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Abstract

At recent meetings of the Scientific Committee question of whether to prefer AIC or BIC in rabdelection
has been a matter of contention. Drawing on baglsthtistical literature and results from a simataexperiment
conditioned on analyses of minke whale nutritivadition, this paper examines the relative meritmotiel
selection based on AIC or BIC and provides somemauendations on appropriate practice in the devedop
and presentation of statistical analyses that us#ehselection. The conclusion is that the chofostach
information criterion to use depends on the purpifsbe analysis, the sample size and specifithefealised
experimental design. In the specific case of amalys minke whale biological parameters, resuligcate that,
based on current sample sizes, it is likely th& Bl under-estimating the complexity necessarydemaately
describe system behaviour. Model misspecificatitiis kind is critical given that models are thesed to
calculate prospective lethal-take sample sizesmuredearch permits.

Introduction

In recent years there has been protracted sligmuby the Scientific Committee (SC) and its vilogkgroups
concerning statistical model selection, particylamlrelation to complex models of biological parters. Much
of this discussion has centred on whether Akaik&@rmation Criterion (AIC; Akaike 1973) or Schwarz
Bayesian Information Criterion (BIC; Schwarz 19%8jnore appropriate for model selection. While ¢hexists a
large number of information criteria (IC) tailoremparticular models or data types (e.g. Ward 26ten and
Hobbs 2015), AIC and BIC remain the best known rmuodt widely used. They are superficially quite &ami
philosophically quite different, and can provideatgent results in some circumstances. In this papeexamine
recent advice provided to the SC in relation toube of AIC and BIC for model selection, providensoadvice
of our own, and consider what effect ignoring thdtice would have on a simulated model selecti@ncse
conditioned on the analyses we undertook in dedaeldt al (2014). For the purposes of this work we define
model selection in the restricted sense of selg@inovariate set to adequately explain a respenséyding
matters relating to the distribution of responseavariates, which are assumed fixed between cangpetodels.
‘Adequately’, in this sense, is central to the aifthis paper, and can broadly be thought of aartzahg
goodness of fit with simplicity.

It is worth reviewing recent advice to the SCtie topic of model selection. Most recently, tReport of the
expert workshop to review the Japanese JARPA ItiabBermit research program” (SC/65b/Rep02) predid
relatively detailed advice in relation to analysésutritive condition of minke whales, which weefés important
enough to reproduce in full below:

“Given the discussion in a number of papers preseby both proponents and observers, the Parakoff
the following summary of the merits or otherwise®d€ and BIC, both commonly used metrics for model
selection. The two metrics, while mathematicallyitar (twice the negative log-likelihood plus a p#g
term), arise from different underlying argumentagk and Raftery, 1995). BIC will tend to selectdan
models than AIC if the number of data points exsegdll things being equal (because the penaity fer
additional parameters is larger than for AIC). Sations have shown that AIC often selects a moraptex
(wrong) model over the simpler (and correct) mdéelss and Raftery, 1995). Whether this necessarily
means that BIC is always better than AIC is noacleecause AIC attempts to find the best approximat
model rather than true model (which would be ranelthe set of candidate models). BIC is, however,
generally preferred to AIC for ‘large’ data set@wever, what constitutes ‘large’ in any particutase
depends inter alia on the set of models under deresiion. Thus, for any one problem the selectiemvben
AIC and BIC is seldom definitive. Many practicistatisticians consequently often apply both AIC and
BIC, examine the sensitivity to the different maxsélected and apply expert judgement.” (SC/65Rep
p37)

We commend the Expert Panel for providing gu@gain relation to this difficult topic, and findat with one
or two exceptions we largely agree with the expianagiven above, at least in the context that Kass Raftery
(1995) presented their work. We particularly apecthe Expert Panel’'s comments that a choicedmivAlC
or BIC is seldom definitive, is influenced by samglze, and that sample size considerations deedito the
nature and complexity of the system being studié. Panel seems to indicate that concordance bet\W@ee
indicates some degree of reassurance that thingsmtaone too awry, while lack of concordance pugsnto the
arena of “expert judgement”. Of course, one peisenpert judgement might be seen as lack of judgelme



another, so where does this really leave us? Lydkiere is a growing body of evidence in the egiaal
literature about the relative performance of déferlC, a point we explore in the next section.

We wish to bring to the attention of the SCt tha advice provided by the JARPA |l review panabk
specifically in relation to analyses of blubbeicktiess and related metrics of body condition (Klairésid Walloe
2014; SC/F14/313) and stomach contents (Komishl 2014; SC/F14/J14). Nutritive data were reanalysed
ostensibly following the advice of the Expert Pahgithe Working Group on Ecosystem Modelling iri20
(IWC/65/Rep01, Annex K1, Appendix 2). We found fitfartunate that these new analyses only seemeslioovf
some of the Expert Panel’s advice. In particulae, iew work only reported BIC values, gave no asseat of
concordance or otherwise between AIC and BIC, andamsitivity analyses in the event that the ddteelected
appreciably different models. We hope the presepepwill serve to highlight the merit of the Paseldvice.

In the remainder of this paper we set out ationale for why we think that BIC should not bediss the sole
criterion for variable selection in developing mizdef complex ecological systems. We first contra& and
BIC by providing their formulaic (but not theoredl} derivation, in each case paying particularrdite to the
size of the penalty term that serves to balanceefddvith model complexity. In this section wesalconsider
the special case of nested models, showing thebkmkeen the degree of improvement in IC requioectain a
model term and the likelihood ratio test. For tksted case, this demonstrates the notipnallue that would be
required for each of AIC and BIC to reject a simpledel in favour of more complex one. In the nedtion we
draw upon the modern statistical literature, ad a®two decades of applied ecological experiemzeghe
publication of Kass and Raftery (1995), to showt thzinions about use of BIC are divided. On balatitis
review indicates that BIC is generally not suppaifr developing models in complex ecological systeWe
follow this with our own simulation study into thehaviour of AIC and BIC using data conditionednoodels
similar to those used for nutritive analyses ofkaeimhales. Our results indicate that BIC is unsiléas the sole
determinant of model complexity for the models wesidered. We comment briefly about the probity of
significance testing model terms after model s@ectefore offering some concluding recommendatidfhile
noting that it is difficult to be entirely presctiye in matters of model selection, we suggest@muim set of
‘best practice’ approaches for using and reponioglel selection based on IC.

AlC and BIC Compared

Consider a set of candidate models that we teiglompare in order to select the best modelgdone defined
meaning of ‘best’). Assumgare our observed data, described by a depéifyp) as a function of parameter set
O. Define the deviance & 0) = -2log{ p(y|©)}. Classical model comparisons for nested modedsaghieved by
a likelihood ratio test comparing the differencéadg-likelihoods to a chi-squared distribution withgrees of
freedom equal to the difference in free paramdieteieen the competing models. For non-nested maoateds
alternative is the Akaike Information Criterion @) given by

AIC = —2log{p(v10)} + 2k

whered is the maximum likelihood estimate akis the number of parameters in the model. Baseduiback—
Leibler divergence (a concept from information theihat quantifies information loss), AIC providaselative
measure of fit of a model to a given set of datssuining all else being equal (i.e. near-equivaterdel

checking diagnostics), the quality of different ratadcan be assessed by comparing AIC values. loabe of
nested models, Murtaugh (2014) shows the closéaehip that exists between differences in AlQuesl and
traditional p-values derived from likelihood ratests. AIC is known to perform poorlykfis large in relation to
sample sizen), leading to the finite-sample adjustment criter& C. (Hurvich and Tsai 1989, Sugiura 1978). For
the purposes of illustration we present the formefainivariate linear model, noting that the corrjhjeof
calculation changes with model type.

2k(k + 1)
n—k-—1

Burnham and Anderson (2002) recommend that.AkCroutinely used over AIC since the differenaes a
important at small sample sizes and the two cateoirrespond asymptotically.

AIC, = —2log{p(y10)} + 2k +

An alternate metric for comparing between modeBvisrtz's Bayesian Information Criterion (BIC), givby

BIC = —210g{p(y|9)} + klog(n)

The BIC is derived as an easy approximation tdabeof a Bayes factor, a concept closely linke@&yesian
hypothesis testing. Asymptotically, it favours misdinat correspond to the most probable given #ia Hased on
the Bayesian posterior. Recent work by Flytal (2011) suggests finite-sample performance of By, like
AIC, be poor in some circumstances, however thigwonot widely available in software and is nonhsidered
further here.



For a given criterion, one typically computes tC values for a set of candidate models thesctethe model
with the smallest value (or potentially more thare enodel if several have similar IC values). An artpnt thing
to note in contrasting the AIC and BIC is that botiteria are composed of minus twice the log-itkebd (-2LL)
plus a penalty term designed to balance modelifit model complexity. In the case of AIC, this pkyés twice
the number of parameters in the model, so morenpetas incurs higher penalty. Stone (1977) dematestrthat
this is asymptotically equivalent to conducting rabchoice by leave-one-out cross-validation, wheads
naturally to the conclusion that AIC is tailoredfitdahe observed data well (asymptotic efficienand predict
new data well.

In contrast, the BIC is said to be asymptolycabnsistent; that is, as sample size increasagitaty it will
select the correct model from a candidate set,igiroy the correct model is in the set (Shao, 199g penalty
term for BIC links the number of parameters toltiieof sample size; penalties are in general greate
comparison with AIC and smaller models (fewer pagtars) are favoured. AIC and BIC correspond onkeay
small sample sizes (around 7). These asymptoti@ctexistics lead to the conclusion that AIC an@ Biill
impact components of the bias-variance trade-dfdintly. Optimal models determined by AIC will
asymptotically have lower variance but higher bfes optimal models determined by BIC, and vicesael he
optimality aspects of AIC and BIC, efficiency anshesistency respectively, are not thought able teHaged by
an individual criterion, as shown by Yang (2005airegression framework. While in some sense asytpt
properties are academic, many authors use the gotopistify one IC or another (e.g. an appedirtding the
true model ag approaches infinity, in the case of BIC). In apglsituations it is challenging to identify what
sample size will approach asymptotic behavioutherdegree to which our measured variables addguate
represent the system under study.

It is of interest to consider the comparatiize ®f penalty between AIC and BIC for the same etatructure
fitted to the same data. We do this by discountilgcommon -2LL between criteria and evaluate teafty
over a grid of parameter and sample size valuggi(€il).
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Figure 1. Magnitude of IC penalty term (contouebh evaluated over a grid of sample size and number
of model parameters. The arrow indicates the résgecomplexity penalties that would be applied to
models comprised of 10 parametersleind 20 parameters @ each fitted to 1000 data points.



Consider a comparison between a model withat@meters () and a model with 20 parametersyjMooth
fitted to the same data£1000). Under AIC the penalty for Ms 20 and the penalty for Ms 40, a difference in
penalty of 20 units. In contrast, under BIC thegignfor M; is about 70, for Mit's about 138, giving a
difference in penalty of around 68 units. In thksueple, this means that under AIC model selectien t
improvement in fit (-2LL) between the smaller aadger model must be at least 20, the differengeimalties,
before the larger model can be considered an dguivar superior fit. Similarly, under BIC the ingsement in
fit would need to exceed 68 before the larger maded considered an equivalent or better fit.

How do we decide between what constitutes aivatgnt model (in which case we would prefer timeper
model) and what constitutes an improved model?ddggee to which an improvement in fit exceeds the
difference in penalties is measured by the diffeegin AIC or BIC values themselves. Authors diffetheir
views about how large changes in KA(C or ABIC) must be to prefer one model over another. Bugh (2014)
provides a summary of published advice for inteipgeAAIC, which ranges from weak support (1-2) to very
strong support (10-14) for a difference between efed/alues oABIC are interpreted on a similar scale (Raftery
and Kass 1995). We note that this type of adviciigective, in a similar way that adoptimg0.05 is subjective
in conventional testing.

It is possible to contragtAlC andABIC values with conventiongd-values from likelihood ratio tests, at least
in the case of nested models. While we recogngga@fgiance testing and model selection using 1Gvaefrom
different underlying paradigms, it is nonethelessful to cast IC in terms @fvalues since the latter are widely
used and understood. For the nested model sityatinereky is the number of parameters difference between the
larger and smaller model, it is straightforward#dculate the notionad-values for which AIC and BIC will retain
an extra term by producing an equivalently smalvéfe (i.e. the larger model will produce an egléwntly
small AIC value as the simpler model). As discugseviously, most practitioners generally requine a
improvement (reduction) in AIC or BIC values befarenore complex model is considered superior toallsr
model. For our purposes we assess differenceanfl B, generally thought to offer relatively weakl aelatively
strong evidence for a difference between models.

We assess AIC for the notioqaValue (under a likelihood ratio test) that woulldba a single parameter
(ks=1), a moderate interaction (e.g. between a traréd-six-level categorical variable=10) and a complex
interaction (e.g. 3-level x 6-level x 3-lev&}=20) to enter a model (Table 1). The R code isgttiorward:

aicsig <- function(kd, diff.aic) 1-pchisq(kd*2+diff.aic, df=kd)
outer(c(1, 10, 20), c(2, 8), "aicsig")

Table 1. Equivalent likelihood ratio test significa levels that would be required to retain territh kg
parameters, as determined from the AIC penalty tmchan assumetiAIC of 2 or 8.

Type # Parameters AAIC =2 AAIC =8

Single parameter ka=1 0.045500 0.001565
Moderate interaction ks =10 0.015105 0.001805
Complex interaction ks =20 0.002766 0.000425

These results show that for a weak improvermeAlC (i.e. 2) a model term costing one degreé@édom
will be retained if the term has a notional sigrafice level op < 0.0455, a value quite close to the conventional
level of 0.05. Similarly, moderate sized interant{@0 df) will be retained with significange< 0.0152, and a
complex interaction (20 df) with < 0.0028. This ignores a finite-sample correctiuat is negligible fon > 50
(Murtaugh 2014). It is clear that these significatevels are comparable to conventional standamdewv
numbers of parameters, but more stringent for cex@rms. Larger improvements in AIC lead to higher
notional significance levels under the likeliho@dio test paradigm. For example, if we were to iegan
improvement in AIC of 8 (strong evidence) beforere®ined a complex interaction, this would equate
requiring a significance level gf< 0.0005 by conventional standards.

In contrast, BIC is dependent not onlylkonut also on sample size here evaluated for small (100), medium
(1000) and large (10 000) sample sizes (Table i the R code is straightforward so we reproduicefull:
bicsig <- function(n, kd, diff.bic) {1-pchisqg(kd*log(n)+diff.bic, kd)}
outer(c(100, 1000, 10000), c(1, 10, 20), "bicsig", diff.bic=2)
outer(c(100, 1000, 10000), c(1, 10, 20), "bicsig", diff.bic=8)



Table 2. Equivalent likelihood ratio test significa levels that would be required to retain territh ky
parameters, at small, moderate and large samg@s, iz determined from the BIC penalty term and an
assumed\BIC of 2 or 8.

Type # Parameters Smalln (100) Mediunn (1000) Largen (10 000)
N Single parameter k=1 0.010168 6.0732e-07 1.408607e-11
LHJ Moderate interaction ks =10 0.002840 2.744927e-11 <0. le-16
% Complex interaction ks =20 0.000813 7.771561e-16 <0. 1e-16
- Single parameter k=1 0.000385 4.74585e-08 1.20703e-12
LHJ Moderate interaction ks =10 0.000113 1.87250e-12 <0. le-16
% Complex interaction ks =20 0.000033 <0. le-16 <0. le-16

Results show that BIC is appreciably more corsa/e than AIC for retaining an additional singlarameter at
small sample sizep(< 0.0102 angb < 0.0004 forABIC 2 and 8, respectively), with the requifedalue
increases with the number of parametersample size, antiBIC. What is perhaps not well appreciated is that
conservatism increases sharply with moderate iseen sample size, particularly so for interactiorhe
number of formal coefficients for a given interactiof categorical variables is given by:

Kaxo = (K, =1)(k; 1)

wherek, andk, are the number of levels for categorical variablesdb. For interactions involving continuous
variates (separate slopes and intercepts modelsjumber of formal coefficients is given by:

K., =2(k,—1)

whereb is a categorical variable for which separate sago®d intercepts are to be estimated.

Consequently, the number of coefficients inseeguite quickly for even modest numbers of lefals
categorical variables and the equivalent likelihoatib test significance levels are virtually zéooretaining
even moderate interactions. At medium sample ize$000), and with a requirement for weak evidemd&|C
= 2), even single degree of freedom parametersowiil be retained in models if they exceed a cotiwaal
significance threshold gf < 0.0000006! Criticisms are often levelled at tise and interpretation pfvalues
(e.g. Barker and Ogle 2014, Lavine 2014), and wesgmpathetic to some of those concerns. In péaticwe are
not in favour of interpreting-values as definitive in isolation of effect sizedasample size considerations.
Nonetheless, we believe the notiopalalue thresholds for accepting additional termdaurBIC, even at modest
sample sizes, are much more conservative thanatygtiatistical practice would indicate.

What doestheliterature say?

So which is better, AIC or BIC? That dependsuio you ask. From an applied perspective in tidogical
literature, AIC is a clear winner in terms of pagmitly. In a Web of Science search covering 199332@hoet al
(2014) surveyed ecological publications that us2@nd found 139 (84%) used AIC, 23 (14%) used Bi€ enly
4 (2%) used other IC. In a comparative sense, ikeadarge literature contrasting AIC, BIC andesthC metrics
with real and simulated data (Gelmairal 2013, Ward 2008, Symonds and Moussalli 2011)uRefom these
studies sometimes reflect author’s experiencefpgbphical preferences, the types of data analysetthe
limitations of simulation frameworks. Perhaps a en@levant question is which IC is better suitadafgarticular
task. Shao (1997), studying the asymptotic behawd@lC and BIC in linear models, found that Al{ké
measures are most useful when there is no fixeeusional correct model, and BIC-like measures@iet
preferred when a fixed-dimension true model exishwo et al (2014) reviewed this question in the context of
ecological applications. They point out that ih@w generally accepted that there are two classemdel
selection procedures: a class that lead in prediettcuracy (AIC and similar), and a class of
confirmation/falsification methods that are coreigt(BIC and similar) (Table 3).



Table 3. The worlds of AIC and BIC contrasted (oefarced from Aheet al 2014).

Factor AlC BIC
Mathematical characteristics
Derivation Estimated information loss. Appiroate Bayes factor.
Optimality criterion Asymptotic efficiency. pptotic consistency.
Close cousins Data splitting, Mallows’ Cp , Hannan-Quinn, Geweke and
PRESS. Meese, Bayes factors, and
Bayesian hypothesis testing.
World View
Problem statement Multiple incompletely spedfor A small number of completely
infinite parameter models. specified models/hypotheses.
Perspective “All models are wrong, but some‘Which model is correct?”
are useful.”
Simulation structure d>>n d<<n
With increased n . . . Best model grows mamaglex.  Procedure focuses in on one best
model.
Applications
Context Exploratory analysis; model Confirmatory analysis; hypothesis
selection to address which model testing; model selection to address
will best predict the next sample; which model generated the data;
imprecise modelling; tapering Low dimension, precisely
effects. specified models.
Ecological examples Complex model selection Controlled experiments, for
applications, e.g., predictive instance in

models for community, landscape physiology/enzymatics/genetics

and ecosystem ecology; time with a limited number of

series applications including important, well-understood,

forecasting. biological predictors; models
including expected or default
(null) frameworks, e.g., enzyme
kinetics models, Hardy-Weinberg
equilibrium, or RAD curves, one
of which is expected to be correct.

Notes: The number of parameters in the true madklsample size is. Abbreviations are: PRESS, predicted residual stisguares; and
RAD, ranked abundance distribution.

According to Ahcet al (2014), AIC is typified by a world view that seeslity as complex (high
dimensional), not easily characterised (we typjcdtin't measure everything required to capturectraplexity),
and not sufficiently resolved (our sample sizestaoesmall). In contrast, BIC lives in a world efatively low
dimension, where sample sizes are generous in aisopdo the number of parameters required to aatetyu
capture system behaviour, and where underlyingyheasits a small number of precisely specifieddidate
models. Into which of these ‘world views’ might testimation of trends in minke whale nutritive citiaeh fall?
We contend that a very complex reality generatesitiia (the time- and space-varying Southern Ocean
ecosystem), that we have relatively few data tenaptt to describe these processes (d > n), andvthate
unlikely to captured all the variables that woutskd to be measured to represent the system. Wy bdliat
current models, built from relatively few data, tain slight to moderate effects (i.e. model termm/ling slight
to moderate improvement in model fit) that are eystally important but that are not sufficientlyamed under
the penalisation imposed by BIC model selectiorrnBam and Anderson (2002) introduce the concept of
tapering effects to describe this gradation inctfééze. A feature of complex systems with tapesdffgcts is that
increased model complexity can be expected witreamed sample size as small to moderate effectsrizec
increasingly resolved.



Returning to the Expert Panel advice regartitiaqa less-than-careful reading of the Panel’'s @alwmight seem
to imply that BIC should be preferred over AIC. Hower, qualifications about the availability of tinee model
in the candidate set (a point we are not so coeceabout, see below) and what constitutes a langple size
(which cannot be easily assessed in practice)saaly preference is not clear-cut. The referenceiged by the
Panel, namely Kass and Raftery (1995), does offtroag critique against the use of AIC in favotliB&C, and
uses several applied analysis examples to sugpmartdase. However, the description of those supypr
analyses indicates they are in fact well suitethéotype of problems BIC is designed to assessgiovensional
systems with a few strong effects. Had they asdesskfferent class of problem, we wonder if tr@nclusions
would have been similar.

One mainstay defence of the BIC approach &pgreal to Okham’s razor, which postulates we shdeietlop
models according to the ‘law of parsimony'; as $&gs necessary, but no more. On this point iefsigent to
note the view of prominent Bayesian Andrew Geln2000) who, in a discussion of Robettal (2009), says
that:

In the social science problems I've seen, Ockhaazer is at best an irrelevance and at worst caadle
to acceptance of models that are missing key feattlrat the data could actually provide information
on. As such, | am no fan of methods such as BlGattempt to justify the use of simple models tlat
not fit observed data.

We find this last point particularly compellinmodels should provide an adequate fit to obsedatd and
predict future data well, and if they do not thégusld be considered unsatisfactory. Gelman andrR895)
develop a convincing argument, based on the inigdi@dr on© assumed by BIC, against routinely using BIC for
model selection. An even more polarised view iggitsy Burnham and Anderson (2011) who, dealing
predominantly with ecological data, say th@hére are a host of reasons why BIC is a poor kdte we believe
it should not be used with real datduch of their argument centres on the idea thacological contexts the
true generating model is almost never containedimihe candidate set of models considered. Wetfirgdpoint
disputable (see for example Caseital 2009), and the position “never use BIC with iala” too much a
generalisation. Instead, we prefer the view th&t Ahd BIC are simply suited to different situatiofmally on
this point, it is worth noting that the jury is cant the consistency of Bayes factors, and by eidartbe BIC,
when the number of important regressors increagbssample size (Morenet al 2010, Wang and Maruyama
2015). This remains an active area of statisties¢arch.

We also recognise that the use of AIC is ndheuit its perils. Arnold (2010) and Freckleton (2Dtvarn
against inclusion of uninformative parameters irdeie selected by AIC and provide guidance to smhstifor
this problem, including careful consideration ofdets and regressors, avoiding automated step-wiset®n
procedures and considering model averaging. Welieeis generally sound advice. The Expert Palsel a
provided advice in this regard (though in relatiormodel selection in general, not AIC or BIC intpzular),
namely that the correlation structure of covariatesuld be examined with a view to determining acaurelated
subset either by excluding highly correlated vddalor by developing new uncorrelated covariatesuastitutes
(e.g. by using principal components analysis, P(5)/65b/Rep02, p36). While we agree that the catioe
between covariates should be examined carefullpngumodel building, we would like to offer a cautary note
that developing uncorrelated predictors that sismdbusly preserves data structure is not alwaysgesn any
practical sense. For example, how does one deteramoorrelated predictor sets when patterns ottaiion
may be dependent on several other, potentiallyantang, predictors? In the presence of interastiore are
therefore cautious about the use of PCA or othmedsion reduction techniques unless there aredse#loped
subject-matter driven arguments to do so. Thetytii exploratory analysis in examining predictodacovariate
structure prior to developing formal models carmemphasised enough.

There are many different approaches to modetsen and, of the information theoretic claspaicedures,
AIC and BIC are simply two of a wide and diversmily (e.g. see Konishi and Kitagawa 2008, Rao and W
2001, Ward 2008). It was never our intention toviie a review of all IC model selection procedutms, rather
to point out that the two most widely used IC hapereciably different properties and are best duelifferent
research problems.

A casein point: AlIC versusBIC in condition analyses of minke whales

We conducted a simulation study based on JARPXRPA |l patterns of data collection to examihe t
frequency that model selections based on eitherdkIBIC choose the “correct” model. We used thaifcfion
stepAlC from the recommended MASS package in R.83\enables and Ripley 2002, R Core Team 2015).
While we would not normally advocate automated igpfibn of stepwise model selection procedureseah r
data, we find the approach acceptable for assesamigiyg simulations. We note that stepAlC resptets
marginality of terms during addition/deletion. Stégpe selection based on BIC is achieved by progidire
appropriate penalty term.



Simulated data were generated using the standerarimodelling framework

y=Xa+g

wherey is a vector of simulated dats,is the model matrixg is a vector of model coefficients aads a vector of
i.i.d random normal errors. Only linear models bartested because there is no stepwise selecticegure
available for mixed effects models in R. In anye;as mixed effects modelling one needs to decitlether
selection is focussed on the fixed effects or #melom effects.

In the trials reported here the model matrigesived either from model fit d3 (the de la Mateal 2014 low
AIC model with several interactions) or J17 (thenishi and Walloe 2014 model with low BIC, desigmhte
therein as BT1ljarpal7). The models are modifiededete any covariates that are not publicallylabke via
the standard reporting for catch data. Consequémtiyerms related to diatoms have been omitted fiee model
matrix. The simulated total sample size is varigdandomly resampling entire rows from the datarixat

Model d3 is used to generate the “complex” distadel J17 is used to generate the “simple” datarder to
generalise the simulations, the coefficients ar#tipticatively “dithered” in each trial by a randonumber from a
uniform distribution with the range 0.6 to 1.4. T¢entral values for the coefficients are similathtose estimated
from fitting the models.

The complex model (d3) is specified by:

BT11 ~ DateNum* Sex + DateNum* Year:LonSect: LongNum + DateNum:LonSect: | ce +
YearNum:LonSect + BLm

The terms of this model are:
DateNum* Sex allows the growth in blubber to be different fach sex for both the slope and the intercept.

DateNum* Year: LonSect: LongNum allows the growth blubber to be different in egelar and longitudinal
sector, and within that sector to vary linearlyhnlibngitude

DateNum: LonSect: | ce allows the growth in blubber in each sector talfierent in the strataearthe ice from
thatfar from the ice (see de la Magt al2014).

YearNum:LonSect allows the year trend to be different for eachgitudinal sector

BLm provides a linear correction for blubber thickndaee to body size (or related size term in soméyaes).

This model allows whales in each sector and teeaccumulate blubber thickness at differentsatih
blubber growth rates also able to differ by sex betiveemearandfar ice strata. As discussed\iviotherspoon
et al, 2014 this is the type of model that is biolodgicatasonable.

The simple model (J17) is given by:
BT11 ~ YearNum + BLm"3 + DateNum + LonSect + Sex + DateNum:LongNum

The only interaction term in this model is beém the continuous variablBsteNum andL ongNum, which
thus adds only one coefficient to the model andmags that there is a linear relationship betweergtbwth rate
in blubber thickness and longitude.

Three scenarios are explored:

« A complex true model is fitted to complex data €traodel is reachable [nested])

« simple true model is fitted to simple data (truedeids reachable [nested])

« complex model is fitted to simple data (true mau® nested in fitted model because the “true
interaction” term is not represented in the comprexdel)

The degree to which models are under or ovirdfin each of 100 simulations is based on thebaurof
parameters in the selected model compared withahger in the “true” model (Table 4). In trying trexover
complex models from complex data (Scenario 1),lteshhow that AIC does remarkably well, achievihgge to
the true number of parameters in all simulationsdntrast, BIC on average only recovered about 6&#te true
number of parameters, in only 20/100 simulatiom®vered 90% or more of the true number of pararsgterd
in no instance recovered the full parameter sdfefginces between AIC and BIC were similar in Scien2; AIC
was better at recovering true model structurelowadimensional setting, but BIC did perform sulosiaily
better than in scenario 1. Scenario 3 was usesktditting a high dimensional model to data geteatdrom a
simple model, and BIC was better in this instadd€ overfitted the data by selecting more than enés many



predictors as was required. Surprisingly, BIC alserfitted by about 50%. As expected, model sadedtiecomes
more reliable with increasing sample sizes and i&lfgéss prone to underfitting at the lower samess

The important issue revealed by these trialimia,given realised experimental “design”, whahpke size is
necessary before it is reasonable to assume #hafstmptotic consistency property of BIC modelc@a is
likely to be effective. In the context of the JARRAtritive condition the available sample size aypdo be too
small. The simulations suggest that in this casaad sample size for a fixed effects linear maudds to be of
the order of 10 000 or more to be reasonable cenfithat BIC is not underfitting the data. With sofarther
development, the types of simulations in this payperdd provide an appropriate practical approach fo
establishing a reasonable lower bound for sampkewshen undertaking BIC based model selection fyiven
data set. For the smaller sample sizes, the ua&model selection is less likely to lead to urfidéng. A
simulation approach may be even more importantikedheffects models where the effective samplessize
usually much less than the nominal sample sizes.

Significance testing after model selection

One issue that the panel did not touch orsigéneral advice was the validity of significanest$ carried out
after selecting a model using IC criteria. Statatinference after model selection generally tssulconfidence
intervals that are too narrow because it usualgtews the probability associated with whethenagivariable is
selected through the model-selection procedurd€M2002, Burnham and Anderson 1998, Betrkl 2009).
Moreover, the distributions of test statistics dapart very substantially from the form assumed! use
calculating significance levels (Leeb and Potsck@g6, Berlet al 2009). Berlet al summarise this neatly:

Conventional statistical inference requires thahadel of how the data were generated be known &efor
the data are analyzed. Yet in criminology, anchia $ocial sciences more broadly, a variety of model
selection procedures are routinely undertaken fodid by statistical tests and confidence intervals
computed for a “final” model[Becket al] ... examine such practices and show how theyyaiedilly
misguided. The parameters being estimated are mgelowell defined, and post-model-selection
sampling distributions are mixtures with propertteat are very different from what is conventiopall
assumed. Confidence intervals and statistical t@stsot perform as they should.

Of course, these observations are not restrictéuktsocial sciences but apply to any approachdoaisenodel
selection in complex circumstances whether basd@ phypothesis testing or even ad-hoc proceduresodlel
selection.

Conclusions and recommendations

It should be clear from this and past work thatdo not accept that BIC should be used as tleenseans of
model selection when fitting statistical model€amplex ecological systems. We demonstrate thapaosition is
well supported in the ecological and statistidglrliture. We have shown that, in the specific asislyase of
interest to the SC (minke whale biological param®teBIC does not perform well compared with AlQténms of
recovering complex model structure from complexad&cenario 1). Although BIC performed somewhateet
than AIC when trying to fit a complex model to simplata (Scenario 3), we believe that ScenariohByisly
unlikely in the context of large-scale ecologicgdtems.

We recognise that the science of statisticaleheelection sometimes allows, even requiresgaegeof artistic
license, but we nonetheless feel there are sepenatls that might usefully be observed when anafysiata and
reporting results.

1. Standard information
Presentation of model selection results based aghtdld include the log-likelihood, the number refef
parameters, and (minimally) both the AIC and Bl@Quea. Other IC variants should be reported if
warranted by the analysis problem. The common sasipé for all comparisons should also be reported.

2. Similar models and model averaging
Sometimes a single model will not be identifiechadear ‘winner’ based on IC scores (irrespectivéne
IC used). There may be several models with sint@ascores, potentially formed from quite different
covariate sets, and all may imperfectly approxinsat@e underlying process in different ways (Betrrkl
2010). Approximately equivalent models (in termslifference in IC from the best model amongst the
candidate set) should be explored to determirteelf give appreciably different results (i.e. imterof
predictive ability or significance of parameteriesttes, depending on the goal). Advice on “apprataty
equivalent” varies, with overviews of provided byNaugh (2014) and Neath and Cavanaugh (2012).
Hoetinget al (1999) and Burnharet al (2011) give practical advice about model averggin

3. Concordance between different types of IC
In the event that model selection by AIC and BI€dther IC approaches) select appreciably diffeseit
of predictor variables, and assuming obvious mdeéétiencies are not evident by standard diagnostic



procedures, then this should be interpreted asatidg uncertainty in deciding useful candidate aisd
Results from competing models should be sensitteisyed to determine how choice of IC affects the
analysis goal (e.g. predictive accuracy, signifasaaf model terms).

4. Evaluate the sample size
Use simulation or other methods to explore whethenple sizes are large enough to be confident that
model selection will have appropriate propertiethimcontext of the specific analysis.

5. To be conservative
For the purposes of conducting power analysesterm@e prospective sample sizes (e.g. lethal-tdke
minke whales for research), we believe there tsang argument for adopting more complex, rathanth
less complex, models. Our reasoning is that we halty to err on the side of caution; we must amEsu
that the system under study is at least as congdeur largest models indicate, and sample sizaddh
be large enough to ensure adequate data to addesggestions we pose in that case. If the sysiems t
out to be less complex than anticipated, then weaarworse off in terms of our ability to address o
research goals. The reverse would not hold: if tag by assuming a less complex system than in fact
exists, then the calculated sample sizes and imggaata may be insufficient for the research psgso

6. Design variables
Correct statistical inference sometimes requiredatsothat incorporate fixed and random terms to
accommodate incomplete control in the samplinggiesihese terms may themselves be crossed or nested
in respect to other covariates. Deficiencies iradatlection are taken to include lack of balantepatial
and temporal coverage of sampling (possibly leatbngpnfounding) and non-random selection of
observational units. We propose that it makeglg#nse to remove design variables via model gmtect
procedures when their express purpose is to adifiiatso that valid inferences can be drawn. Such
variables should be quarantined from removal. Regsle inference in complex mixed models can be
challenging; Bolkeket al. (2009) and Claeskens and Hjort (2008) offers sgemeeral guidance.

7. Respect the possibility of interactions
We recommend the use of IC that allow the posgibi rather than impossibility — of interactions. |
make little sense to us to use an IC, like BICt &hpriori imposes such stringent penalties against
interactions between variables. Our calculatiormssthat BIC, even at moderate sample sizes, regjuire
interactions to be extremely significant by convemdl levels before they would be considered for
inclusion in models. For large sample sizes, Bl€obges even more conservative in selecting interasti
This restriction seems incongruent with decadescofogical research demonstrating the prevalence of
complex interactions in biological systems.

8. Do not over-interpret post model selection statatinference
Statistical inference after model selection gemgrakults in confidence intervals that are toaoar
because it usually neglects the probability assediaith whether a given variable is selected tgtothe
model-selection procedure. In general, full Bayesigethods that take into account model uncertairgy
likely to be more reliable.

There are many topics important to the suljjéotodel selection that this paper has not toudredn
particular, we single out cross-validation and radthemploying shrinkage estimators as strong rizeike 1C
approach to model selection (Hastieal 2009). Others aspects concerning model seleciah as model
averaging and alternate IC, have been touched lyrsaperficially. While important, and potentialyghly
relevant, these additional approaches are secotalaviyat we hope is the main message of this paip&trno
model selection procedure is perfect or even sapdfiach has strengths and weaknesses that vidteiitially
affect estimation and inference dependent on tkee aled system under study, and that unthinking redice to a
single method is likely to provide poor resultsome cases. We believe use of BIC to select méalels
estimating trends in minke whale body conditionvigles just such a case.
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Table 4. Recovery of the true number of generatingel parameters for each of three simulation seanasing both AIC and BIC model selection onshene simulated
data. The sample size n = 4727 matches the avaalohple size from JARPA.

n = 1000 n=4727 n = 10000
Measure True DF
AIC BIC AIC BIC AIC BIC

Fitting complex model to complex data - d3 fitteddB
Mean number parameters selected 109 91.1 54.3 105.6 69.5 107.0 98.1
Number of models correctly selected 6 0 42 0 66 0
Number of models with at least 90% of true paranset 71 0 100 20 100 87

Fitting simple model to simple data - j17 fittedj1d

Mean number parameters selected 11 8.1 4.2 10.0 8.3 10 9.5
Number of models correctly selected 44 1 98 49 100 88
Number of models with at least 90% of true paramsete 67 1 100 68 100 90

Fitting complex model to simple data - d3 fitted 1@
Mean number parameters selected 11 16.0 6.5 22.0 12.2 25.6 17.2
Number of models correctly selected n/a n/a n/a n/a n/a n/a
Number of models with at least 90% of true paramsete 89 15 100 86 100 99




