


 

 1 

Progress report of the intersessional corresponding group 
“Applications of species distribution models (SDMs)” since 
66a IWC/SC 
HIROTO MURASE1, ARI FRIEDLAENDER2, NATALIE KELLY3, TOSHIHIDE KITAKADO4, JOHN MCKINLAY3, DANIEL M. 
PALACIOS2, DEBRA PALKA5 
1 National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency (FRA), 2-
12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan 
2 Marine Mammal Institute, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State 
University, 3020 Marine Science Drive, Newport, OR 97365 USA. 
3Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia 
4Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan 
5NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts, 02543, 
USA 

ABSTRACT 

The intersessional corresponding group “Applications of species distribution models (SDMs)” was established in 65b IWC/SC. 
The primary task is to “develop guidelines and recommendations for best practices in modelling steps”. During the intersessional 
period from IWC/SC 66a to 66b, the group conducted preliminary reviews of machine learning methods which are commonly 
used as SDMs. The following machine learning methods were reviewed: maximum entropy models (MAXENT), genetic 
algorithms (GA), support vector machines (SVMs), Bayesian networks (BNs) and random forest (RF). The group also considered 
preliminary framework guideline for SDMs applied to cetaceans. The group intends to complete the review of additional machine 
learning methods by 67a. and guideline by 67b. 

BACKGROUND 
Application of species distribution models (SDMs) to cetaceans has proliferated since the 1990s in parallel with 
the advancement of computing power, software such as geographic information systems (GIS) and statistical 
techniques. SDMs represent a collection of various statistical models rather than a specific technique. In this 
manuscript, a statistical model relating occurrence of a species to its environment at a certain time period is 
termed an SDM. Such a model can be used to predict spatial distributions of the target species once the model is 
constructed. An SDM is not a mechanistic model that can deal with driving processes of the spatial distributions 
but an empirical model that can incorporate observed relationships between occurrence of species and their 
environment at a certain time period (Palacios et al., 2013). A SDM can also be called as a snapshot model, 
being static rather than dynamic. 

Within the Scientific Committee of the International Whaling Commission (IWC/SC), a generalized 
additive model (GAM) based SDM was developed in the late 1990s for the purpose of generating a spatially 
explicit abundance estimate for Antarctic minke whales (Balaenoptera bonaerensis) (Hedley et al., 1999). Since 
then, SDMs have been applied to a variety of species and regions in the IWC/SC to address questions such as 
reasons for changes in abundance and spatial distribution of baleen whales (e.g. Beekmans et al., 2010; Murase 
et al., 2013; Williams et al., 2014). These results are used for in-depth assessment of whale stocks (IA). 
Traditionally, abundance of baleen whales for the purpose of management under the Revised Management 
Procedure (RMP) have been estimated using a statistical design-based methods, such as the DISTANCE 
sampling, according to a guideline from the IWC/SC (IWC, 2012). The Sub-Committee on the RMP of the 
IWC/SC is currently trying to develop a guideline for model-based abundance estimation methods, mainly 
focusing on GAMs (Hedley and Bravington, 2014). It is expected that the review and developing a guideline are 
completed by the 2016 annual meeting (IWC, 2016). Although a workshop for the review and training was 
planned as a pre-meeting to IWC/SC 66a, it was postponed. 

Statistical models other than GAMs are also used as SDMs, mainly focusing on prediction of spatial 
distribution. The Working Group on Ecosystem Modelling (EM) of the IWC/SC recognized the necessity for the 
development of a guideline on the techniques and underlying assumptions of SDMs based on up-to-date and 
comprehensive knowledge (IWC, 2015). An intersessional correspondence group was established during in 
IWC/SC 65b to facilitate this work. The primary task of the group was to “develop guidelines and 
recommendations for best practices in modelling steps”. Estimation of abundance is the main focus in the 
context of RMP, while explanatory investigation on spatial distribution in relation to the environment is the main 
focus of EM, although the distinction is not clear-cut. A preliminary review of SDMs applied to baleen whales 
was carried out by the group intersessionally between IWC/SC 65b and 66a (Murase et al., 2015).  
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PROGRESS SINCE 66A IWC/SC 
In the intersessional period between IWC/SC 66a and 66b, the group conducted (1) preliminary review of 
machine learning methods applied as SDMs and (2) preliminary considerations on a guideline framework for 
SDMs applied to cetaceans. The following machine learning methods are reviewed: maximum entropy models 
(MAXENT), genetic algorithms (GA), support vector machines (SVMs), Bayesian networks (BNs) and random 
forest (RF). This paper presents the results of these works. These reviews are presented as Appendices of this 
document. Preliminarily review of boosted regression tree (BRT) would be presented next year. In addition, 
some thought on a guideline framework for species distribution models (SDMs) applied to cetaceans is provided 
in a separate Appendix, based on the ten iterative steps in development and evaluation of models proposed by 
Jakeman et al. (2006). 

WORK PLAN 
The group intends to complete the review of machine learning methods by 67a and guideline by 67b. The group 
also intends to complete a review of SDMs applied to baleen whales (i.e., an extension of Murase et al., 2015) 
and submit it to a peer-reviewed journal by 67a. 

A guideline for model-based abundance estimation method are currently being developed in the RMP 
Sub-Committee. A draft guideline submitted to 65b IWC SC (Hedley and Bravington, 2014) mainly dealt with 
general issues. Although it has on its merit, we consider that development of a guideline specific to GAM in the 
RMP sub-committee is also beneficial. A review of ensemble modelling is also conducted in the EM working 
group. These topics together with our review and guideline are interrelated and a synthesis is required within a 
few years to develop a comprehensive guideline. It is worth to consider a coordination among three groups 
(model-based abundance [RMP], ensemble modelling [EM] and SDM guideline [EM]) for the development. 
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Appendix 1 

A preliminary review of Maximum Entropy Models 
(MAXENT) and the applicability to cetacean studies 
ARI S. FRIEDLAENDER 

Marine Mammal Institute, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State 
University, 3020 Marine Science Drive, Newport, OR 97365 USA. 

INTRODUCTION & OVERVIEW OF SPECIES DISTRIBUTION MODELS WITH MAXENT 
Species distribution models aim to estimate the relationship between records of a given species and the 
environmental characteristics of that location (Franklin 2009, Elith et al. 2011).  Predictive models of the 
geographic distribution of a species have broad application in ecology and conservation in both terrestrial and 
marine ecosystems (Graham et al. 2004, Phillips and Dudik 2008).  What follows is a brief review of one 
particular method of maximum entropy modeling, Maxent.  Based largely on the comprehensive reference article 
by Phillips et al. (2006) I will present the data requirements, advantages and disadvantages of this technique, and 
its application to cetacean studies.   

When both presence and absence occurrence data exist for a given species and study, more general-purpose 
statistical methods can be used to quantify the relationships between a species and its environment (Guisan and 
Zimmerman 2000, Phillips et al. 2006), and these can be used to make predictions about space use, habitat, niche 
modeling, etc.  However, for many systems, only presence data (georeferenced location) are available.  For such 
data, maximum entropy models are one method for determining a species’ environmental requirements from a 
set of occurrence localities together with a set of environmental variables that describe some of the factors that 
likely influence the suitability of the environment for the species (Brown and Lomolino 1998, Root 1988, 
Phillips et al. 2006). 

Maxent is, at its most basic level, a method for making predictions or inferences from incomplete information 
(Phillips et al. 2006).  Maxent generates presence-only models of species distributions by estimating the 
probability of distribution relative to maximum entropy (i.e. uniformity).  The probability of a species 
occurrence is constrained as a function of environmental variables included as predictor variables.  More precise 
and detailed explanations of the mathematical models used in Maxent are reviewed, Phillips et al. 2006, Phillips 
and Dudik 2008, and in Elith et al. 2011. 

USABLE EXPLANATORY VARIABLES (PRESENCE/ABSENCE) 

In order to generate a model of a species’ environmental requirements, Maxent uses a set of occurrence localities 
(presences).  The environmental features that can be used in Maxent to predict a species distribution can be 
derived from both continuous and categorical variables.  Maxent employs a number of features to fit a function 
of the covariates that include linear, product, quadratic, hinge threshold, and categorical.  Explanations of the 
differences in how these are used by Maxent to derive relationships to covariates are provided in Elith et al. 2011. 

ADVANTAGES AND DISADVANTAGES OF BNS 

The following are advantages and disadvantages of Maxent as discussed in Phillips et al. 2006: 

Advantages 
• Maxent requires only presence data and environmental information for the study area rather than 

full/dedicated abundance estimates from surveys. 

• It can integrate both continuous and categorical environmental variables and incorporate interactions 
between variables. 

• Deterministic algorithms have been developed that converge to the optimal (maximum entropy) probability 
distribution. 

• The resulting probability distributions have a concise mathematical definition that is amenable to further 
analysis. 

• Over-fitting of a species’ probability of distribution can be avoided using regularization algorithms. 
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• The resulting probability distributions based on the distribution of occurrence localities are explicit and can 
allow for more formal examination of sampling bias. 

• Model outputs are continuous, allowing for fine distinctions to be made the model suitability of different 
areas.   

• Maxent can also be applied to presence/absence data by using a conditional model. 

• Maxent is a generative, rather than discriminative approach, which has advantages when the amount of 
training data (e.g. smaller data sets) used is limited. 

• As a general purpose modeling method, Maxent has broad appeal across a wide range of applications. 

Disadvantages 
• Maxent is relatively new and not as mature as GLM/GAM so there are fewer guidelines and methods for 

estimating error. 

• More work needs to be done to determine the effectiveness of avoiding of over-fitting compared with other 
variable-selection methods. 

• Maxent uses an exponential model for probabilities that can give large predicted values for environmental 
conditions outside the range present in the study area. 

• As a stand-alone package, Maxent software is required. 

SOFTWARE 
Maxent software can be downloaded easily.  A number of sites provide links to previous versions ‘as-is’ with no 
warranty/guarantees, tutorials, and discussion forums: https://www.cs.princeton.edu/~schapire/maxent/, 
http://homepages.inf.ed.ac.uk/lzhang10/maxent.html. 

APPLICABILITY OF MAXENT TO CETACEAN STUDIES 
To date, Maxent has been used a in number of cetacean studies.  Because of the types of data that are required 
(or not required), it is amenable to a wide range of objectives, study areas, and species.  Environmental variables 
may be limiting if remote-sensing is not available for a given area or there is a lack of other data sources to link 
with occurrence data.  In the references below are a number of studies that have used Maxent to describe the 
distribution of cetaceans or conducted ecological niche modeling of cetaceans in a Maxent framework to 
generate probabilities of occurrence.  Smith et al. (2012) use Maxent to identify humpback whale breeding and 
calving habitat around the Great Barrier Reef, Funayama et al. (2012) modeled the potential distribution of 
northern elephant seals, Bombosch et al. (2014) developed habitat models to calculate prediction maps to 
evaluate how species-specific habitat conditions evolve for humpback and Antarctic minke whales, Pendleton et 
al. (2012) modeled relationships between right whale occurrence and environmental covariates, Lindsay et al. 
(2016) developed predictive habitats models using sightings data and environmental varibles to help develop 
marine protected areas in the South Pacific, and Friedlaender et al. (2011) developed ecological niche models of 
krill predators in the Antarctic using Maxent to develop indices of niche stability and potential for competition. 
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Appendix 2 

A preliminary review of Genetic Algorithms (GA) applied 
as species distribution models (SDM) and their 
applicability to cetacean studies 
JOHN MCKINLAY 

Australian Antarctic Division, 203 Channel Highway, Kingston, Australia, 7050.  
Contact email: john.mckinlay@aad.gov.au 

ABSTRACT 

Genetic algorithms (GA) are a stochastic search optimisation technique that iteratively develop a solution using analogues of 
mechanisms that operate in genetic evolution of natural populations. In the context of species distribution modelling (SDM), they 
develop rules for probabilistic classification of species presence across a study domain based on observed species presences, 
absence data (often inferred) and environmental covariates. GA have been applied widely to the problem of SDM, in large part 
due to the availability of software tailored for this purpose. Approaches for evaluating SDMs have been developing rapidly over 
the last decade, but despite variation in approaches to model evaluation across different studies there seems to be a consensus of 
evidence that a popular implementation of GA predicts poorly compared with many other SDM approaches. It is unclear the 
degree to which this poor performance is a failing of particular software, or genetic algorithms more generally. Applications of 
GA for cetaceans are rare, and are at the present time unknown for baleen whale species.   

INTRODUCTION 
Originally developed by Holland (1975), genetic algorithms (GA) are a rule-based optimisation technique for 
supervised classification. They are thought to work well in situations involving complex interactions between 
many variables, particularly when derivative-based techniques prove problematic and complete enumeration of a 
search space for an optimal solution is not practical (Haupt and Haupt, 2004). Advances in computing power 
over the last 30 years have seen widespread uptake of GA in a variety of disciplines, including for species 
distribution modelling (SDM) in ecology.  

Stockwell and Noble (1992) introduced the earliest system for GA-based rule-set classification of species 
distributions according to environmental predictors. Termed GARP (Genetic Algorithm for Rule set Production), 
the Stockwell framework has proved a popular modelling choice in the applied ecological literature, showing 
over 1,000 Google Scholar citations over the period 2000-2015 for Stockwell and Peters’ (1999) exposition of 
the technique. As ecological applications of GA outside of the GARP framework are rare (D’Angelo et al., 1995 
and McClean et al. 2005 are notable exceptions), further discussion of GA will focus on GARP since this 
represents the only software implementation of GA currently tailored to SDM. GARP has been successfully used 
in many ecological contexts, including for predicting distributions of invasive species (Peterson and Vieglais, 
2001; Peterson, 2003; Chen et al., 2006), disease vectors (Adjemain et al., 2006), terrestrial vertebrates 
(Raxworthy et al., 2003; Martínez-Meyer et al., 2004) and marine mammals (MacLeod et al., 2008). 

BRIEF OVERVIEW OF GA 
Genetic algorithms are a stochastic search algorithm motivated by the success of biological evolution and the 
processes of natural selection. They work to iteratively “evolve” a set of rules, evaluated against an objective 
function, to achieve some defined optimisation goal (Haupt and Haupt, 2004). For purposes of clarity, it is useful 
to immediately frame this in the context of SDM, in which: 

i) The optimisation goal is to obtain the best predictive model of species occurrence based on point 
locations of species observations and a suite of geographically referenced environmental 
covariates; 

ii) The objective function is typically formulated as the predictive accuracy of a model evaluated 
against an independent set of test data (i.e. data not used in forming the model rules); and, 

iii) The set of rules defines the way predictors relate to the probability of species’ occurrence. 

At each iteration (i.e. generation), selection is achieved by choosing optimal rule sets from among many 
candidates based on improvement of the objective function. To a restricted set of the best solutions, GA then 
applies analogues of reproductive processes, such as mutation and crossover, to create subsequent generations of 
solutions (Mitchell, 1996). Mutation modifies one or more aspect of a rule from its initial state in order to 
decrease the likelihood that candidate solutions become trapped at local minima. Genetic recombination is 
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simulated via crossover operations, in which characteristics from two or more “parent” solutions are combined to 
form a “child” for the next generation. The basic premise of crossover is that combining several good solutions 
has the potential to come up with an even better one. Candidate solutions evolve through iterative modification 
of rule sets, either for a pre-specified (large) number of iterations or until no further improvements in the 
objective function can be found.  

APPLICATIONS OF GAS AS SDMS 

GARP belongs to the class of SDM known as presence/background methods (sometimes called presence/pseudo-
absence; see Renner et al., 2015 for a review of terminology) that make use of species occurrence data but must 
infer species’ absences from areas within the study domain where the species has not been reported (Franklin, 
2009). Generally speaking, these methods have arisen to make use of a wide class of opportunistically collected 
data (e.g. citizen science programs) or historical collections (e.g. museums or herbaria) for which a requirement 
for absence data was never anticipated. Absences inferred in this way have been coined pseudo-absences since 
their role is usually to mimic true absences for model estimation purposes. GARP chooses these points randomly 
from locations where the species has not yet been detected, but for which environmental data are available. 
Many alternative methods for choosing pseudo-absence points have been suggested since GARP first appeared, 
and the impact of different approaches on results remains an active SDM research topic (Barbet-Massin et al., 
2012; Lobo et al., 2010; Senay et al., 2013). Presence/background data are in many cases known to be 
suboptimal for the purposes of estimating species’ distributions since sightings data can be subject to (often 
inestimable) observer or sampling biases (Hastie and Fithian, 2013; Renner et al., 2015). Nonetheless, presence-
background methods have attracted considerable research attention in recent decades, with almost equal attention 
afforded to overcoming deficiencies of the approach (Phillips et al., 2009; Lobo et al., 2010; Dorazio, 2014). 
While the current implementation of GARP on MS Windows systems is constrained to operate on presence-
background data (Franklin, 2009), this constraint was not apparent in the original UNIX implementation and so 
is not an inherent limitation of GARP (Stockwell and Peters 1999), nor of GA in general.  

GARP proceeds in an iterative fashion by randomly splitting presence data from within the study domain to 
create training and test data sets which are used to fit and evaluate the model, respectively, at each iteration. It 
then applies steps for rule selection, evaluation, testing, and incorporation or rejection of rules (Peterson, 2003). 
Classification rules are developed based on four methods (Stockwell et al., 2006): i) Atomic rules that assume 
binary decisions based on single values of explanatory variables (e.g. if average temperature < x and habitat type 
= y then species is present); ii) bioclimatic envelope rules that define environmental tolerances within which the 
species occurs; iii) range rules that extend ii) above to exclude or deem irrelevant variables not associated with 
the rule definition; and, iv) logit rules to combine several variables through logit regression defining a species’ 
probability of presence based on environmental gradients. Stockwell and Noble (1992) and Stockwell et al. 
(2006) provide some practical examples of forming each of these rules. At each iteration rules are “evolved” by 
means of truncation, inducing point changes, or by combining several rules. Predictive accuracy is evaluated at 
each iteration against the test data (presences) combined with an equal number of randomly selected “pseudo-
absences”. This process halts once a pre-specified number of iterations is reached, or when no appreciable 
improvement in predictive accuracy is observed. Due to the stochastic nature of GARP, this iterative process is 
typically repeated for a large number of replications, with a final result obtained as the average of the best 10-
100 model replicates based on lowest omission error (Franklin, 2009). 

Approaches for assessing predictive performance of SDM vary dependent on whether a threshold value is chosen 
to convert continuous predictions of occurrence (akin to probabilities) into binary classifications of 
presence/absence (Liu et al., 2009). Thresholds may be chosen because of the research question being asked (e.g. 
do we wish to reflect actual or potential distribution? Is a hard classification required for spatial management?), 
or with reference to balancing omission and commission errors (predicted false positives and false negatives, 
respectively). Performance measures for threshold-applied model output generally involve examining the 
misclassification (confusion) matrix, and may include sensitivity and specificity, Cohen’s Kappa statistic (Cohen, 
1960) that simultaneously considers both omission and commission errors, and more recently the True Skill 
statistic (TSS). The TSS was proposed by Allouche et al. (2006) as an alternative to Cohen’s Kappa, which was 
demonstrated to be dependent on prevalence (McPherson et al., 2004). TSS is defined as sensitivity + specificity 
– 1, and ranges from −1 to +1 where values of 1 indicate perfect agreement and values ≤ 0 indicate 
discrimination no better than random. Threshold choice naturally impacts assessments of a model’s predictive 
power, so it can be preferable to examine values of TSS over a range of threshold values in order to choose the 
optimal threshold value maximising the statistic (Liu et al., 2011). More recent work suggests that high 
max(TSS) scores may not necessarily guarantee good performance for the intended purpose of a study, and that 
TSS profiles over the full range of threshold values, along with spatial maps of uncertainty, should be used to 
choose a threshold tailored to the study objectives (Ruete and Leynaud, 2015).  
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The traditional approach for assessing non-threshold model output is to examine the ROC/AUC (Area Under the 
Curve of the Receiver Operating Characteristic plot) (Hanley and McNeil, 1982), which plots the false positive 
rate (1- specificity, or commission error) against the true positive rate (sensitivity). This approach has the 
advantage of removing any subjectivity in deciding a threshold value since the ROC is evaluated across all 
possible choices of threshold. AUC values of 1 indicate perfect discrimination, while values ≤ 0.5 are no better 
than random. AUC values > 0.75 have usually been assumed to indicate a model has reasonable predictive 
power (e.g. sufficient for conservation planning; Elith et al., 2006). AUC has a direct probabilistic interpretation, 
at least for models that make use of true absences, in that it reflects the probability that the model will rank a 
randomly chosen ‘presence’ site higher than a randomly chosen ‘absence’ site (Pearce and Ferrier, 2000). Lobo 
et al. (2008) criticise the use of AUC on several grounds, perhaps most importantly on the basis that the measure 
can be misleading when false absences are present in data (as might be expected when using techniques that rely 
on pseudo-absences) and that a single, summary statistic takes no account of the spatial distribution of error. 
More detailed treatments of ROC/AUC and confusion matrices (and derivatives) in the context of both 
threshold-dependent and -independent results from presence-absence models are provided by Fielding and Bell 
(1997), Lobo et al. (2008) and Liu et al. (2009).  

Comparative studies have evaluated the predictive performance of GARP in relation to other methods for SDM. 
Inviting the participation of experienced SDM researchers, Elith et al. (2006) compared 16 methods for their 
ability to predict the distributions of 226 species from six regions from around the world. More widely known 
techniques considered included generalised linear models (GLM; McCullagh and Nelder, 1989), generalised 
additive models (GAM; Hastie, 1993), multivariate adaptive regression splines (MARS; Friedman, 1991), 
maximum entropy modelling (MaxEnt; Phillips et al., 2006), boosted regression trees (BRT; Friedman, 2002), 
generalised dissimilarity modelling (GDM; Ferrier, 2002; Ferrier et al., 2002) and GARP variants DK-GARP 
(Stockwell and Noble, 1992) and OM-GARP (Muñoz et al., 2009). One notable feature of this study was that 
model performance was assessed against independent test data that comprised both presences and absences. 
Performance metrics included ROC/AUC, Cohen’s Kappa and point bi-serial correlation (COR) (Zheng and 
Agresti, 2000) between observations in the presence-absence test data and model predictions. Generalised linear 
mixed models (Breslow and Clayton, 1993) were used to assess aggregate model behaviour across all species 
considered. Results indicated three broad groups of methods that were characterised as being high, intermediate 
or poor predictors of occurrence. Along with several presence-only methods, DK-GARP was classified as having 
poor predictive ability with AUC values typically < 0.7 and COR values < 0.18.  OM-GARP fared somewhat 
better, being judged as having intermediate predictive ability and grouping with methods such as GAM, GLM 
and MARS. Highest performing methods in this study included BRT, GDM and MaxEnt.  

Several other studies seem to confirm the findings of Elith et al. (2006) in relation to the performance of GARP. 
Pearson et al. (2006) compared nine SDM methods for modelling the current and potential future distribution 
under predicted climate change for four species of Proteaceae. Methods examined included artificial neural 
networks, GAM, GLM and GARP, as well as several less common techniques. Model performance was assessed 
based on AUC and Kappa scores, with GARP performing poorly compared with all other methods. Peterson et al. 
(2007), comparing GARP and MaxEnt based on AUC, found that differences in predictive performance were 
apparent depending on whether the goal was interpolation within a study domain (MaxEnt did best, GARP 
tended to over-predict spatially) or prediction was conducted outside the study domain used to train the model 
(GARP performed better, though not significantly so). However, Phillips (2008), finding these results equivocal, 
undertook a re-examination of the data used in Peterson et al. (2007) to show that the original work 
inappropriately selected background data. Tsoar et al. (2007) examined six presence-only/presence-background 
methods, including GARP, using data on 42 species of snails, birds and bats in Israel. While GARP proved 
comparable and sometimes superior to other methods, the suite of methods considered in the study were 
generally not among the best performers identified in other studies (i.e. GARP did well amongst a group of 
relative non-performers). Finally, Elith and Graham (2009) compare the predictive performance of five alternate 
SDM methods, including GARP. Three methods used presence-absence data (logistic regression, BRT and 
random forests), with the remainder using presence-background data (MaxEnt and GARP). Results indicated the 
predictive performance of GARP was inferior to other machine learning methods such as random forests, BRT 
and MaxEnt, as well as more traditional regression-based approaches such as GLMs and GAMs. Of particular 
note, Elith and Graham (2009) show that GARP has difficulty in correctly modelling unordered categorical 
predictors, recommending that such variables should be presented in binary format (i.e. using indicator variables 
to represent category levels). 
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ADVANTAGES AND DISADVANTAGES OF GA 

Advantages 
• GA solutions are not reliant on derivative-based optimisation techniques, allowing the method to search 

highly complex optimization surfaces with multiple local minima. 

• Methods lend themselves to distributed computing. 

• Alternate, equally plausible solutions are captured for examination.  

Disadvantages 
• Computationally intensive. 

• No direct model-based estimates of uncertainty. 

• Care must be taken to resolve issues of premature convergence (a few comparatively good but non-optimal 
solutions come to dominate the population) and slow finishing (the population of solutions has largely 
converged but a global solution remains elusive). Beasley et al. (1993) give specific advice to address these 
circumstances. 

• Current implementations of GARP do not easily accommodate categorical variables. 

• Perhaps most importantly, predictive performance has been shown to be inferior to other available SDM 
approaches. 

SOFTWARE 
Part of the popularity of GARP has almost certainly been due to the availability of user-friendly software for 
Windows platforms (DK-GARP, see http://www.nhm.ku.edu/desktopgarp). No updates to the web site appear to 
have occurred since 2007, implying limited development of the software since that time.  

GARP has also been rewritten in the openModeller cross-platform environment for species distribution 
modelling (OM-GARP, see http://openmodeller.sourceforge.net/) (Muñoz et al., 2009). The developer 
documentation states that this implementation fixes several errors in the original code, including problems 
relating to numerical precision and application of rules during solution evolution. However, problems associated 
with incorporating categorical predictors remain. 

Several packages implementing GA are available in R, details of which can be found on the CRAN task view for 
optimisation (https://cran.r-project.org/web/views/Optimization.html). At the present time, these R packages for 
GA are not known to have been applied to SDM.  

APPLICATION OF GA TO CETACEAN STUDIES 
Cetacean SDM based on GA are relatively rare, but not unknown. For a variety of fish and cetacean species, 
Ready et al. (2010) compare several different methods for SDM including GARP, Relative Environmental 
Suitability (RES) (Kaschner et al., 2006), MaxEnt, GLM and GAM. Of direct relevance to this review, data were 
modelled for southern bottlenose whale (Hyperoodon planifrons) and fin whale (Balaenoptera physalus) from 
the Southern Ocean, and harbour porpoise (Phocoena phocoena) from the North East Atlantic. Data set sizes 
varied considerably between species, and estimated prevalence was lower for the whale species (< 0.05) than for 
harbor porpoise (0.28). OM-GARP models were fitted using the default settings. Environmental predictors 
available to the study included variants on depth, sea surface temperature, salinity, proportional ice cover and 
primary productivity. Models results were compared using ROC-AUC based on a 75%-25% training-test split of 
the data. Using an approach described in Kaschner et al. (2006), Monte Carlo methods were used to assess the 
significance of Spearman’s rank correlation between model predictions and relative abundance estimates based 
on independent effort-corrected sightings data. Results from different SDM methods were variable across fish 
and mammal species, but GARP consistently performed poorly on both evaluation metrics described above. Of 
the nine fish and three cetacean species considered, in no instance did the ROC-AUC for GARP models exceed 
0.7, and Spearman’s correlation between predicted model probabilities and independent survey data was non-
significant for all species.  

Building on work presented in Mandleberg (2004), MacLeod et al. (2008) compared four SDM methods for 
modelling the occurrence of the harbour porpoise (Phoceoena phocoena) in the Sea of Hebrides, Scotland. The 
methods compared were GARP (using the default settings of DK-GARP), GLM, a PCA-based approach 
(Robertson et al., 2001) and a multivariate technique based on eigen-decomposition termed ecological niche 
factor analysis (ENFA; Hirzel et al., 2002). Of these, only the GLM made use of true absences available to the 
study by virtue of repeat surveys along five fixed transects. Environmental covariates used in the analysis 
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included water depth, seabed slope, standard deviation of seabed slope, aspect of seabed, and distance to land. 
Transects were systematically divided into smaller sampling units (cells) which were randomly divided into 
training and test sets in a ratio of 2:1. Models were compared based on ROC-AUC and by comparing the spatial 
distribution of predictions by considering Pearson correlations between the average predicted probabilities of 
occurrence for 12 relatively homogenous sub-areas of the study region. Based on these evaluation metrics, the 
study showed that all four techniques produced statistically equivalent results, with point estimates of AUC in 
the range 0.74-0.82. Similarly, spatial predictions for the 12 sub-areas were strongly and significantly correlated 
between all four modelling techniques.  

There are no known advantages to using GA (including GARP) in relation to SDM studies of cetacean species. 
Many of the issues associated with applying SDM to cetaceans are unlikely to be able to be directly addressed 
through a GA framework, including issues related to paucity of data, observer biases, and a lack of direct links 
between sightings and environmental correlates during migratory behaviour. In light of these limitations, 
including the poor predictive performance of GARP shown in several studies, the approach is currently not 
recommended for developing SDM for cetacean species. 
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Appendix 3 

A preliminary review of Support Vector Machines (SVMs) 
applied as species distribution models (SDMs) and the 
applicability to cetacean studies 
DEBRA PALKA 

Northeast Fisheries Science Center, 166 Water St. Woods Hole, MA 02543 USA 

ABSTRACT 

Support Vector Machines (SVMs) use a functional relationship known as a kernel to map training data onto a new hyperspace in 
which complicated patterns between animal distribution and environmental variables can be more simply represented and then 
used to predict that pattern using data from a test dataset.  The response variable has usually been either presence/absence or even 
just presence, though more complicated categorizations are possible.  SVMs have been applied successfully to text categorization, 
handwriting recognition, gene-function prediction, and remote sensing classification, demonstrating the utility of the method 
across disciplines, proving that SVMs produce very competitive results with the best available classification methods. They have 
infrequently been applied to ecological predications only in the last decade.  However, there are no known applications to 
cetaceans, so far. A brief overview of SVMs, examples of ecological applications, advantages and disadvantages, and available 
software are provided in this paper.   

OVERVIEW  
The Support Vector Machine (SVM) method is a type of machine learning method for statistical pattern 
recognition.  That is, supervised learning is performed when a training dataset is analyzed to develop an 
algorithm that is used to assign results to new examples in a test dataset. SVMs were originally introduced as a 
binary classifier (Vapnik 1998).  Since then it has been extended to situations involving multiple classes, 1-class 
present only (e.g., untrained algorithms), partially indentified classes, and even regressions.  Basically SVM uses 
a functional relationship known as a kernel to map data onto a new hyperspace in which complicated patterns 
can be more simply represented.  Because SVM are not based on characteristics of statistical distributions there 
is no theoretical requirement for observed data to be independent, thereby overcoming the problem of auto-
correlated observations, although model performance will be affected by how well the observed data represent 
the range of environmental variables. 

In its classical implementation, a 2-class SVM uses two classes (e.g., presence/absence) of training samples 
within a multidimensional feature space to fit an optimal separating hyperplane in each dimension.  In this way, 
SVM tries to maximize the margin that is the distance between the closest training samples, or support vectors, 
and the hyperplane itself (Figure 1). The classification can be modeled with a linear or non-linear algorithm. For 
example, presence of known locations of rare tree species and absent locations without these rare trees, along 
with the physical and biological characteristics of both types of locations, were used to predict the potential 
spatial distribution of the rare tree species (Pouteau et al. 2012). Distribution maps of a fish species were 
modeled from presence/absence data and 19 physical-chemical and environmental variables from freshwater 
rivers in northern Italy (Tirelli et al. 2012). 

The 2-class SVM has been generalized to a multiclass SVM to accommodate data that have been labeled into a 
finite set of classes. The dominant approach for doing so is to reduce the single multiclass problem into 
multiple binary classification problems, though one step likelihoods have also been attempted.  

Typically if absence data are not available or unreliable, then pseudo-absence data are generated.  An example of 
presence only data are museum-collected locations of animals.  An example of potentially unreliable absence 
data is absence of a mobile species since it is possible the survey just by chance did not see a mobile animals in a 
particular type of habitat or absence of an invasive species that has not yet spread to an area.  To analyze the 
present-only format data Scholkopf et al. (1999) developed a one-class SVM.  For example, Guo et al. (2005) 
used the one-class SVM methods to map the potential distribution in California of a tree virulent pathogen called 
Sudden Oak Death. Drake et al. (2006) used presence of 106 species in mountains of the Swiss alps along with 
nine environmental variables to model their distributions, thus interpreting this as the species ecological niche (a 
multidimensional environmental space). 

If the data are not labeled into categories or only some of the data are labeled, the SVM methodology was 
expanded to support vector clustering (SVC) which attempts to find natural clustering of the data to groups, and 
then map new data to these formed groups.  An advantage of this method is there are no assumptions on the 
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number or shape of the clusters in the data (Ben-Hur et al. 2001).  In SVC, data points are mapped from data 
space to a high dimensional feature space using a kernel function. In feature space the smallest sphere is 
searched for that encloses the image of the data using the Support Vector Domain Description algorithm. This 
sphere, when mapped back to data space, forms a set of contours which enclose the data points. These contours 
are interpreted as cluster boundaries, and points enclosed by each contour are associated by SVC to the same 
cluster.  

The basic idea behind support vector regression is to map the data into a high-dimensional feature space via a 
nonlinear mapping and do linear regression in this space. In essence, linear regression in a high dimensional 
feature space corresponds to nonlinear regression in a low dimensional space.  For example the complex 
distribution simulated in Figure 2a, was able to be modeled using support vector regression (red line in Figure 
2b).  

APPLICATIONS AS SDMS 

SVMs have been applied successfully to text categorization, handwriting recognition, gene-function prediction, 
and remote sensing classification, demonstrating the utility of the method across disciplines, proving that SVMs 
produce very competitive results with the best available classification methods. However, they have been applied 
to ecological predications only in the last decade and not frequently (examples were mentioned above).      

ADVANTAGES AND DISADVANTAGES 

Advantages 
According to Guo et al. (2005; 2015) and Drake et al. (2006), when compared with traditional statistical or 
learning models which are based on generation of pseudo-absence data, advantages of SVMs include the 
following.   

• The methods are easy to use. Unlike many other machine learning algorithms, which rely on creativity and 
extensive tuning of parameters by users, SVMs require a minimum of tuning. SVMs are stable and thus 
require less model tuning and have fewer parameters then other computational optimization methods. 

• Because SVSs are theoretically-based models, combining optimization, statistics and functional analysis to 
achieve maximum separation, they have many appealing characteristics: SVMs are distribution free making 
no assumption on the underlying probability distribution; they do not require independent input data (and 
therefore can overcome the autocorrelation problem); are able to represent various data distribution shapes 
in feature space (e.g., banana shapes, sphere shapes, or even very irregular shapes); results are free from 
local minima; they are computationally efficient; and they provide outstanding performance in many 
situations.   

Disadvantages 
Guo et al. (2015) noted the major disadvantages was it was computationally complex and slow; difficult to 
determine optimal parameters when training data is not linearly separable, and difficult to understand the 
structure of the algorithm.  Perhaps it could also be used in describing temporal trends that include inter- and 
intra-annual variabilities. 

SOFTWARE 
An award winning library for support vector machines is LIBSVM.   

SVMs are also available in many machine learning toolkits, including MATLAB; PRCC SVM and PROC 
SVMSCORE in SAS; package e1071 offers a R interface to libsvm; SVMlight; kernlab; scikit-learn; Shogun; 
Weka; Shark; JKernelMachines; OpenCV; openModeller; and others. 

A SVC toolbox was written by Dr. Daewon Lee under supervision by Prof. Jaewook Lee. The toolbox is 
implemented by the Matlab and based on the statistical pattern recognition toolbox (stprtool) in parts of kernel 
computation and efficient QP solving. 

Multiclass SVM analyses can be conducted using Matlab and freeware from Cornell, SVMmulticlass. 

APPLICABILITY TO CETACEAN STUDIES 
To date, SVMs have not been used as SDMs of cetaceans. Though, it appears to be an appropriate tool to 
investigate developing cetacean SDMs for rarely encountered species or in situations with limited or unreliable 
effort information. 
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Figure 1: Support vector Kernel function (a) (b) (c) (d) Figure 1: (a) Hyper-plane formed using conventional 
classification algorithms for the data with a balanced distribution. (b) and (c) Hyper-planes formed using 
conventional classification algorithms. (d) Hyper-plane formed using SVMs. The open circles represent class A, 
the filled circles class B and the shaded circle class A or B. The thick lines represent the correct hyperplane for 
discrimination and the broken thick lines the biased hyper-planes. The thin lines are the margin boundaries. The 
triangles represent the novel patterns. Gamma (ϒ) means the distance between hyper-plane and the boundary 
formed by the support vectors. The margin is 2ϒ . From Yang 2004.  

 

 

 

 

 

   
Figure 2:  Left side: Pattern simulated using the equation sin(x)/x + rnorm(401,sd=0.03).  Right side: Simulated 
pattern (black line) overlaid with predicted model (red line) using support vector regression estimation.
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Appendix 4 

A preliminary review of Bayesian Networks (BNs) applied 
as species distribution models (SDMs) and the 
applicability to cetacean studies 
HIROTO MURASE 

National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency (FRA), 2-
12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan 

ABSTRACT 

Bayesian networks (BNs) have been used as species distribution models (SDMs) since early 2000s. This paper presents (1) a brief 
overview of BNs, (2) examples of applications of BNs as SDMs (3) advantages and disadvantages of BNs, (4) available software 
and (5) applicability of BNs to cetacean studies. Bayesian networks (BNs) are a kind of probabilistic graphical models that 
correlative and causal relationship among variables are represented graphically and probabilistically. BNs are categorized as a 
kind of machine learning methods. BNs have been applied as SDMs for vertebrates but all of them are inland species. The 
response variables were not abundance but presence and absence. Because of the limitation that variables should be discretized in 
some extent, utility of BNs for management of cetaceans could be limited as detailed information is lost due the discretization. 
However, BNs could be useful tool for exploratory research to investigate causal relationship among variables based on expert 
knowledge which can not be handled by other SDMs. 

INTRODUCTION 
Bayesian networks (BNs) are a kind of probabilistic graphical models that correlative and causal relationship 
among variables are represented graphically and probabilistically. BNs are categorized as a kind of machine 
learning methods. BNs also called in different names like directed Acyclic Graphical Models, Bayesian belief 
networks and Bayes network. Text books of BNs are available such as Nielsen and Jensen (2009), Pourret et al. 
(2008) and Scutari and Denis (2014). Several reviews and guidelines for BNs in the context of environmental 
and ecological studies are also available (Aguilera et al., 2011; Chen and Pollino, 2012; Marcot et al., 2006; 
McCann et al., 2006; Uusitalo, 2007). BNs have used as species distribution models (SDMs) since early 2000s. 
This paper does not intend to provide full review of BNs because details of BNs can be found in these references. 
Instead, it provides (1) a brief overview of BNs, (2) examples of applications of BNs as SDMs (3) advantages 
and disadvantages of BNs, (4) available software and (5) applicability of BNs to cetacean studies.  

BRIEF OVERVIEW OF BNS 
BNs mainly consist of qualitative and qualitative components. In the qualitative component, causal relationships 
among variables are represented as directed acyclic graphs (DAGs). A schematic DAG of a simple Bayesian 
network is shown in Fig. 1. In the graphs, nodes (variables in ellipses) are linked by arcs (also called as edges 
and arrows) to show causal relationship between nodes. The initial structures of DAGs can be constructed based 
on known causal relationship (e.g. information from literature) and/or expert knowledge. In the qualitative 
component, degree of belief expressed as probability of a node in a particular state given states of parents node 
assuming that conditionally independent of all its non-descendants, given its parents. For example, probability of 
C given B in Fig. 1 is calculated based on Bayes’ theorem as: 

:
)(

)()|()|(
CP

DPDCPCDP =          (1) 

APPLICATIONS OF BNS AS SDMS 

BNs have been applied as SDMs to a variety of species since early 2000s. Published studies targeting on 
vertebrates are summarized in Table 1. All of them were targeting inland species. The response variables were 
not abundance but presence and absence. It seems that number of published papers using BNs as SDMs is small 
in comparison with other machine learning methods. There is no application to marine vertebrate to date. It 
should be noted that all studies listed in Table 1 used the software, Netica (Norsys Software Corp., Vancouver, 
Canada) (see also SOFTWARE section of this paper for related issues).  

ADVANTAGES AND DISADVANTAGES OF BNS 

The following are advantages and disadvantages of BNs as mentioned in Aguilera et al. (2011). 
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Advantages 
• Risk and uncertainty can be estimated more accurately than in models where only values are taken into 

account because nodes are modelled by means of probability distributions. 

• The probability of particular hypothesis can be automatically computed because numeric values are attached 
to the relationship between the variables. 

• The probability distribution of a node given its parents, and even the other way round, the probability 
distribution of a parents nodes given its child nodes can also obtained once the model is learned. This allows 
as to know the effects given the causes and the causes given the effects. They can be used as inferential 
model given this characteristic. 

• Expert knowledge can be incorporated in BNs through a participatory modelling procedure because the 
relations between variables can be visualized easily by the graphical representation of the network and so 
they can be modified by the experts just by adding or removing variables and links in the graph. 

• BNs can model complex systems with a large number of variables. 

• BNs can manage missing values in input data and perform the proper predictions with the model built from 
them. 

Disadvantages 
• To maintain the accuracy in the estimations and in the network topology, the building process of the 

network and the parameter estimation requires more data as the number of variables increases. 

• BNs can manage continuous data and hybrid of continuous and discrete data but the limitations are too 
restrictive and the most extend solution is discretization of variables. 

• Expert knowledge with an unknown degree of bias and inaccuracy can be easily incorporated in BNs. 

• Handling of feedback functions and temporal relationships are not possible. 

• Though complex systems can be modelled by BNs, this should be sparingly to avoid crating unwieldy 
model structures. 

SOFTWARE 
A number of commercial and noncommercial software is available to build BNs. A list is available from 
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html (accessed on 29 April 2016). Some of the software were 
reviewed in Uusitalo (2007). Several R packages are also available (Scutari and Denis, 2014). However, as 
mentioned earlier, Netica is only a software to build BNs for SDMs applied to vertebrates.  

APPLICABILITY OF BNS TO CETACEAN STUDIES 
To date, BNs have not been used as SDMs of cetaceans. Because of the limitation that variables should be 
discretized in some extent, utility of BNs for management of cetaceans could be limited as detailed information 
is lost due the discretization. However, BNs could be useful tool for exploratory research to investigate causal 
relationship among variables based on expert knowledge which can not be handled by other SDMs.  
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Table 1.  

 

Reference Region 
Number of species considered in studies 

Fish Reptile Bird Mammal 
Raphael et al. (2001) Columbia River basin, US - 1 16 11 
Rieman et al. (2001) Columbia River basin, US 6 - - - 
Smith et al. (2007) Queensland, Australia - - - 1 

Chen and Pollino (2012) Tasmania, Australia 1 - - - 
Gieder et al. (2014) Maryland, US - - 1 - 

Tantipisanuh et al. (2014) Thailand - 2 15 4 
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Fig 1. A schematic representation of a simple Bayesian network. In this case, water temperature (A) and 
chlorophyll concentration (B) have causal influence on prey density (C) which in turn has causal influence on 
occurrence of whales (D). Each node (ellipse representing variable) is linked by arc.
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ABSTRACT 

Random forests (RF) is a machine learning technique that combines many single decision trees in an embedded way to calculate 
the importance of each predictor. The technique combines the ideas of bagging and random selection of features. From a bootstrap 
sample, a large number of regression trees are fitted using randomly chosen covariates on each node. Trees are fully grown (rather 
than pruned), and the results of all trees are averaged for the final prediction. RF performs well in relation to other classification 
techniques. Use of RF in species distribution modelling (SDM) has proven robust and stable. The technique is being widely used, 
both as stand-alone and as part of ensemble distribution forecasting on a variety of plant and animal taxa. Software for RF is well 
developed in the R statistical language. Although RF has apparently not been used in SDM with cetacean survey data to date, the 
technique is well suited for this purpose, and existing studies from the seabird literature should serve as excellent background. 

INTRODUCTION 
Random forests (RF) is part of a family of robust methods known as non-parametric. RF was developed by 
Brieman (2001) and, like other machine learning techniques, it has quickly become popular among the data 
science community because of its ability to model the complex structure of high-dimensional data sets. At its 
core, RF is a classification technique that combines many single decision trees in an embedded way to calculate 
the importance of each predictor. RF is also considered an ensemble method because it aggregates the results of 
multiple, independently generated classification trees into an averaged prediction. RF performs well compared to 
other classification techniques such as discriminant functions and neural networks. It has been used for feature 
selection in bioinformatics (Saeys et al. 2007). The technique was introduced in ecology by Prasad et al. (2006) 
and by Cutler et al. (2007), and it has become the de facto method for supervised dive classification in diving 
vertebrates (Thums et al. 2008, McIntyre et al. 2011, Photopoulou et al. 2015). 

BRIEF OVERVIEW OF RANDOM FORESTS 
RF was developed by L. Breiman (2001) as a classification and regression tree (CART) technique. Breiman’s 
layman explanation of RF is as follows: 

“Random Forests grows many classification trees. To classify a new object from an input vector, put the input 
vector down each of the trees in the forest. Each tree gives a classification, and we say the tree “votes” for that 
class. The forest chooses the classification having the most votes (over all the trees in the forest).” 
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 

RF is a CART method based on bagging. Bagging generates n bootstrap samples, builds a model for each, and 
then averages the resulting models across bootstrap aggregates. The RF algorithm is executed by bootstrapping 
(with replacement) 63% of the data and generating a “weak learner” based on a CART for each bootstrap 
replicate. Within the pre-set specification (e.g. node depth and number of samples per node) each CART is 
unconstrained (grown to fullest) and prediction is accomplished by taking the “majority votes” across all nodes 
in all random trees. At each replicate the data not used to construct the tree [out of bag (OOB)] are used for 
validation, providing a quasi-independent validation of model fit. Covariates are randomly selected at each node 
and variable importance is assessed using the mean decrease in accuracy (MDA) by dividing the standard error 
by the misclassification rate. The number of covariates randomly selected at each node is defined by m 
(commonly defined as the square root of the number of covariates). The contribution of covariates can also be 
obtained with the Gini Index. Each time a node split occurs based on a particular variable, the Gini impurity 
criterion for the two descendent nodes is less than the parent node. The Gini index is calculated by summing the 
Gini decreases for each individual variable over all trees in the forest. 

As with other machine learning techniques, the most commonly used evaluation metric for presence-absence 
data is the area under the curve (AUC) of a receiver operating characteristic (ROC) plot, where the best-
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performing model is selected with the Boyce Index or the Youden Index. The Kappa statistic is used for multi-
class models, as is the true skill statistic (TSS). Iterative cross-validation is performed internally as a quasi-
independent validation of model fit. Predictions are also subject to model parameter selection. For instance, the 
two user-defined parameters, the number of trees and the number of randomly selected variables to split the 
nodes, should be optimized to improve predictive accuracy. 

APPLICATIONS OF RF AS SDM 
Owing to its unique approach to modelling, the use of RF in SDM has proven robust and stable. The vegetation 
community has successfully used it at a variety of scales (Prasad et al. 2006, Rehfeldt et al. 2006, Evans and 
Cushman 2009, Marmion et al. 2009a, Hegel et al. 2010). RF has since been applied to a variety of terrestrial 
animal taxa at continental scales (Marmion et al. 2009, Howard et al. 2014). For marine taxa, several studies 
have successfully applied RF to seabird survey (Oppel and Huettmann 2010, Oppel et al. 2012, Renner et al. 
2013, Liske et al. 2014) as well as tracking data (Scales et al. 2015). These studies should constitute excellent 
background material for applications with cetaceans. 

An area of focus in SDM has been the assessment of the performance of RF relative to various other modelling 
techniques (Marmion et al. 2009a, b). RF also has been used to assess the relative performance of models trained 
on abundance data and those trained on presence-absence data (Howard et al. 2014). RF is included in the suite 
of techniques for ensemble forecasting of species distributions [along with Generalized Additive Models (GAM), 
Maximum Entropy (MaxEnt), and Boosted Regression Trees (BRT)] that are implemented in the extremely 
popular BIOMOD platform (Araujo and New 2007, Thuiller et al. 2009, Thuiller 2014). 

APPLICABILITY OF RF AS SDM WITH CETACEANS 
To the best of my knowledge, RF has not been used directly as a SDM approach with cetaceans, but this is only 
a matter of time since the methodology is well established and is well suited for cetacean data sets, either as 
abundance or as presence-absence. Because seabirds have great similarities with cetaceans in terms of ecology 
and data collection techniques, the studies discussed in the previous section (Oppel and Huettmann 2010, Oppel 
et al. 2012, Renner et al. 2013, Liske et al. 2014, Scales et al. 2015) provide excellent background material for 
applications of RF as SDM with cetaceans. I also note that a recent SDM study used GAM to generate habitat-
based cetacean density predictions for a large number of cetacean species in waters of the U.S. Atlantic and Gulf 
of Mexico, and then implemented RF to resolve ambiguity in models containing similar species due to 
difficulties in field identification (Roberts et al. 2016). 

ADVANTAGES AND DISADVANTAGES 

Advantages 
• RF is ideal for modelling ordinal and categorical data, including presence-absence (Marmion et al. 

2009a, b, Hegel et al. 2010). Additionally, it is among the techniques well suited to deal with the zero-
inflated, overdispersed data typical of line-transect abundance surveys (together with negative binomial 
generalized linear modelling and Hurdle modelling) (Lieske et al. 2014). 

• RF makes few assumptions about the distribution of variables, is robust to over-fitting, and is widely 
recognized to produce predictions that typically outperform traditional regression-based approaches 
(Breiman 2001, Liaw and Wiener 2002, Prasad et al. 2006, Marmion et al. 2009a, b, Hegel et al. 2010). 

• RF predictions can easily be projected into new variable space, making it an appropriate algorithm for 
projective modelling such as climate change (Rehfeldt et al. 2006). 

• In contrast to other dimensionality reduction techniques like those based on projection (e.g. principal 
component analysis) or compression (e.g. using information theory), RF does not alter the original 
representation of the variables, but merely selects a subset of them, thus maintaining their 
interpretability (Saeys et al. 2007). 

Disadvantages 
• When used as a classifier, ancillary data are necessary for training the RF algorithm and validating 

classes, which can be problematic for small datasets and which also requires time-consuming visual 
classification. 

• While providing highly accurate predictions, and despite maintaining the original representation of the 
covariates, RF models can be difficult to interpret (Renner et al. 2013). 
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• RF can be sensitive to the number of covariates and to the number of trees comprising the classifier 
(Oppel and Huettmann 2010). Multi-collinearity and imbalance between classes are additional factors 
that can affect model performance. 

• The two major limitations of the ROC as an evaluation metric is that it is only suited for discrete data 
and few strategies exist for validating more than two classes (presence-absence). For multi-class models 
the Kappa statistic has been criticized because it is not truly chance-constrained, although a weighting 
function has been implemented to account for near agreement and adjust for expectation in the 
frequency of observations. 

SOFTWARE 
RF methods are well developed in the R statistical language (R Development Core Team 2016). The online 
Comprehensive R Archive Network maintains “task views” that compile information about libraries 
(“packages”) for popular subjects, including machine learning (http://cran.r-
project.org/web/views/MachineLearning.html). The following information is quoted directly from the RF section 
of the Machine Learning Task View: 

“The reference implementation of the random forest algorithm for regression and classification is available in 
package randomForest. Package ipred has bagging for regression, classification and survival analysis as well as 
bundling, a combination of multiple models via ensemble learning. In addition, a random forest variant for 
response variables measured at arbitrary scales based on conditional inference trees is implemented in package 
party. randomForestSRC implements a unified treatment of Breiman’s random forests for survival, regression 
and classification problems. Quantile regression forests quantregForest allow to regress quantiles of a numeric 
response on exploratory variables via a random forest approach. For binary data, LogicForest is a forest of logic 
regression trees (package LogicReg). The varSelRF and Boruta packages focus on variable selection by means 
for random forest algorithms. In addition, packages ranger and Rborist offer R interfaces to fast C++ 
implementations of random forests.” 

Additional notes: 

• Package randomForest provides information on variable importance, which is determined by how much 
prediction error increases when testing data for that variable is permuted while all others are left 
unchanged (Liaw and Wiener 2002). 

• Package party uses a RF implementation based on a conditional inference framework (Hothorn et al. 
2006a, b, Strobl et al. 2009), which can be useful for accounting for a high degree of correlation 
between covariates and the potential for biased variable selection. This package offers the cforest 
classifier, which was used by Roberts et al. (2016) to resolve ambiguity among related cetacean species 
and thus generate separate model predictions. 

• Finally, package biomod2 includes an implementation of RF as part of its ensemble ecological niche 
modelling tools (Thuiller et al. 2009, Thuiller 2014). 
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ABSTRACT 

Some initial thought on framework of guideline for species distribution models (SDMs) applied to cetaceans is presented in this 
paper. Ten iterative steps in development and evaluation of models proposed by Jakeman et al. (2006) are used as a templated for 
this purpose. Written statement of these steps will help reviewers.  

INTRODUCTION 
Application of species distribution models (SDMs) to cetaceans started in the late 1990s and the number of 
studies has been increasing in recent years (Murase et al., 2015). Statistical models (including traditional 
regression models and machine learning) relating occurrence and/or abundance of species to its environment at a 
certain time period is termed SDMs. Development of a guideline is required for proper assessment of the 
outcomes of modelling because a lot of choices are available for scientists in the course of construction of SDMs 
such as statistical models, covariates, model selections and evaluations and these choices confound reviewers. 
This is especially true in the context of the Scientific Committee of the International Whaling Commission 
(IWC/SC), because the results are expected to be used as an element of management advices. The Sub-
Committee on the Revised Management Procedure (RMP) of the IWC/SC is currently trying to develop a 
guideline for model-based abundance estimation methods, mainly focusing on a generalized additive model 
(GAM) which can be treated as a type of SDMs. The Working Group on Ecosystem Modelling (EM) of the 
IWC/SC also recognized the necessity for the development of a guideline on the techniques and underlying 
assumptions of SDMs based on up-to-date and comprehensive knowledge (IWC, 2015). This paper provides 
some of initial thought on framework of a guideline for SDMs. 

FREMEWRK OF A GUIDELINE 
Although there is a number of guidelines for modelling in the context of environmental/ecological studies, ten 
iterative steps in development and evaluation of models proposed by Jakeman et al. (2006) can be considered as 
a good starting point for development of a guideline for SDMs applied to cetaceans. Written statement of these 
steps will help reviewers. The following are general comments on each steps for the purpose of the review of 
SDMs.  

First step: Definition of purposes for modelling 
In border context, there are at least three purposes of development of SDMs applied to cetaceans: (1) estimation 
of spatial abundance (2) estimation of spatial distribution and (3) investigation on ecological questions (e.g. 
habitat requirement). These purposes might involve interpolation (estimation within a target [survey] area) and 
extrapolation (prediction outside of a target area and future projection). However, these two words can be 
defined differently: interpretation can be regarded as estimation within line transect strip (length of transect times 
effective search width) while extrapolation can be regarded as estimation within a target area. These three are not 
mutually exclusive and some of statistical models can address these at once. Nevertheless, distinction of main 
purposes for modelling is important because they affect details of subsequent model development and evaluation 
steps. Former two purposes are more related to in-depth assessment and management of stocks while the third 
purpose is more related to ecological questions.  

Second step: Specification of the modelling context 
According to the Jakeman et al. (2006), following 9 points should be considered at this step: (1) the specific 
questions and issues that the model is to address, (2) the interest group, including the clients or end-users of the 
model, (3) the outputs required, (4) the forcing variables (drivers), (5) the accuracy expected or hoped for, (6) 
temporal and spatial scope, scales and resolution, (7) the time frame to complete the model as fixed, (8) the 
effort and resources available for modelling and operating the model and (9) flexibility. Jakeman et al. (2006) 
considered that the crucial point at this step is (6). 
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Specific questions and issues that the model is to address 
Following are some examples of specific questions and issues that the SDMs to address: 

• Spatial abundance estimation for the purpose of RMP 

• Investigation on reasons of change in spatial abundance and distribution for the purpose of IA 

• Identification of distribution area of whales to reduce ship strikes in a certain area 

• Investigation on habitat requirements for ecological study 

Interest group, including the clients or end-users of the model 
In general, interest groups of SDMs could consist of managers, scientists, fishermen, conservation groups and 
general public though specific combination would be varied from case to case. In the context of IWC/SC 
primary interest groups are managers and scientists. 

Outputs required 
Primary outputs from SDMs are estimated maps of probability of occurrence and/or abundance. Point estimate 
can also be obtained in the case of abundance. Importance (rank) of environmental variables affecting 
occurrence/abundance can also be obtained from models.  

Forcing variables (drivers) 
This is not applicable to SDMs as forcing variables are not used in the models in general. 

Accuracy expected or hoped for 
Acceptable level of accuracy should be determined by discussion before conducting modelling but it might be 
changes on the course of analysis. 

Temporal and spatial scope, scales and resolution 
Specification of temporal and spatial scope, scales and resolution is closely tied with the purpose of modelling. 
For example, if one aims to estimate spatial abundance and distribution of a stock in a particular season, broader 
spatial area should be covered by the modelling. For instance, in the case of the IWC SOWER CPIII, it took 
approximately 40 days by two vessels to cover an area in a 30° longitude sector from ice edge to 60°S. In such a 
case, temporal scale of environmental data (e.g. temperature) for modelling might be restricted to month or 
seasonal mean data. In contrast, if one aims to estimate spatial abundance and distribution in a local area (e.g. 
bay), it can be covered by a few days. In that case, environmental data with high temporal resolution might be 
used but only a fraction of a stock might be studied. Specification might be limited by available environmental 
data. For example, sea surface temperature derived from satellite data is commonly used as an environmental 
data in modelling. However, both temporal (e.g. observed period) and spatial (e.g. grid size and cloud cover) 
coverages are limited. 

Time frame to complete the model as fixed, for example, by when it must be ready to help a decision 
Time frame should be determined by discussion before conducting modelling but it might be changed on the 
course of analysis. 

Effort and resources available for modelling and operating the model 
Identification of effort and resources available for modelling is important to set time frame and required budget. 
Consideration of operation of the model might be necessary if constructed models are applied to new 
environmental data (e.g. temperature) continuously. 

Flexibility; for example, can the model be quickly reconfigured to explore a new scenario proposed by a 
management group 
Flexibility of models used as SDMs should be described although most of them are reasonably flexible for 
reconfiguration. 

Third step: Conceptualisation of the system, specification of data and other prior knowledge 
Reasonable hypothesis about relationship between explanatory variables (usually environmental variables) and 
response variable (presence/absence or abundance) should be provided. It is directly related to selection of 
explanatory variables for an initial model.  

Response variable are one from the followings: 
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 Presence/absence: Typically collected by sighting survey (either dedicated or opportunistic) as 
sighting effort data are required. 

 Presence only: Typically collected by satellite tags as the data provide only location of cetaceans. 

 Abundance: Typically collected by dedicated sighting survey which records distance and angle of 
sightings, and school size to calculate effective half width and mean school size. 

Type of response variable has strong influence on selection of model features and families.  

 A variety of explanatory variables has been used. The details of data should be provided. The 
followings are some of the examples: 

 In-situ environmental data: Environmental data record during field surveys such as water 
temperature obtained by CTD and prey density obtained by echosounder are used in SDMs. 
Interpolation and/or extrapolation of data for target area are necessary as these data are recorded 
along track lines in most cases. 

 Satellite data: Environmental data obtained satellite are commonly used in SDMs as the data have 
wide coverage both temporally and spatially. Types of data include such as SST, SSH, sea surface 
chlorophyll-a concentrations (chl-a) and sea ice concentrations. Interpolation and/or extrapolation 
of SST and chl-a data might be necessary in cases of missing values due to cloud cover. Secondary 
data products such as thermal fronts calculated using satellite data are also available for some 
regions. 

 Terrain data: Digital bottom depth data and variables calculated using the data (e.g. slope) are used 
in SDMs. Distance from terrain futures such as coastline are also used. 

 Ocean model data: Output from ocean model data (e.g. Regional Ocean Modeling System 
[ROMS]) are used in SDMs. 

 Climatological data: Climatological data (e.g. World Ocean Atlas published by NOAA) are used 
in SDMs. 

At this stage, considerations on spatial autocorrelation of response variable and collinearity among explanatory 
variables are also required especially for regression models.  

Forth step: Selection of model features and families 
Although a number of statistical models can be used as SDMs, selection of families (i.e. specific statistical 
models) is limited by of features (e.g. types of variables and linear/nonlinear functions). Description of reasons 
why a particular model is selected is inevitable. It is preferable to use several models and compare the results. An 
alternative choice could be ensemble modelling if the primary objective is estimation of spatial abundance and 
distribution. However, major drawback of ensemble modelling is that it cannot be utilized for ecological 
inferences.  

Fifth step: Choice of how model structure and parameter values are to be found 
Choice of model structure (i.e. relation between variables) can be inferred from prior scientific knowledge. 
However, the choice could be limited by availability of explanatory variables for SDMs. Methods to estimate of 
parameter values are specific to each statistical model.  

Sixth step: Choice of estimation performance criteria and technique 
Each statistical model has unique methods for parameter estimation performance criteria and technique, and it 
should be described fully.  

Seventh step: Identification of model structure and parameters 
In many cases, this step just consists of dropping or adding of particular parameters to reduce or increase model 
complexity based on fifth and sixth steps.  

Eighth step: Conditional verification including diagnostic checking 
There are generally two forms of verifications: quantitative and qualitative verifications. Qualitative (conceptual) 
verification is verification between real system and conceptual model based on qualitative information such as 
expert knowledge. Quantitative (model) verification is verification between conceptual and quantitative model 
based quantitative criteria such as goodness fit and test on residuals.  
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Ninth step: Quantification of uncertainty 
Uncertainty associated with abundance is estimated such as bootstrapping in GAM. However, uncertainty 
associated with probability of occurrence has rarely exploited so far.  

Tenth step: Model evaluation or testing (other models, algorithms, comparisons with alternatives) 
Model evaluation using test data have been conducted for probability of occurrence based on AUC. However, it 
has rarely conducted for abundance. Comparison of results among different statistical models is recommended to 
evaluate them. Point estimate (e.g. abundance) comparison is relatively easy but ecological inference might be 
difficult if different models show different results (e.g. shape of response form).  
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