SC/J17/JR04

Addendum to Annex 12

Government of Japan

Addendum to Annex 12

Two aspects of the approach and scenarios presented in Annex 12 of the NEWREP-NP research plan are modified to provide further and improved results.
a) The scenarios considered of step function changes in per capita recruitment (hereafter referred to simply as 'recruitment'), while useful to illustrate the point being addressed, are simpler than would be expected in reality. However such 'realities' are currently available only for Antarctic minke whales from SCAA analyses for those populations, so those Antarctic results have been used here as the basis for some forward simulations for the O stock of North Pacific minke whales.
b) The estimator applied in Annex 12 was simplistic, having only one estimable parameter (K) (aside from future annual recruitment deviations) governing the dynamics overall. Greater flexibility is now introduced.

Methodology

[Note: Certain details of the likelihood function minimised in the fitting process were inadvertently omitted from Annex 12. For a composite self-standing version, the now full corrected version is repeated below, before the details of the new extensions introduced here are provided.]

The model is fitted to estimates of mature female numbers and catch-at-age data to estimate model parameters. Contributions by each of these to the negative of the (penalised) \log-likelihood $(-\ln L)$ are as follows.

Mature female numbers

$-\ln L^{\text {abund }}=\sum_{j}\left\{\frac{\left(\varepsilon_{y}^{i}\right)^{2}}{2 \sigma_{y}^{2}}\right\}$
with
$\varepsilon_{y}^{i}=\ln \left(I_{y}^{i}\right)-\ln \left(\sum_{a} f_{a}^{f, j} N_{y, a}^{f, j}\right)$
where
$I_{y}^{i} \quad$ is the estimate of mature female numbers in year y and stock j, and
$\sigma_{y}=\left\{\begin{array}{l}0.01 \\ 0.25\end{array}\right.$ for $y=2000$ (i.e. sufficiently low to force and exact fit to I_{2000}^{i})

$$
y \geq 2012
$$

Commercial catches-at-age

The contribution of the catch-at-age data to the negative of the log-likelihood function under the assumption of a multinomial error distribution is given by:
$-\ln L^{C A A}=\sum_{j, y, g, a}-p_{y, a}^{g, j} \ln \left(\frac{\hat{p}_{y, a}^{g, j}}{\sum_{a \prime} \hat{p}_{y, a^{\prime}}^{g, j}}\right)$
where
$p_{y, a}^{g, j} \quad$ is the observed number of whale of age a and gender g caught in year y in stock j ,
$\hat{p}_{y, a}^{g, j} \quad$ is the model-predicted number of whale of age a and gender g caught in year y in stock j ,
where
$\hat{p}_{y, a}^{g, j}=\sum_{a^{\prime}} F_{y}^{g, j} v_{y, a^{\prime}}^{g, j} r_{a^{\prime}}^{g} N_{y, a^{\prime}}^{g, j} E_{a, a^{\prime}}$
with
$E_{a, a} \quad$ being the ageing error matrix (Table A5, Annex 12), and
$r_{a}^{g} \quad$ being the age readability at age a for gender g (Table A6, Annex 12).

The standardised residuals are computed as:
$\varepsilon_{y, a}^{g, j}=\frac{p_{y, a}^{g, j} / \sum_{a \prime} p_{y, a l}^{g, j}-\hat{p}_{y, a}^{g, j} / \sum_{a \prime} \hat{p}_{y, a \prime}^{g, j}}{\sigma_{y, a}^{g, j}}$
with
$\sigma_{y, a}^{g, j}=\frac{p_{y, a}^{g, j} \frac{\hat{p}_{y, a}^{g, j}}{\sum_{a \prime} \hat{p}_{y, a}^{g, j}}\left(1-\frac{\hat{p}_{y, a}^{g, j}}{\sum_{a \prime} \hat{p}_{y, a}, j}\right)}{\sum_{a \prime} p_{y, a \prime}^{g, j}}$

Female births (recruitment) residuals are defined by:
$b_{y}^{i}=B^{j} N_{y}^{f, j}\left\{1+A^{j}\left[1-\left(N_{y}^{f, j} / K^{f, j}\right)^{z^{j}}\right]\right\} e^{\varphi_{y}}$
where φ_{y} from $N\left(0,\left(\sigma_{R}\right)^{2}\right)$ with $\sigma_{R}=0.25$.
with the following penalty added to the negative log-likelihood:
pen $_{\text {birth }}=\sum_{y}\left\{\frac{\left(\varphi_{y}\right)^{2}}{2 \sigma_{R}^{2}}\right\}$

The standard deviations reported for total numbers are computed as follow, taking account of the estimation bias:
$\sigma_{y}^{N_{t o t}}=\sqrt{\sum_{n}\left(\widehat{N}_{\boldsymbol{y}}^{t o t}-\beta_{y}-N_{y}^{t o t}\right)^{2} / n}$
with the bias computed as:
$\beta_{y}=\left(\widehat{N}_{y}^{t o t}-N_{y}^{t o t}\right) / n$
and similarly for the female births.

New features

The two new scenarios introduced are based on the recruitment variability evident for Antarctic minke (stocks I and P) as estimated in SCAA results for Antarctic minke whales reported to the 2016 annual meeting of the Scientific Committee. The 1970-2010 vector \boldsymbol{X} of moving averages for recruitment variability (renormalized so that the 1970 value is 1 , see Table 1 for I and P stocks) is used to project recruitment forward from 2011 (using the 1971 value) onwards, with the 2051 value taken to apply to all years from 2052 onwards. A three-year moving average is used to eliminate some of the estimation error around the real underlying trend; values prior to 1970 are not used as they reflect more model assumptions than being informed by the actual age data. Equation C8 (see Annex 12) for future births is modified:
$b_{y}^{i}=B^{j} N_{y}^{f, j} X_{y} e^{\varepsilon_{y}}$
Because X_{2051+} for the I stock is high (1.543), this results in a steep increase in total numbers and births in the future, which the existing estimation model with a constant carrying capacity as the only related estimable parameter could not match. To allow for a better fit (to this and also other cases), carrying capacity K is allowed
to change (by a limited amount) every 10 projected years, starting in 2012, but staying constant during each of these 10 year periods:
$K_{y}=\left\{\begin{array}{cc}K_{y}=K & \text { for } y \leq 2011 \\ K_{y-1} e^{\varepsilon_{y}} & \text { for } y=2012,2022,2032 \ldots \\ K_{y-1} & \text { for } y \neq 2012,2022,2032 \ldots\end{array}\right.$
with the following penalty added to the negative log-likelihood:
$\operatorname{pen}_{K}=\sum_{y}\left\{\frac{\left(\varepsilon_{y}\right)^{2}}{2 \sigma_{K}^{2}}\right\}$
with $\sigma_{K}=0.1$.

Thus, aside from selectivity-related parameters, the estimable parameters of the revised model are K, and the $10-$ yearly ε_{y} together with the annual recruitment residuals φ_{y}.

Results

Results are presented for the baseline run of Annex12 and a series of sensitivities:
Figure 1: Baseline run: A01, MSYR of $1 \%, 30 \%$ drop in (per capita) recruitment after 10 years.
Figure 2: A01, MSYR of 1%, projected recruitment based on stock I recruitment variability.
Figure 3: A01, MSYR of 1%, projected recruitment based on stock P recruitment variability.
Figure 4: A01, MSYR of $1 \%, 30 \%$ increase in recruitment after 10 years.
Figure 5: A01, MSYR of 4\%, 30\% drop in recruitment after 10 years.

Discussion

Estimation performance for the baseline run (Figure 1) is distinctly improved for the estimator that allows for future changes in K. Trends in both total numbers and female births are reflected better, and in particular, given the availability of age data, the change in recruitment is detected earlier and more clearly.

For the standard deviation of the estimates of total numbers, the addition of age data when future changes in K are admitted leads to a much bigger improvement over the no-age-data case, especially for the earlier years, compared to a situation where the future value of K does not change. However there is a price to pay for the reduction in bias for the estimator which allows these changes, which is reflected by greater variance in later years arising from the estimation of further parameters. For female births the same trends effects are evident, but are of smaller magnitude.

For the other scenarios examined, the bias results are broadly the same when recruitment decreases in future, though estimation performance deteriorates somewhat when this trend is upward.

Table 1: Moving averages of recruitment variability (renormalized so that the values for 1970 for Antarctic minke and for 2011 for the assumed projected values for the North Pacific O stock of minke whales are 1). The Antarctic values correspond to those reported for the I and P stocks of Antarctic minke whales for an MSYR of 1% in analyses presented by Kitakado to the 2016 meeting of the IWC Scientific Committee. The 1970-2010 values from the Antarctic are used in the projections for the 2011-2051 period for the North Pacific, with values being kept constant after 2051.

| Year | | | I-stock (1\%) |
| :---: | :---: | :---: | :---: | P-stock (1\%)

Figure 1: For A01_1, MSYR 1\% recruitments, with a $\mathbf{3 0 \%}$ drop in (per capita) recruitment after 10 years. Model with estimated change in K every 10 years. First row: Medians for "true" and estimated total numbers and female births for a series of sample sizes. Second row: Medians for "true" and estimated female births for a sample size of 0 (LHS) and 80 (RHS), estimated after 10, 20, 30, 40, 50 and 100 years. Third row: Medians for "true" and estimated total numbers and female births for a sample size of 80 with and without estimated changes in K. Fourth row: standard deviations for total numbers (LHS) and female births (RHS) for sample sizes of 0 and 80, with and without estimated changes in K.

Figure 2: For A01_1, for I stock equivalent MSYR 1\% recruitment variations. Model with estimated change in K every 10 years. First row: Medians for "true" and estimated total numbers and female births for a series of sample sizes. Second row: Medians for "true" and estimated female births for a sample size of 0 (LHS) and 80 (RHS), estimated after 10, 20, 30, 40, 50 and 100 years. Third row: Medians for "true" and estimated total numbers and female births for a sample size of 80 with and without estimated changes in K.

Figure 3: For A01_1, for \mathbf{P} stock MSYR 1\% equivalent recruitment variations. Model with estimated change in K every 10 years. First row: Medians for "true" and estimated total numbers and female births for a series of sample sizes. Second row: Medians for "true" and estimated female births for a sample size of 0 (LHS) and 80 (RHS), estimated after 10, 20, 30, 40, 50 and 100 years. Third row: Medians for "true" and estimated total numbers and female births for a sample size of 80 with and without estimated changes in K.

Figure 4: For A01_1, MSYR $\mathbf{1 \%}$ recruitments, with a $\mathbf{3 0 \%}$ increase in recruitment after 10 years. Model with estimated change in K every 10 years. First row: Medians for "true" and estimated total numbers and female births for a series of sample sizes. Second row: Medians for "true" and estimated female births for a sample size of 0 (LHS) and 80 (RHS), estimated after 10, 20, 30, 40, 50 and 100 years. Third row: Medians for "true" and estimated total numbers and female births for a sample size of 80 with and without estimated changes in K.

Figure 5: For A01_4, MSYR 4\% recruitments, with a $\mathbf{3 0 \%}$ drop in recruitment after 10 years. Model with estimated change in K every 10 years. First row: Medians for "true" and estimated total numbers and female births for a series of sample sizes. Second row: Medians for "true" and estimated female births for a sample size of 0 (LHS) and 80 (RHS), estimated after 10, 20, 30, 40, 50 and 100 years. Third row: Medians for "true" and estimated total numbers and female births for a sample size of 80 with and without estimated changes in K.

