development of SDMs applied to cetaceans: (1) estimation 
of spatial abundance (2) estimation of spatial distribution and (3) investigation on ecological questions (e.g. habitat 
requirement). These purposes might involve interpolation (estimation within a target [survey] area) and 
extrapolation (prediction outside of a target area and future projection). However, these two words can be defined 
differently: interpretation can be regarded as estimation within line transect strip (length of transect times effective 
search width) while extrapolation can be regarded as estimation within a target area. These three are not mutually 
exclusive and some of statistical models can address these at once. Nevertheless, distinction of main purposes for 
modelling is important because they affect details of subsequent model development and evaluation steps. Former 
two purposes are more related to in-depth assessment and management of stocks while the third purpose is more 
related to ecological questions.  

Second step: Specification of the modelling context 
According to the Jakeman et al. (2006), following 9 points should be considered at this step: (1) the specific 
questions and issues that the model is to address, (2) the interest group, including the clients or end-users of the 
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model, (3) the outputs required, (4) the forcing variables (drivers), (5) the accuracy expected or hoped for, (6) 
temporal and spatial scope, scales and resolution, (7) the time frame to complete the model as fixed, (8) the effort 
and resources available for modelling and operating the model and (9) flexibility. Jakeman et al. (2006) considered 
that the crucial point at this step is (6). 

Specific questions and issues that the model is to address 
Following are some examples of specific questions and issues that the SDMs to address: 

• Spatial abundance estimation for the purpose of RMP 

• Investigation on reasons of change in spatial abundance and distribution for the purpose of IA 

• Identification of distribution area of whales to reduce ship strikes in a certain area 

• Investigation on habitat requirements for ecological study 

Interest group, including the clients or end-users of the model 
In general, interest groups of SDMs could consist of managers, scientists, fishers, conservation groups and general 
public though specific combination would be varied from case to case. 

Outputs required 
Primary outputs from SDMs are estimated maps of probability of occurrence and/or abundance. Point estimate 
can also be obtained in the case of abundance. Importance (rank) of environmental variables affecting 
occurrence/abundance can also be obtained from models.  

Forcing variables (drivers) 
This is not applicable to SDMs as forcing variables are not used in the models in general. 

Accuracy expected or hoped for 
Acceptable level of accuracy should be determined by discussion before conducting modelling but it might be 
changes on the course of analysis. 

Temporal and spatial scope, scales and resolution 
Specification of temporal and spatial scope, scales and resolution is closely tied with the purpose of modelling. 
For example, if one aims to estimate spatial abundance and distribution of a stock in a particular season, broader 
spatial area should be covered by the modelling. For instance, in the case of the third circumpolar survey under 
IWC SOWER, it took approximately 40 days by two vessels to cover an area in a 30° longitude sector from ice 
edge to 60°S. In such a case, temporal scale of environmental data (e.g., temperature) for modelling might be 
restricted to month or seasonal mean data. In contrast, if one aims to estimate spatial abundance and distribution 
in a local area (e.g., a bay), may be covered in a few days. In that case, environmental data with high temporal 
resolution might be used but only a fraction of a stock might be studied. Specification might be limited by available 
environmental data. For example, sea surface temperature derived from satellite data is commonly used as an 
environmental data in modelling. However, both temporal (e.g. observed period) and spatial (e.g. grid size and 
cloud cover) coverages are limited. 

Time frame to complete the model as fixed, for example, by when it must be ready to help a decision 
Time frame should be determined by discussion before conducting modelling but it might be changed on the course 
of analysis. 

Effort and resources available for modelling and operating the model 
Identification of effort and resources available for modelling is important to set time frame and required budget. 
Consideration of operation of the model might be necessary if constructed models are applied to new 
environmental data (e.g. temperature) continuously. 

Flexibility; for example, can the model be quickly reconfigured to explore a new scenario proposed by a 
management group 
Flexibility of models used as SDMs should be described although most of them are reasonably flexible for 
reconfiguration. 
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Third step: Conceptualisation of the system, specification of data and other prior knowledge 
A reasonable hypothesis about the relationship between explanatory variables (usually environmental variables) 
and response variable (presence/absence or abundance) should be provided. It is directly related to selection of 
explanatory variables for an initial model.  

Response variable are one from the followings: 

 Presence/absence: Typically collected by sighting survey (either dedicated or opportunistic) as 
sighting effort data are required. 

 Presence only: Typically collected by satellite tags as the data provide only location of cetaceans. 

 Abundance: Typically collected by dedicated sighting survey which records distance and angle of 
sightings, and school size to calculate effective half width and mean school size. 

Type of response variable has a strong influence on selection of model features and families.  

 A variety of explanatory variables may have been used in a given study. The details of data should be 
provided. The followings are some of the examples: 

 In-situ environmental data: Environmental data recorded during field surveys, such as water 
temperature obtained by CTD and prey density obtained by echosounder are used in SDMs. 
Interpolation and/or extrapolation of data for a target area are necessary as these data are recorded 
along track lines in most cases. 

 Satellite data: Environmental data obtained satellite are commonly used in SDMs as the data have 
wide coverage both temporally and spatially. Types of data include such as SST, SSH, sea surface 
chlorophyll-a concentrations (chl-a) and sea ice concentrations. Interpolation and/or extrapolation 
of SST and chl-a data might be necessary in cases of missing values due to cloud cover. Secondary 
data products such as thermal fronts calculated using satellite data are also available for some regions. 

 Terrain data: Digital bottom depth data and variables calculated using the data (e.g. slope) are used 
in SDMs. Distance from terrain futures such as coastline are also used. 

 Ocean model data: Output from ocean model data (e.g. Regional Ocean Modeling System [ROMS]) 
are used in SDMs. 

 Climatological data: Climatological data (e.g. World Ocean Atlas published by NOAA) are used in 
SDMs. 

At this stage, considerations on spatial autocorrelation of response variable and collinearity among explanatory 
variables are also required especially for regression models.  

Forth step: Selection of model features and families 
Although a number of statistical models can be used as SDMs, selection of families (i.e. specific statistical models) 
is limited by features (e.g. types of variables and linear/nonlinear functions). Description of reasons why a 
particular model is selected is desirable. It is preferable to use several models and compare the results. An 
alternative choice could be ensemble modelling if the primary objective is estimation of spatial abundance and 
distribution. However, a major drawback of ensemble modelling is that it cannot be utilized for ecological 
inferences.  

Fifth step: Choice of how model structure and parameter values are to be found 
Choice of model structure (i.e. relation between variables) can be inferred from prior scientific knowledge. 
However, the choice could be limited by availability of explanatory variables for SDMs. Methods to estimate 
parameter values are specific to each statistical model.  

Sixth step: Choice of estimation performance criteria and technique 
Each statistical model has unique methods for parameter estimation performance criteria and technique, and it 
should be described fully.  

Seventh step: Identification of model structure and parameters 
In many cases, this step just consists of dropping or adding of particular parameters to reduce or increase model 
complexity based on steps 5 and 6 above.  
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Eighth step: Conditional verification including diagnostic checking 
There are generally two forms of verifications: quantitative and qualitative verifications. Qualitative (conceptual) 
verification is verification between a real system and a conceptual model, based on qualitative information such 
as expert knowledge. Quantitative (model) verification is verification between conceptual and quantitative models, 
based quantitative criteria such as goodness-of-fit and tests on various residuals.  

Ninth step: Quantification of uncertainty 
The uncertainty associated with abundance can be estimated via methods such as bootstrapping in GAMs. 
However, uncertainty associated with probability of occurrence has rarely been explored.  

Tenth step: Model evaluation or testing (other models, algorithms, comparisons with alternatives) 
Model evaluation using test data have been conducted for probability of occurrence based on AUC. However, it 
has rarely conducted for abundance. Comparison of results among different statistical models is recommended to 
evaluate them. Point estimate (e.g. abundance) comparison is relatively easy but ecological inference might be 
difficult if different models show different results (e.g. shape of response form). 

DISCUSSION 
A wide variety of statistical models as SDMs have been applied to most of the baleen whale species known 
worldwide. The results significantly contribute to expanding our knowledge of whale ecology and behaviour. It 
seems that applications of SDMs to baleen whales up to now are exploratory as most cetacean scientists are still 
in the capacity building stage in this field. In addition, the applications are limited where appropriate data sets for 
the modelling are available. Most studies only applied a statistical model, and comparison of results from applying 
different models to a data set has not been conducted fully. As mentioned above, it was reported that SDMs applied 
to same data sets created different prediction results (Elith et al., 2006; Segurado and Araújo, 2004). Therefore, it 
is recommended that comparison of results of different models should be conducted in future studies. Furthermore, 
ensemble modelling should also be attempted to deal with errors and uncertainties of each SDM. However, it 
should be noted these studies only considered models to deal with probability of occurrence. A study was 
conducted to compare results among SDMs which use count data of seabird as a response variable (Renner et al., 
2013). Renner et al. (2013) also attempted ensemble modelling using count data. Oppel et al. (2012) also compared 
and attempted ensemble modelling using seabird data. We recommend such attempts should also be conducted 
using baleen whale data.  

Construction methods of SDMs in the published literature, as applied to baleen whales, were not 
consistent. For instance, SACs and collinearity were not considered in most of papers, or, at least, not directly 
reported in such studies. It is recommended to consider at least these two factors when constructing SDMs for 
baleen whales as they might have significant effect on the results of modelling, dependent on model objectives.  

GAMs were the most commonly used SDMs applied to baleen whales, probably because an established 
method in the cetacean literature (i.e., Forney 2000; Hedley et al., 1999; Palka 1995) has been available since the 
1990s. There are a number of settings for GAM modelling but there is no consensus method or documentation to 
help set them; although Forney et al. (2012) provides a good summary. The setting will be different for different 
data sets, but some guidelines are required to narrow down the choices. The R package, dsm, is now available for 
density surface modelling (Miller et al., 2017) and it allows testing of a range of settings. It is recommended that 
this point should be considered in on-going work of the RMP sub-Committee, with particular reference to 
development of a guideline for model based abundance estimation method. Setting for other models such as 
MaxEnt should also be considered in the future work. 
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Table 1. Classification of species distribution models (SDMs) based of modelling methods and response variables.  

 

Type 
Response variables 

Presence/absence Presence/background Presence only 

Regression GLM 
GAM - - 

Profile - - 
HSI  

BIOCLIM 
DOMAIN 

Machine 
learning 

CART 
BRT 
RF 
GA 

SVM 

MaxEnt - 

Other HBM ENFA - 

 

 

Table 2. Some examples of statistical models which can deal with spatial autocorrelation (SAC) and other 
correlation structures. 

 
Name of model Abbreviation 

Autocovariate models - 
Spatial eigenvector mapping SEVM 

Generalized least squares GLS 
Conditional autoregressive model CAR 

Simultaneous autoregressive model SAR 
Generalized linear mixed model GLMM 
Generalized estimating equations GEE 
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Table 3. Target species, regions and areas of species distribution models (SDMs) applied to baleen whales. Papers 
published in scientific journals from December 1997 to December 2016 are considered. It should be noted that 
some papers dealt multi-species and/or multi-regions. 

Common name Scientific name Region Area Reference 

Bowhead whale Balaena mysticetus Arctic Eastern Canada Wheeler et al. (2012) 

North Atlantic right whale Eubalaena glacialis North Atlantic 

- Kaschner et al. (2006) 

- Monsarrat, et al. (2015) 

- Monsarrat, et al. (2016) 

Cape Cod Bay Pendleton et al. (2012) 

Coast of Florida and Georgia Keller et al. (2012) 

Nova Scotian Shelf Moses and Finn (1997) 

US east coast Best et al. (2012) 

North Pacific right whale Eubalaena japonica North Pacific 

- Gregr (2011) 

- Monsarrat, et al. (2015) 

- Monsarrat, et al. (2016) 

Southern right whale Eubalaena australis Southern Ocean Australasian region Torres et al. (2013) 

Gray whale Eschrichtius robustus North Pacific - Kaschner et al. (2006) 

Common minke whale Balaenoptera acutorostrata 

Arctic Barents Sea 
Ressler (2015) 

Skern-Mauritzen et al. (2011) 

Bering Sea Eastern Bering Sea Zerbini (2016) 

North Atlantic 

Azores islands Tobeña et al. (2016) 

US east coast 
Hamazaki (2002) 

Robert (2016) 

North Pacific 
British Columbia Best et al. (2015) 

Western North Pacific Okamura et al. (2001) 

Antarctic minke whale Balaenoptera bonaerensis Antarctic 

0°-40°E Hedley et al. (1999) 

140°E-35°W Ainley et al. (2012) 

60°E-60°W Bombosch et al. (2014) 

65°W-55°W Williams et al. (2006) 

Circumpolar 
Beekmans et al. (2010) 

Kaschner et al. (2006) 

Marguerite Bay Friedlaender et al. (2011) 

Ross Sea 
Ballard et al. (2012) 

Murase et al. (2013) 

Weddell Sea Williams et al. (2014) 

Sei whale Balaenoptera borealis 

North Atlantic 

Azores islands Prieto et al. (2016) 

Azores islands Tobeña et al. (2016) 

Mid-Atlantic Ridge Skov et al. (2008) 

US east coast Robert (2016) 

North Pacific 

British Columbia Gregr and Trites (2001) 

Western North Pacific 
Murase et al. (2014) 

Sasaki et al. (2013) 

Bryde’s whale Balaenoptera edeni 

 Tropical Pacific Eastern tropical Pacific Forney et al. (2012) 

Gulf of Mexico US Gulf of Mexico Robert (2016) 

North Atlantic US east coast Robert (2016) 

North Pacific 

California Current System Forney et al. (2012) 

Central North Pacific Forney et al. (2015) 

Western North Pacific Sasaki et al. (2013) 
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Table 3. (continue) 

Common name Scientific name Region Area Reference 

Bowhead whale Balaena mysticetus Arctic Eastern Canada Wheeler et al. (2012) 

Blue whale Balaenoptera musculus 

North Atlantic 
Azores islands 

Prieto et al. (2016) 

Tobeña et al. (2016) 

US east coast Robert (2016) 

North Pacific 

British Columbia Gregr and Trites (2001) 

California Current System 
Becker et al. (2015) 

Forney et al. (2012) 

Eastern tropical Pacific Forney et al. (2012) 

Pacific Ocean East Pacific Pardo et al. (2015) 

South Pacific Coast of Chile Williams et al. (2011) 

Fin whale Balaenoptera physalus 

Antarctic 

65°W-55°W Williams et al. (2006) 

Circumpolar Ready et al. (2010) 

West Antarctic Peninsula Herr et al. (2016) 

Arctic 
Barents Sea 

Ressler (2015) 

Skern-Mauritzen et al. (2011) 

West coast of Greenland Laidre et al. (2010) 

Atlantic Island Vikingsson et al. (2015) 

Bering Sea Eastern Bering Sea Zerbini (2016) 

Gulf of Mexico US Gulf of Mexico Robert (2016) 

Mediterranean Sea 

Northwestern Mediterranean Sea Laran and Gannier (2008) 

Pelagos Sanctuary Panigada et al. (2008) 

Western Mediterranean Sea Cotté et al. (2009) 

North Atlantic 

Azores islands 
Prieto et al. (2016) 

Tobeña et al. (2016) 

US east coast 
Hamazaki (2002) 

Robert (2016) 

North Pacific 

British Columbia 
Best et al. (2015) 

Gregr and Trites (2001) 

California Current System 

Becker et al. (2012) 

Becker et al. (2015) 

Forney et al. (2012) 

Humpback whale Megaptera novaeangliae 

Antarctic 

60°E-60°W Bombosch et al. (2014) 

65°W-55°W Williams et al. (2006) 

Marguerite Bay Friedlaender et al. (2011) 

West Antarctic Peninsula Herr et al. (2016) 

Arctic 

Barents Sea Ressler (2015) 

Barents Sea Skern-Mauritzen et al. (2011) 

West coast of Greenland Laidre et al. (2010) 

Bering Sea Eastern Bering Sea Zerbini (2016) 

Indian Ocean Arabian Sea off Oman Corkeron et al. (2011) 

North Atlantic US east coast 

Hamazaki (2002) 

Best et al. (2012) 

Robert (2016) 

North Pacific 

British Columbia 

Best et al. (2015) 

Dalla Rosa et al. (2012) 

Gregr and Trites (2001) 

California Current System 
Becker et al. (2015) 

Forney et al. (2012) 

South Pacific Great Barrier Reef Smith et al. (2012) 
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Table 4. Type of cetacean data and response variables used in species distribution models (SDMs) applied to 
baleen whales. Papers published in scientific journals from December 1997 to December 2016 are considered. 

Reference Cetacean  
data 

Response  
variable 

Ainley et al. (2012) Opportunistic sighting Presence only 

Ballard et al. (2012) Dedicated and opportunistic sighting Presence only 

Becker et al. (2012) Dedicated sighting Count 

Becker et al. (2015) Dedicated sighting Count 

Beekmans et al. (2010) Dedicated sighting Count 

Best et al. (2012) Dedicated sighting Presence/absence 

Best et al. (2015) Dedicated sighting Count 

Bombosch et al. (2014) Opportunistic sighting Presence only 

Corkeron et al. (2011) Opportunistic sighting Count 

Cotté et al. (2009) Opportunistic sighting Count 

Dalla Rosa et al. (2012) Opportunistic sighting Count 

Forney et al. (2012) Dedicated sighting Count 

Forney et al. (2015) Dedicated sighting Count 

Friedlaender et al. (2011) Opportunistic sighting Presence only 

Gregr (2011) Catch Presence only 

Gregr and Trites (2001) Catch Count 

Hamazaki (2002) Dedicated sighting Presence/absence 

Hedley et al. (1999) Dedicated sighting Count 

Herr et al. (2016) Dedicated sighting Count 

Kaschner et al. (2006) Published data - 

Keller et al. (2012) Dedicated sighting Count 

Laidre et al. (2010) Dedicated sighting Presence only 

Laran and Gannier (2008) Opportunistic sighting Presence/absence 

Monsarrat, et al. (2015) Catch Presence/absence 

Monsarrat, et al. (2016) Catch Count 

Moses and Finn (1997) Dedicated sighting Presence/absence 

Murase et al. (2013) Dedicated sighting Count 

Murase et al. (2014) Dedicated sighting Count 

Okamura et al. (2001) Dedicated sighting Count 

Panigada et al. (2008) Opportunistic sighting Presence/absence 

Pardo et al. (2015) Dedicated sighting Count 

Pendleton et al. (2012) Dedicated sighting Presence only 

Prieto et al. (2016) Opportunistic sighting Presence only 

Ready et al. (2010) Dedicated sighting Presence/absence 

Ressler (2015) Opportunistic sighting Count 

Robert (2016) Dedicated sighting Count 

Sasaki et al. (2013) Dedicated sighting Presence/absence 

Skern-Mauritzen et al. (2011) Opportunistic sighting Count 

Skov et al. (2008) Opportunistic sighting Presence only 

Smith et al. (2012) Opportunistic sighting Presence only 

Tobeña et al. (2016) Opportunistic sighting Presence only 

Torres et al. (2013) Catch Presence/absence 

Vikingsson et al. (2015) Dedicated sighting Count 

Wheeler et al. (2012) Various (e.g. sighting and catch) Presence only 

Williams et al. (2006) Opportunistic sighting Count 

Williams et al. (2011) Dedicated sighting Count 

Williams et al. (2014) Dedicated sighting Count 

Zerbini (2016) Opportunistic sighting Count 

 



 23 

Table 5. Explanatory variables used in species distribution models (SDMs) applied to baleen whales. Papers 
published in scientific journals from December 1997 to December 2016 are considered. SST: sea surface 
temperature; SSH: sea surface height (including its anomaly); Chl: sea surface chlorophyll a concentrations; 
Current: sea surface current; SSS: sea surface salinity. 

Reference Latitude Longitude Year Month Distance  
to shore Depth Slope Aspect Bottom  

complexity 

Distance  
from  

bottom  
terrain  
(e.g. 
shelf) 

Seamount  
density/ 
depth 

Ainley et al. (2012) - - - - - X X - - -  

Ballard et al. (2012) - - - - - X X - - -  

Becker et al. (2012) - - - - - X X - - -  

Becker et al. (2015) X X X - - X X X - -  

Beekmans et al. (2010) X X - - - X - - - X  

Best et al. (2012) - - - - X X - - - -  

Best et al. (2015) X X - - X X X - - -  

Bombosch et al. (2014) - - - - - X X - - -  

Corkeron et al. (2011) - - - - X X X  - -  

Cotté et al. (2009) - - - X X X - - - -  

Dalla Rosa et al. (2012) X X X X X X X  - X  

Forney et al. (2012) - - - - X X X - - X  

Forney et al. (2015) X X - - X - - - - -  

Friedlaender et al. (2011) - - - - X X X - - -  

Gregr (2011) - - - - - X - - - -  

Gregr and Trites (2001) X X X X - X X - - -  

Hamazaki (2002) - - - -  X X - - -  

Hedley et al. (1999) X X - - - - - - - -  

Herr et al. (2016) X X - - - X - - - -  

Kaschner et al. (2006) - - - - - X - - - -  

Keller et al. (2012) - - - - - X - - - -  

Laidre et al. (2010) - - - - - - - - - -  

Laran and Gannier (2008) - - - - - X - - - X  

Monsarrat, et al. (2015) - - - - X X X - - -  

Monsarrat, et al. (2016) - - - - X X X - - -  

Moses and Finn (1997) - - - - - X - - - -  

Murase et al. (2013) X X - - - X - - - X  

Murase et al. (2014) - X - - - - - - - -  

Okamura et al. (2001) X X X X - - - - - -  

Panigada et al. (2008) X X X - X X X - - -  

Pardo et al. (2015) - - - - - - - - - -  

Pendleton et al. (2012) - - - - - X - - - -  

Prieto et al. (2016) - - - - X X X - - X X 
Ready et al. (2010) - - - - - X - - - -  

Ressler (2015) X X X - - X - - - -  

Robert (2016)  - - - - X X X - - X - 
Sasaki et al. (2013) - - - - - X - - - -  

Skern-Mauritzen et al. (2011) X X X - - - - - - -  

Skov et al. (2008) - - - - - X X - X -  

Smith et al. (2012) - - - - X X X  - X  

Tobeña et al. (2016) - - - - X X X - - X X 
Torres et al. (2013) - - - - - X X - - X  

Vikingsson et al. (2015) - - - - X X X X - X  

Wheeler et al. (2012) - - - - X X X - - -  

Williams et al. (2006) X X - - X X - - - -  

Williams et al. (2011) X X - - - - - - - -  

Williams et al. (2014) X X - - - - - - - -  

Zerbini (2016) - - - - X X X - - X - 
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Table 5 (continue) 

Reference SST SSH TKE 
EKE 

Distance  
to eddy 

Chl/ 
PP Current SSS Subsurface  

temperature 
Subsurface  

salinity MLD 

Ainley et al. (2012) - -   X - - - - - 
Ballard et al. (2012) - -   X - - - - - 
Becker et al. (2012) X -   - - - - - - 
Becker et al. (2015) X X   X - X - - X 

Beekmans et al. (2010) X -   X X - - - - 
Best et al. (2012) X X   X - - - - - 
Best et al. (2015) - -   - - - - - - 

Bombosch et al. (2014) X X   X - - - - - 
Corkeron et al. (2011) - -   - - - - - - 

Cotté et al. (2009) X X   X - X - - - 
Dalla Rosa et al. (2012) X X   X X X X X - 

Forney et al. (2012) X -   X - X - - X 
Forney et al. (2015) X X   X - - - - - 

Friedlaender et al. (2011) - -   - - - X - - 
Gregr (2011) X -   - X - X -  

Gregr and Trites (2001) X -   - - X - - - 
Hamazaki (2002) X -   - - - - - - 

Hedley et al. (1999) - -   - - - - - - 
Herr et al. (2016) - -   - - - X X - 

Kaschner et al. (2006) X -   - - - - - - 
Keller et al. (2012) X -   - - - - - - 
Laidre et al. (2010) - -   - - - - - - 

Laran and Gannier (2008) X -   X - - - - - 
Monsarrat, et al. (2015) X X   X - - - - X 
Monsarrat, et al. (2016) X X   X - - - - X 
Moses and Finn (1997) X -   - - - - - - 

Murase et al. (2013) - -   - - - X X - 
Murase et al. (2014) - -   - - - - - - 

Okamura et al. (2001) X -   - - - - - - 
Panigada et al. (2008) X -   X - - - - - 

Pardo et al. (2015) - X   - - - - - - 
Pendleton et al. (2012) X -   X - - - - - 

Prieto et al. (2016) X -   X - - - - - 
Ready et al. (2010) X -   X - - - - - 

Ressler (2015) - -   - - - - - - 
Robert (2016) X - X X X - - - . - 

Sasaki et al. (2013) X X   X - - - - - 
Skern-Mauritzen et al. (2011) - -   - - - X - - 

Skov et al. (2008) - X   - X - X X - 
Smith et al. (2012) X -   - - - - - - 

Tobeña et al. (2016) X -   X - - - - - 
Torres et al. (2013) X -   X - - X - X 

Vikingsson et al. (2015) X X   - - - - - - 
Wheeler et al. (2012) X -   X - - - - - 
Williams et al. (2006) - -   - - - - - - 
Williams et al. (2011) - -   - - - - - - 
Williams et al. (2014) - -   - - - - - - 

Zerbini (2016) X - - - X - - - - - 
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Table 5 (continue) 

Reference Thermal  
front 

Oceanic  
front 

Water 
mass 

Distance 
from sea ice 

Sea 
ice 

cover 

Sea ice  
concentration Prey Wind speed/ 

Beaufort Visibility Length  
of day 

Ainley et al. (2012) - X - - X - - -  - 
Ballard et al. (2012) - X X - X - - -  - 
Becker et al. (2012) - - - - - - - X  - 
Becker et al. (2015) - - - - - - - -  - 

Beekmans et al. (2010) - X - X - - - -  - 
Best et al. (2012) - - - - - - - -  - 
Best et al. (2015) - - - - - - - -  - 

Bombosch et al. (2014) - - - X - X - -  X 
Corkeron et al. (2011) - - - - - - - -  - 

Cotté et al. (2009) - - - - - - - -  - 
Dalla Rosa et al. (2012) X - - - - - - -  - 

Forney et al. (2012) - - - - - - - X  - 
Forney et al. (2015) - - - - - - - -  - 

Friedlaender et al. (2011) - - - X - - X -  - 
Gregr (2011) - - -  - - -   - 

Gregr and Trites (2001) - - - - - - - -  - 
Hamazaki (2002) X - - - - - - -  - 

Hedley et al. (1999) - - - X - - - -  - 
Herr et al. (2016) - - - - - X - -  - 

Kaschner et al. (2006) - - - X - - - -  - 
BesBes et al. (2012) - - - - - - - X  - 
Laidre et al. (2010) - - - - - - - -  - 

Laran and Gannier (2008) - - - - - - - -  - 
Monsarrat, et al. (2015) - - - - - - - -  - 
Monsarrat, et al. (2016) - - - - - - - -  - 
Moses and Finn (1997) - - - - - - - -  - 

Murase et al. (2013) - - - - - - X -  - 
Murase et al. (2014) - X - - - - - -  - 

Okamura et al. (2001) - - - - - - - -  - 
Panigada et al. (2008) - - - - - - - -  - 

Pardo et al. (2015) - - - - - - - -  - 
Pendleton et al. (2012) - - - - - - X -  - 

Prieto et al. (2016) - - - - - - - -  - 
Ready et al. (2010) - - - - - - - -  - 

Ressler (2015) - - - - - - X X X - 
Robert (2016) - - - - - - X X - - 

Sasaki et al. (2013) - - - - - - - -  - 
Skern-Mauritzen et al. (2011) - - - - - - - -  - 

Skov et al. (2008) - - - - - - - -  - 
Smith et al. (2012) - - - - - - - -  - 

Tobeña et al. (2016) - - - - - - - -  - 
Torres et al. (2013) - - - - - - - -  - 

Vikingsson et al. (2015) - - - - - - - -  - 
Wheeler et al. (2012) - - - X - - - -  - 
Williams et al. (2006) - - - - - - - -  - 
Williams et al. (2011) - - - - - - - -  - 
Williams et al. (2014) - - - X - X - -  - 

Zerbini (2016) - - - - - - X - - - 
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Table 6. Summary of species distribution models (SDMs) applied to baleen whales. Papers published in scientific journals from December 1997 to December 2016 are considered. 

Reference 

Resolution  
for  

spatial  
estimation 

Segment  
size Model Error distribution Model  

evaluation Spatial autocorrelation Collinearity 

Ainley et al. (2012) 5 km - MaxEnt - AUC - - 
Ballard et al. (2012) 5 km - MaxEnt - AUC - - 

Becker et al. (2012) 25 km 5 km GAM Quasi-Poisson 
Visual comparison 

Comparison with DISTANCE estimate 
Spearman rank correlation test 

- - 

Becker et al. (2015) 10km 5×5.5km GAM Tweedie 

Deviance explained 
RMSE 

Ratio observation vs estimate 
Comparison with DISTANCE estimate 

- Method 
unknown 

Beekmans et al. (2010) 0.2° 10 n,miles GAM 
Tweedie 

Quasi-Poisson 
Poison 

- - - 

Best et al. (2012) 10 km - GAM Quasi-bionomial AUC - - 
Best et al. (2015) 5 km 1 n.mile GAM Quasi-Poisson Deviance explained - - 

Bombosch et al. (2014) 0.25° - MaxEnt - AUC - - 
Corkeron et al. (2011) 0.1° - GLM Quasi-Poisson - SEVM - 

Cotté et al. (2009) NA - GAM Gamma - - - 
Dalla Rosa et al. (2012) 4.63 km 4 km GAM Quasi-Poisson - Variogram - 

Forney et al. (2012) 25 km 10 km GAM Quasi-Poisson - - - 
Forney et al. (2012) 25 km 5 km GAM Quasi-Poisson - - - 

Forney et al. (2015) 25 km 10 km GAM Quasi-Poisson 
Deviance explained 

Average squared prediction error 
Comparison with DISTANCE estimate 

Moran’s I Method 
unknown 

Friedlaender et al. (2011) 1 km - MaxEnt - AUC - - 
Gregr (2011) 50 km - MaxEnt  AUC  - 

Gregr and Trites (2001) 10 km - GLM Poisson Cross validation 
Classification tables - - 

Hamazaki (2002) 10' - Logistic regression Binomial - - - 
Hedley et al. (1999) - 5 n.miles GAM Poisson Comparison with DISTANCE estimate - - 

Herr et al. (2016) 6.25 km 31.75 km (avg.) GAM Negative binomial Deviance explained - - 
Kaschner et al. (2006) 0.5° - RES - Comparison with actual data - - 

Keller et al. (2012) 4 km - GAM Poisson Bootstrap GLMM - 
Laidre et al. (2010) 2 km - Kernel method - - - - 

Laran and Gannier (2008) 10 n.miles - Logistic regression Binomial AUC - - 
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Table 6 (continue) 

Reference 

Resolution  
for  

spatial  
estimation 

Segment  
size Model Error distribution Model  

evaluation Spatial autocorrelation Collinearity 

Monsarrat, et al. (2016) 1° - GAM Negative binomial 
Poisson 

Deviance explained 
K-fold Cross validation - - 

Moses and Finn (1997) 10' - Logistic regression Binomial Visual comparison - - 
Murase et al. (2013) 10 km - GAM Poisson Comparison with DISTANCE estimate - - 
Murase et al. (2014) 30 km - GAM Tweedie Comparison with DISTANCE estimate - VIF 

Okamura et al. (2001) 1° - GAM Poisson - - - 
Panigada et al. (2008) 2' - GAM Binomial - - - 

Pardo et al. (2015) 1/3° - Hierarchical Bayesian - - - - 
Pendleton et al. (2012) 1 km - MaxEnt - AUC - - 

Prieto et al. (2016) NA - MaxEnt - K-fold cross validation 
AUC - 

Kendeall's  
correlation  
coefficient 

Ready et al. (2010) 0.5° - 

RES 
GARP 
GLM 
GAM 

MaxEnt 

- 
- 

Binomial                                                                                                                                                                                                                                                               
Binomial 

- 

AUC 
Comparison with actual data - - 

Ressler (2015) 10, 50 km - GAMM Poisson Deviance explained - - 
Robert (2016) 10 km 10 km GAM Tweedie - - - 

Sasaki et al. (2013) 4 km - GLM Binomial - Moran’s I - 
Skern-Mauritzen et al. (2011) 50 km - GAMM Quasi-Poisson - - VIF 

Skov et al. (2008) 1 km - ENFA - - - - 
Smith et al. (2012) 4.8 km - MaxEnt - AUC - - 

Tobeña et al. (2016) NA - MaxEnt - TSS 
AUC -  

Torres et al. (2013) 25 km - BRT - AUC - - 

Vikingsson et al. (2015) 0.5° 1.75 n.mile GAM Negative binomial - Variogram 
Pearson  

Correlation  
coefficient 

Wheeler et al. (2012) 10 km - ENFA - Jack-knife - - 
Williams et al. (2006) 2 n.miles 5 km GAM Quasi-Poisson - - - 
Williams et al. (2011) NA 20 n.miles GAM Tweedie - - - 
Williams et al. (2014) 6.25 km 30 n.miles GAM Tweedie - - - 

Zerbini (2016) 9 km 9 km GAM Poisson Deviance explained - 
Pearson  

Correlation  
coefficient 
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Table 7. Summary of generalized additive models (GAMs) applied to baleen whales as species distribution models (SDMs). Papers published in scientific journals from 
December 1997 to December 2016 are considered. 

Reference Software Version Package Version Error distribution Smoother Dimension  
parameter (K) Gamma 

Power  
parameter 

(P) 

Model  
selection 

Becker et al. (2012) S-PLUS 6.1 Release 
1 - - Quasi-Poisson NA NA NA - AIC 

Becker et al. (2015) R 3.1.1 mgcv 1.8-3 Tweedie Thin-plate 
Tensor NA NA NA REML 

Beekmans et al. (2010) R NA mgcv 1.5-5 
Tweedie 

Quasi-Poisson 
Poison 

Isotropic 
Tensor NA 1.4 NA GCV 

Best et al. (2012) R NA mgcv NA Quasi-binomial Thin-plate NA 1.4 - GCV 
Best et al. (2015) R NA mgcv NA Quasi-Poisson Thin-plate 5 NA - GCV 
Cotté et al. (2009) R NA mgcv NA Gamma NA NA NA - GCV 

Dalla Rosa et al. (2012) R NA mgcv 1.4-1 Quasi-Poisson  8 1.4 - GCV 

Forney et al. (2012) 
S-PLUS 

R 
R 

NA 
2.6.2 
2.6.2 

- 
gam 
mgcv                                                                                                                                                                                                                                                   

- 
NA 

1.3-29 
NA 

Cubic spline 
Cubic spline 

Cubic and thin-plate spline 

3 
3 

NA 

1.0 & 
1.4 - 

AIC 
AIC 
GCV 

Forney et al. (2012) 
S-PLUS 

R 
R 

NA 
2.6.2 
2.6.2 

- 
gam 
mgcv                                                                                                                                                                                                                                                   

- 
NA 

1.3-29 
NA 

Cubic spline 
Cubic spline 

Cubic and thin-plate spline 

3 
3 

NA 

1.0 & 
1.4 - 

AIC 
AIC 
GCV 

Forney et al. (2015) Spotfire 
S+ 8.1 - - Quasi-Poisson Thin-plate 3 NA - AIC 

Hedley et al. (1999) NA NA NA NA Overdispersed-Poisson Cubic spline 2, 4, 8 NA - AIC 
Herr et al. (2016) R NA dsm NA Negative binomial NA - - - UBRE 

Keller et al. (2012) NA NA NA NA Poisson NA 2 NA - AIC 

Monsarrat, et al. (2016) NA NA NA NA Negative binomial 
Poisson NA NA NA - AIC 

Murase et al. (2013) R 2.12.1 mgcv 1.7-2 Poisson NA NA NA - GCV 
Murase et al. (2014) R 3.0.2 mgcv 1.7-26 Tweedie NA NA NA 1.1 GCV 

Okamura et al. (2001) S-PLUS NA - - Poisson NA NA NA - BIC 
Ressler (2015) R 2.15.2 gamm4 NA Poisson NA NA NA - AIC 
Robert (2016) R 1.8-4   dsm 2.25 Tweedie Thin-plate NA NA Estimated REML 

Skern-Mauritzen et al. (2011) R 2.7.0 mgcv NA Quasi-Poisson NA NA NA -  

Vikingsson et al. (2015) R NA mgcv 1.8-1 Negative binomial Cubic regression NA NA - GCV 
Williams et al. (2006) R NA mgcv NA Overdispersed-Poisson NA NA NA - GCV 
Williams et al. (2011) R NA mgcv NA Tweedie NA NA NA 1.1 REML 
Williams et al. (2014) R NA mgcv NA Tweedie Tensor product NA NA 1.6 REML 

Zerbini (2016) R NA mgcv 1.7-26 Poission NA Changed 1.4 - GCV 

 

 


