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ABSTRACT 
A discrete approximation to model the measurement error for the estimation of radial 
distance and angle to detect objects in the line transect surveys is presented. This approach 
is to directly calculate the effect of measurement error on the effective strip half width. The 
measurement error for the experimental data collected over the period 2008-2013 is 
explored. These results indicate that the abundance estimates taking into account the 
measurement error are larger than the abundance estimates without any measurement error 
correction. 

         
KEYWORDS: EFFECTIVE STRIP HALF-WIDTH, ABUNDANCE ESTIMATION, DISCRETE 
MIXTURE  MODEL, LIKELIHOOD 
 
INTRODUCTION 
 
The Norwegian minke whale surveys use a double platform design in which the radial distance and 

sighting angle are estimated by eye for each surfacing of a whale (Skaug et. al 2004). Separate 

distance and angle experiment are routinely conducted as part of the surveys with the aim to 

estimate bias and variability of the measurement error (Bøthun et al. 2008). A simulation based 

correction method has been applied previously to the abundance estimates (Skaug et al 2004). The 

simulation procedure also accounted for other factors, such as errors in duplicate identification, but 

the isolated effect of distance and angle measurement error was never quantified. In the present 

paper we use an approach for errors formed as multiplicative of observation and true values 

introduced in Marques (2004) and Borchers et al. (2010). The multiplicative errors model might be 

appropriate when the error tend to increase with the original distance/angle. We calculate the effect 

of measurement error on the effective strip half width. Measurement error in distance is often 

ignored in line transect analysis. Marques (2004) defined the distribution of the observed distances 

with error that were described by continuous distributions. On the other hand, Borchers et al. 

(2010) reviewed this literature and propose correction to the likelihood that accounts for 

measurement error. We adopt a similar approach, but for computational simplicity we use discrete 

measurement error models. A complication arises for our minke whale surveys due to the double 

platform design and the non-standard survey protocol (see below).   
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EXPERIMENTAL DATA 
The distance and angle experiments are conducted by using two buoys as target objects under 

sighting conditions representative for the ordinary survey activity. These buoys are dropped into 

the sea at distances of 1000 to 4000 meters from the vessel. The vessel then moves towards the 

buoys at a speed between 6 and 10 knots at different courses. On a signal from the cruise leader the 

observer provides a momentarily estimate of the angle and distance to the buoy. At the same time 

the true values are recorded by the ships radar operator. All measurements are recorded in the same 

way as during the survey. This procedure is repeated several times as the vessel approaches the 

buoys. Since several recordings are made within each drop of the buoys, one expects the data to be 

positively serial correlated. The cruise leader switches between the buoys at random and the vessel 

also changes the course several times during the approach towards the buoys to reduce this serial 

correlation. After having tested one observer, the vessel moves away from the buoys and a new 

observer is tested following the same procedure. In this way a series of about 10 readings is 

generated together with a calibration curve for each trial. In the analyses presented here for the 

2008-2013 survey period, data from four participating vessels have been used; these data include 

524 observations for distance from platform 1 and 541 observations from platform 2, while there 

are 532 and 550 angle observations from platform 1 and platform 2, respectively. 

 

MEASURMENT ERROR MODEL  
Consider first a single platform, and denote by tr  and or  the true and recorded (observed) radial 
distance, respectively. For each individual observation we refer to errors of the form observed = 
true × error as multiplicative and calculate the error as ( ) /r

t oc r r=  , and hence ( ) 1rc =  means no 

error ( t or r= ). Similarly we define tθ  (true sighting angle), oθ  (observed sighting angle), and 
( ) /t oc θ θ θ=  . Although it is the joint probability density of ( , )o or θ that is needed for the 

likelihood we will start with the marginal density of or  . 
Under the expression for the distribution of the observed distance shown in Marques 

(2004), we have the following probability density function (pdf)  

                                              ( ) ( )( ) ( ) ( )r r
o o t t cf r f r f c dc= ∫                                           (1) 

where ( )t tf r is the probability density of the true distances , and as a mathematical expression for 

( )t tf r  we use the marginal of eqn (2) in Skaug et al (2004). The latter is the bivariate density of the 
location of the initial position of a sighted whale, cast in Cartesian coordinates. By transforming to 
polar coordinates we obtain both ( )tf r ( and ( )tf θ ) as marginal densities of the joint density eqn. 

(2) in Skaug et al. (2004).  When inserted ( )r
t or c r= × into (1), this yields  
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                                              ( ) ( ) ( ) ( )( ) ( ) ( )r r r r
o o t o cf r f c r f c c dc= ∫ ,                                              (2) 

which is easily seen corresponds to each term of the formula represented in Marques (2004).                                                               

Marques (2004) and Borchers et al. (2010) assumed continuous distributions for errors. For 

computational simplicity, we assume a discrete distribution to errors. The real values of the discrete 

random variable is given by distinct values ( ) ( ) ( )
1 , , ,r r r

i kc c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅   and ( )( )r
t of c r is replaced 

by ( )( )r
i of c r . Therefore, the discrete density expression for eq.(2) is given by  

                                                { }( )
( ) ( ) ( )

1
( ) ( ) ( ) ( )r

i

k r r r
o o i i t i oi c

f r c p C c I C f c r
=

= = ×∑                                (3) 

where { }( ) ( ) 1r
ic

I C =  if ( )r
iC c=  and { }( ) ( ) 0r

ic
I C =  if ( )r

iC c≠ . Furthermore, we assume that 

( ) ( )
1( ) ( ) 1r r

kp C c p C c= + ⋅⋅⋅+ = = under the pair of error and the probability ( ) ( )( , ( ))r r
i ic p C c=  

for 1, ,i k= ⋅⋅⋅ . That is, eq.(3) also expresses a discrete mixture distribution model. 
In order to construct the likelihood function from Skaug et al (2004) we need the joint 

probability of ( , )o or θ  , which equivalent to (2)   is  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( , ) ( ) ( ) ,

k
r r r r

o o i i i i t i o i o
i

f r c p C c c p C c f c r cθ θ θ θθ θ
=

= = × = ×∑ . 

where ( ),t t tf r θ  is given as the product of (2) and (5) in Skaug et al (2004), where a double 

platform version of (2) is used, i.e. (4) in  Skaug et al 2004 is used.  

In this study, the discrete error model for ( ) /r
t oc r r= (and ( ) /t oc θ θ θ= ) is assumed to be 

assigned into three classes, that is, 3k =  and (*) (*) (*)
1 2 3( ) ( ) ( ) 1p C c p C c p C c= + = + = = . 

(*)
1( )p C c=  and (*)

3( )p C c=  indicate the probabilities for measurement error around true values 

and 2p  is a probability for the region taken as true value. The threshold to detect three classes 

involved 10, 20, 25, 30% quantile points. For 10% quantile points, (*)
1( )p C c=  , (*)

3( )p C c=  

and (*)
3( )p C c=  indicate 10, 80, 10%. If we don’t assume any measurement error, 

(*) (*)
1 3( ) ( ) 0%p C c p C c= = = =  and (*)

2( ) 100%p C c= = . The error values (*)
1c  , (*)

2c  and (*)
3c  are 

calculated as the representative values for three classes by taking the average within each class.  

 
RESULTS 
Histograms for the errors ic of radial distance and angle are shown in Figs.1 and 2, respectively. 

The ratio for radial distance presented slightly different distributions depending on Vessels, e.g. 

ERO and JHJ. Those cases also indicate a bit difference between the two platforms. Vessel THO 
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includes outliers for platform 2 (CV of platform 2 is larger than CV of platform 1) that are not 

shown in the figure. The distributions for the angle ratios were mostly centered around 1. However, 

the data for HGU showed a large deviation (skewed to the left) from 1.  
Using the probabilities for measurement error measured at experiments conducted on all 

vessels, we calculated the effective strip half-widths based on statistical methods for abundance 

estimation performed in Skaug et al. (2004). The results are summarized in Table 1 in addition to 

expected values of the ratio and coefficient of variation for distance and angle for each platform 

and average for both platforms. In the table, the effective strip half-widths were for one platform. 

For the main abundance estimation assuming no measurement error, the effective strip half-widths 

are calculated to 280.3 meters. On the other hand, the effective strip half-widths with 10-30% 

measurement error were less than 280.3 meters. Furthermore, if we assume measurement error for 

only distance or only angle, those effective strip half-widths were 251.8 meters and 264.7 meters, 

respectively (these  values are not shown in Table1).  

 
 
DISCUSSIONS 
The abundance estimates are inversely proportional to the effective strip half-widths. Since the 

effective strip half-widths including measurement error always become less than the ones assuming 

no measurement error, those estimates become larger than any case where measurement error has 

not been taken into account. That is, the measurement error uncorrected abundance estimate always 

becomes the minimum estimate as compared to estimates involving any measurement error 

corrections. The effective strip half-widths tend to decrease as measurement error is incorporated. 

This means that the abundance estimates without bias correction for measurement error are 

conservative estimates.  This tendency was consistent with the experiments for the survey period 

1996-2001. 

 We assumed a multiplicative error model for measurement errors for both distance and 

angle in this study. On the other hand, the resulting error associated with a given angle may not 

tend to be proportional to the original true angle and an additive error model could be more 

appropriate in that case than a multiplicative model.  
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Fig. 1. Histograms of the ratios for the radial distance’s measurement error. Those for  platforms 1 and 2 are 
on the left and right side. The top histograms are given by the data aggregating four vessels. Mean and CV 
are obtained based on dividing measurement error into three classes based on the quartile (25%).  
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Fig. 2. Histograms of the ratios for the angle’s measurement error. Those for platforms 1 and 2 are on the 
left and right side. The top histograms are given by the data aggregating four vessels. Mean and CV are 
obtained based on dividing measurement error into three classes based on the quartile (25%). 
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Table 1. Probabilities ( 1 2,p p  and 3p ) for three categories of measurement error, the 
effective strip half-widths (e.s.h.w), expected value of the error (Mean c) and coefficient of 
variation (CVc) for distance (r) and angle (t) in the cases of each platform and average for 
both platforms. 

 
ME data 

1p  2p  3p  e.s.h.w 
Distance (r) Angle (t) 

Mean c CVc Mean c CVc 
No ME 0% 100% 0% 280.3 1.1 0 1 0 

Pl
at

fo
rm

1 

10% 80% 10% 237.7 1.1 0.37 1.0 0.48 
20 60 20 216.8 1.1 0.40 1.0 0.44 
25 50 25     197.4 1.1 0.40 1.0 0.41 
30 40 30 194.6 1.1 0.40 1.0 0.39 

Pl
at

fo
rm

2 10% 80% 10% 253.4 1.2 0.41 1.1 0.54 
20 60 20 235.9 1.2 0.42 1.1 0.46 
25 50 25 227.3 1.2 0.41 1.1 0.44 
30 40 30 224.0 1.2 0.40 1.1 0.41 

A
ve

ra
ge

 o
f 

pl
at

fo
rm

s 
1 

an
d 

2 

10% 80% 10% 244.7 1.2 0.39 1.1 0.51 
20 60 20 227.6 1.2 0.41 1.1 0.45 
25 50 25 216.9 1.2 0.41 1.1 0.42 
30 40 30 211.8 1.2 0.40 1.1 0.4 

 
 
 
 
 


