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Annex 1 
 

Collaborative support for vaquita conservation 
 
Preventing the extinction of the vaquita necessitates collaborative efforts of many 
groups including both governmental and non-governmental parties.  In addition to 
the important steps taken by the Government of Mexico acknowledged elsewhere in 
this Report, other groups have been, and are, contributing to efforts to conserve 
Mexico’s porpoise.  The Committee recognizes the importance of those 
contributions not only by groups based in Mexico but also by the U.S. Marine 
Mammal Commission (especially for funding the passive acoustic monitoring 
program), by the Expert Panel and by the steering committees for both the acoustic 
monitoring and vaquita abundance survey efforts (which include many scientists 
from U.S. NOAA Fisheries).  The continued research into alternative gear, which is 
key to long-term vaquita conservation, is supported not only by INAPESCA but also 
by WWF-Mexico, Pronatura and private funders.  CIRVA welcomes new participants 
in vaquita conservation including in developing market solutions to compensate 
fishermen for using vaquita-safe gear and the Sea Shepherd Society’s voluntary 
program to monitor fishing activities within the Vaquita Refuge. 
 
 

Annex 2 
 

 
Report on Vaquita Rate of Change between 2011-2014 Using Passive Acoustic 

Data by the Expert Panel on Spatial Models 
 
Armando Jaramillo-Legorreta, Lorenzo Rojas-Bracho, Jay VerHoef, Jeff Moore, Len 
Thomas, Jay Barlow,  Tim Gerrodette, Barbara Taylor 
 
Executive Summary 
 
The Expert Panel on Vaquita Acoustic Monitoring had its second meeting on April 
28, 2015 to analyze the first four seasons (2011-2014) of the acoustic monitoring 
program.  Results indicate an estimated 67% decline in vaquita acoustic activity in 
the sampled area from 2011 to 2014.  The average rate of decline of 31% per year 
(95% Bayesian Credible Interval -51% to -10% per year) is considerably worse than 
the previously estimated 18.5% per year (95% Bayesian Credible Interval -46% to 
+19% per year) for the 2011-2013 sampling period.  These worsening results were 
caused by the very low number of detections in 2014, which resulted in an 
estimated rate of decline from 2013 to 2014 of 42%.   The Panel found it is virtually 
certain that the acoustic activity has declined between 2011 and 2014 (prob. = 
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0.996) with very high probability of a rate of decline greater than 10% per year 
(prob. = 0.976).   
 
The Panel considered the monitoring design to be sound but analyses were 
complicated by the loss of some monitoring devices (CPODs) in some years (2011, 
2014) and low numbers of recording days for numerous CPOD devices in 2013.  
Several analyses were developed to account for the uneven sampling; all indicated 
substantial declines similar to the agreed estimate of 31% per year.  The Panel 
agreed that year-to-year variation in the proportion of vaquitas present within the 
monitoring area could not be estimated both because the time series is short but 
also because the bycatch rate has likely changed from year-to-year.  An earlier 
concern that the highest density acoustic detections were along the southeast 
boundary of the study area was addressed by adding CPODs further to the south in 
2014.  The new locations had approximately 10 times fewer detections than those to 
the northwest, which is consistent with the spatial pattern found in earlier visual 
survey data. The consistent spatial pattern of vaquita densities (both using acoustic 
and visual data) lends support to the conclusion that the decline is more likely a 
decline in vaquita population size rather than a shift in distribution.   
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Introduction 
 
This paper updates analyses detailed in Annex 9 of the fifth meeting of the Comité 
Internacional para la Recuperación de la Vaquita (CIRVA V) by adding the 2014 
acoustic monitoring data.  In 2011, the passive acoustic monitoring program for 
vaquitas (Phocoena sinus) began the first full season of data collection.  In April 
2014, the Vaquita Acoustic Monitoring Steering Committee (SC) met to review data 
from the first 3 seasons of data (2011, 2012, 2013).  Preliminary analysis suggested 
a dramatic decline in the vaquita population between 2011 and 2013 (Jaramillo-
Legorreta et al. 2014).  However, because the realized sampling effort was uneven 
across the sampling grid and over each sampling season, analysis of the data was 
not simple.   Therefore, the SC recommended that a panel of experts with specific 
skills in spatial or trend modeling be convened to provide the best scientific analysis 
of trends in abundance of vaquita acoustic detections in a timeframe needed to 
manage this critically endangered species.   This expert panel met on 24-26 June 
2014 to develop statistical models based on the 2011-2013 results and held a web-
based meeting on 28 April 2015 to present updated results that also included 2014 
acoustic monitoring data.  Here we present a summary of those results. 
 
Background  
 
The vaquita is a small species of porpoise found only in the northern Gulf of 
California, Mexico (Figure 1).  It is subject to unsustainable bycatch in gillnet 
fisheries throughout its small range and, consequently, is classified as critically 
endangered by the International Conservation Union (IUCN).  Although they are 
known to occur in waters 10-50 m deep, their distribution within the shallow water 
area is poorly characterized.   The vaquita detections shown in Figure 1 are not fully 
representative of distribution in shallow water areas because most sightings are 
from a ship that cannot navigate shallow waters (see tracklines in Figure 1).  The 
polygon within the figure is the Vaquita Refuge, which was agreed to in September 
2005 (Protection Program published on December 2005) and within which no 
commercial fishing is allowed (no matter what fishing gear is used, even hooks).  
About half of vaquitas are estimated to be in the Refuge at any given time 
(Gerrodette and Rojas-Bracho 2011).  Surveys in different years (1997 and 2008; 
Jaramillo-Legorreta et al., 1999; Gerrodette et al., 2011) suggest that for the months 
of surveys (most from August through November) the distribution of vaquitas is 
remarkably constant.  Within the Refuge, vaquitas are unevenly distributed. 
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Figure 1.  Visual detections (red and green circles) from two major ship surveys (in 
1997 and 2008), with the survey track lines shown as light gray lines.  The C-POD 
locations (deployed regularly since 2011) are shown as black dots and the Vaquita 
Refuge is outlined in black.   
 
Because of the expense and imprecision of visual surveys (Jaramillo Legorreta, 
2008; Rojas-Bracho et al., 2010), Jaramillo pioneered acoustic monitoring for 
vaquitas starting in 1997.  Acoustic monitoring is possible because porpoises use 
echolocation to find their prey in the turbid waters of the northern Gulf of California.  
Jaramillo deployed boat-based acoustic detectors at fixed listening stations located 
throughout the range of vaquitas to examine the change in acoustic encounters over 
a period of 11 years (1997-2008) and showed a marked decline of 7.6%/year for a 
total decline of 58% (Jaramillo-Legorreta 2008).  By the end of this study most 
stations recorded no vaquita acoustic activity and it became obvious that the level of 
acoustic monitoring effort achieved during the initial years of research were no 
longer sufficient to monitor vaquita activity accurately.   
 
Thus, in 2008 several types of bottom-mounted passive acoustic devices, which are 
capable of recording autonomously for several months, were tested to increase the 
acoustic sampling effort for the dwindling numbers of vaquitas.  A device called the 
CPOD had the best performance (Rojas-Bracho et al. 2010).  The CPOD records 
characteristics of acoustic activity continuously over a period of several months.  A 
Steering Committee (SC) was formed to design an acoustic monitoring project 

-114.9 -114.7 -114.5 -114.3

30
.8

31
.0

31
.2

31
.4

31
.6

Longitude

La
tit

ud
e

sightings 1997
sightings 2008
acoustic stations



 10 

capable of detecting a ≥4%/year increase over a 5 year period (which would include 
6 monitoring seasons).  The SC created a grid design using 48 bottom-mounted 
CPODs deployed inside the Refuge for about 90 days each year.  The original 
monitoring design also included CPODs located on Refuge perimeter buoys, but 
these CPODs were nearly all lost due to entanglement with fishing gear and likely 
active removal.  A feasibility project was conducted using bottom-mounted CPODs 
just outside the southwestern boundaries of the Refuge but 6 of 8 were lost 
indicating that this area is still not possible to monitor with fixed CPODs (Jaramillo-
Legorreta 2014). 
 
After 2 years of initial testing and development, the acoustic monitoring program 
began its’ first full season in 2011.  The deployment and recovery of the bottom-
mounted grid of CPODs was very successful over the first 4 seasons. However, the 
number of days recorded by individual CPODS differed because some CPODs were 
lost and never recovered, others shut off early within a season, and some filled their 
memory with background noise prior to retrieval. Figure 2 illustrates the achieved 
acoustic monitoring effort (i.e., days of acoustic monitoring per C-POD station) for 
the first 4 years.  

 
Figure 2.  Locations of sampling sites, with number of days of monitoring effort 
indicated by circle size. 
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Effort also differed seasonally within year.  CPODs were deployed later in 2012 and 
2013 than in 2011 to avoid CPOD loss resulting from fishing activities (Figure 3), 
and deployment date now depends on information from aerial surveys that illegal 
fishing activities within the Refuge have largely ceased. 

 
 
 
Figure 3.  Effort by Julian day for each year.  Julian dates shown run from May 30 (150) 
to October 2 (275).  Vertical red lines enclose the core sampling period (from Julian 
day 170-231, June 19 to August 18, where ≥ 50% of the CPODs were operating in all 
years (discussed below). Julian dates actually vary slightly because of leap year. 
 
Estimating the change in numbers of vaquita acoustic detections from 2011 to 2014 
required an analytical treatment that accounts for the spatial and temporal 
differences in sampling within and between years, as shown in Figures 2 and 3.  
Conceptually, the analytical task is to best approximate the results that would have 
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been obtained if all the circles in the grid shown in Figure 2 of were of equal size 
each year (same level of CPOD effort at all stations in all years).  To do that, the 
Panel needed to consider all the factors that may make effort unequal and decide the 
best method of inference for stations that were un- or under-represented.  In 
addition, the Panel needed to consider other factors besides differences in vaquita 
abundance or activity that may have caused differences in detections between years. 
 
The simplest approach to measuring annual trends in vaquita clicks from C-POD 
data is to calculate the ratio of total clicks counted in consecutive pairs of years.  
However, this approach does not account for C-PODs that were lost or C-PODs that 
were not functional for the entire core sampling period.  If C-PODs were lost 
predominately in high-density areas (which appears to be the case in 2011), this 
simple approach would produce biased estimates of trends.  Likewise, if some sites 
received less effort, the total counts should be standardized to the number of days 
sampled, to avoid bias.  To avoid both of these problems, analysis can be limited to 
data from only those sites that were sampled in consecutive years, and the mean 
number of clicks per day of sampling effort could be calculated for all these common 
sites.  This direct-count method was used to produce estimates for comparison with 
other, better methods, which use more of the data (including data from sites that 
were only sampled in one or two years) and provide statistical estimates of 
uncertainty about the true trend given the data.  The direct-count method does not 
make any estimate of certainty about the true trend but rather relies on an 
assumption that the data perfectly represent the true trend.   
 
In contrast with the direct-count method, the Panel conducted statistical analyses 
that use spatial and temporal information within the dataset to estimate the 
probability that the acoustic data could have been observed by chance alone (noting 
that the data are a sample rather than perfect measurement of what we want to 
estimate) and to obtain a better estimate of trends that reflects uncertainty about 
the true trend for the population. The expert panel was directed to find the best 
method of statistical analysis to account for uncertainty and to make optimal use of 
all the available data. 
 
 
Assumption and data selection analyses 
 
The primary objective of the Panel was to estimate the annual mean rate of change 
in numbers of vaquita acoustic detections from 2011 to 2014 together with any 
uncertainties in that rate.  A necessary assumption for analysis was that the annual 
rate of change in acoustic detections is a reasonable proxy for the rate of change in 
vaquita numbers.  There are several important factors to keep in mind when 
interpreting the trend estimates from these first 4 years of acoustic detections.  In 
June 2014, the Panel conducted analyses of those factors using the first 3 years of 
data.  The Panel felt conclusions drawn were robust and elected not to repeat these 
assumption and data selection analyses with 2014 data. 
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First, if the monitoring grid covered the entire distribution of vaquitas, then 
inference about change in total vaquita population abundance would just depend on 
the assumption that click behavior remained the same through the time period (i.e., 
more recorded clicks would imply more vaquitas, not just more vocalizing, in the 
sampling area).  Click behavior was investigated and there was no evidence of a 
change in clicks-per-vaquita in different years (see below).  Additionally, there are 
data from past efforts covering the full range of vaquitas that support the 
assumption that acoustic detections and numbers of vaquitas decline at the same 
rate.  For example, between 1997 and 2008 visual surveys and acoustic monitoring 
resulted in identical estimates of rate of change with a decline of 7.6%/year 
(Gerrodette et al. 2011, Jaramillo-Legoretta 2008). Therefore, the assumption that 
the number of recorded clicks is related to the level of use in the sampling area was 
judged to be reasonable. 
 
Second, intense fishing outside the Refuge, even in the low summer fishing season, 
precludes using bottom-mounted CPODs outside the Refuge.  Because the grid 
covers only a proportion of the vaquitas range, the other important assumption is 
that the proportion of vaquitas using the monitoring area over the summer period is 
the same each year.  Over the 6-sampling seasons that the monitoring program was 
designed to cover, the changes in proportion in the Refuge would be expected to 
vary somewhat from year to year but not in any systematic way that would bias the 
rate-of-change estimate.  However, with just four seasons of data (three periods of 
change), there is greater uncertainty about how much of the estimated annual 
change reflects change in overall population abundance vs. differences in the 
proportion of population using the sampling area each year.  The length of the 
sampling period within a year mitigated this variability somewhat, but the Panel 
recognized these limitations to inference from the analysis.  If future bycatch rates 
are constant (or reduced to zero), additional years of data may allow this issue to be 
addressed analytically. 
 
Panelists agreed that the design of the monitoring program, which has systematic 
spatial coverage throughout the core of the Vaquita Refuge (and central to the 
distribution of the species) over a period of several months each year, was good, and 
that the analysis should rely primarily on this good design rather than on model-
based spatial or temporal extrapolation to unsampled areas. The Panel carried out 
some basic descriptive analyses to consider factors other than a change in the 
number of vaquitas that might affect the number of acoustic detections observed. 
 
Time of day: Because CPODs record data 24 hours per day and only whole days are 
used in the analysis, the sampling design is balanced with respect to time of day. 
The Panel agreed that analysis could proceed without accounting for the 
influence of time of day on the data. 
 
Tide: The northern Gulf has a tidal range of over 10m (30 feet), which has potential 
to influence vaquita behavior and therefore acoustic detections.  Therefore, the 
sampling of tidal states should be similar in different years if analyses are conducted 
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without accounting for sampling of tidal states.  Jaramillo stratified the 2011-2013 
data into different tidal states. The tidal regime in the Upper Gulf of California is 
semidiurnal (two high and two low tides per day) and a cycle of spring-neap tides 
last approximately 15 days. Instead of using tide height as presented in tide tables, 
Jaramillo calculated the vertical speed of tide per hour as an index of tide current 
(using the tide height at the current hour minus the tide height at the previous 
hour).  The absolute value was used, which does not distinguish between flood or 
ebb tides.Coverage of tidal states was similar between years (Table 1, 0.1 
meters/hour intervals). A Kruskal-Wallis ANOVA by ranks indicated that the 
samples of every year originated from the same distribution, Hd.f 2, n=4464=3.285, 
p=0.1934. A median test gives similar non-significant results (Chi-squared=1.2, 
d.f.=2, p=0.5491). The Panel agreed that analysis could proceed without 
accounting for the influence of tides on the data. 
 
Table 1.  Number of hours sampled in eighteen vertical tide speed intervals for each 
sampling year period (2011-2013). 
Tide speed 
interval 2011 2012 2013 

≥ 0.0 ≤ 0.1 151 150 130 
> 0.1 ≤ 0.2 153 156 144 
> 0.2 ≤ 0.3 159 160 145 
> 0.3 ≤ 0.4 151 133 156 
> 0.4 ≤ 0.5 125 134 131 
> 0.5 ≤ 0.6 139 126 138 
> 0.6 ≤ 0.7 121 115 128 
> 0.7 ≤ 0.8 106 117 111 
> 0.8 ≤ 0.9 99 90 95 
> 0.9 ≤ 1.0 73 75 73 
> 1.0 ≤ 1.1 76 77 76 
> 1.1 ≤ 1.2 62 57 57 
> 1.2 ≤ 1.3 36 42 44 
> 1.3 ≤ 1.4 27 34 24 
> 1.4 ≤ 1.5 8 15 20 
> 1.5 ≤ 1.6 2 7 12 
> 1.6 ≤ 1.7 0 0 3 
> 1.7 ≤ 1.8 0 0 1 

 
Seasonal Effects: The Panel considered whether shifts in the amount of acoustic 
activity of vaquitas throughout the sampling season (generally from June through 
early September) could affect estimates of rate of change (see Appendix 3 for raw 
click data for each station and in each year).  The distribution of sampling effort over 
the sampling season, as well as the pattern of apparent acoustic activity, differed 
somewhat among years (Figure 4). To avoid any potential biases caused by these 
differences, the Panel decided to analyze a seasonally reduced dataset that included 
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dates chosen to be those within which at least 50% of the CPODs were operating 
across all 4 years, i.e., from Julian day 170-231[June 19 to August 19].  This core 
sampling period included 77.3% of the data, henceforth called the core dataset.  The 
Panel used a Generalized Additive Model (details in Appendix 2) to assess whether 
the results from truncated dataset differed from using the full dataset (excluding 
data after September 14, the day prior to the earliest opening of shrimp season over 
the three years).  This sensitivity test showed there were seasonal differences.  This 
affirmed the choice to use the core dataset in order to avoid confounding inter-
annual differences in seasonal sampling with potential seasonal differences in 
vaquita distribution.  After discussion about whether it was necessary to model time 
within year (e.g., month), the Panel agreed that, for the purpose of estimating overall 
annual rate of change, using a common season across years and pooling data across 
that core period within a year would deal adequately with seasonal effects.  The 
Panel agreed that analysis could proceed using the core dataset and by 
averaging acoustic data within a year for each sampling point. 
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Figure 4.  Mean acoustic detection positive minutes (see next section – Acoustic metric 
– for explanation), averaged across CPODs (y-axis) for each day of sampling (x-axis).  
Each dot represents a single day of sampling, with dot size proportional to the number 
of CPODs operating on that day.  The red curves represent a smooth (a generalized 
additive mixed model with separate thin plate regression spline smooth per year, 
normal errors, identity link, weights that are number of CPODs and auto-regressive 
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error structure of order 1) with approximate 95% confidence interval shown as 
dashed lines.  Vertical red lines indicate the core sampling period from Julian day 170-
231. 
 
Acoustic metric:  The Panel focused its discussion on two types of measures of 
vaquita acoustics:  clicks/day and detection positive time units (see below for 
discussion of appropriate time unit).  Using acoustic events such as clicks/day to 
estimate trends in vaquita abundance assumes that acoustic events have a constant 
relationship with the number of vaquitas.  Clicks are the most direct form of the 
acoustic data, and Panelists agreed that clicks/day would be the preferred 
metric as long as the statistical properties were acceptable.  However, Panelists 
thought it useful to examine the data to see whether the amount of clicking per 
vaquita might have differed each year (e.g., due to annual differences in prey 
availability within the sampling area).  The number of clicks per Detection Positive 
Minute (DPM, which is any minute that includes vaquita clicks) was variable, but 
with a similar pattern between years (Figure 5), which increased confidence in 
using clicks/day as a reliable acoustic index of vaquita abundance.  Additionally, 
clicks/day was well characterized using a negative binomial distribution in 
generalized additive models (GAMs) and had no statistical issues in other models 
used (see details below and in Appendix 2).  Nevertheless, the Panel thought 
analysis using a second metric that would be potentially less sensitive to changes in 
acoustic behavior would be useful as a sensitivity analysis.  In addition to using 
DPMs, another metric explored was the number of times vaquitas were present 
(“positive”) or not within a time unit that contained most vaquita encounters, where 
an encounter is determined as a period of detected activity (clicks) defined by silent 
gaps at each end of more than 30 minutes). The Panel considered different time 
units, and chose 30 minutes because just over 90% of vaquita encounters were less 
than 30 minutes in duration (Figure 6).  These encounter units are called Detection 
Positive Half Hours (DPHH).  The metric of vaquita positive 30-minute periods was 
thus used to examine the robustness of the results based on clicks/day. 
 

 
Figure 5.  The number of clicks per Detection Positive Minute (DPM) over time. 
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Figure 6.  Proportion of vaquita encounters binned by encounter duration. 
 
The relationship between number of DPMs per encounter and encounter duration 
appears to be linear, although with high variability (Figure 7). Thus, rates of 
echolocation (as indicated by slope) are nearly constant with increasing encounter 
duration.  Different colors are shown for the three years (red, black and blue 
respectively from 2011-2013). No differences between years are apparent. 
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Figure 7.  Scatterplot of DPMs for different encounters and for different years (2011-
2013). 
 
The GAM models using a negative binomial distribution had a poorer fit using either 
DPMs or Detection Positive Half Hours (DPHH) per day than using clicks/day 
(detailed below and in Appendix 2).  The DPHH also tended to become saturated 
(Figure 8).  An aggregation of 2 vaquitas could produce similar values of DPM and 
even more similar values of DPHH as an aggregation of 5 vaquitas, whereas total 
clicks would be expected to increase more linearly with average group size.  This 
topic is further discussed below under the Spatial GAMs Model. 

 
Figure 8.  A loess smoothed fits of the number of detection-positive minutes (DPMs) per 
day (left) and the number of detection-positive half hours (DPHH) per day (right) as 
functions of the number of vaquita clicks per day for each site and year.  Data are 
limited to the core sampling period 2011-2013. 
 
 
The Panel agreed that the metric of choice was clicks/day because this metric 
uses the most raw form of the data and no statistical issues preventing its use. 
 
Agreed scope of inference: The Panel discussed at length the types of analyses that 
could be performed on the data, and the inferences that could be drawn from the 
results.   

1. The Panel agreed that the spatial scope of inference should be limited to the 
CPOD sampling locations.  In other words, predictions from all models would be 
made only at the sample locations; no attempt would be made to extrapolate the 
predictions to some wider area such as the entire refuge.  Such extrapolations 
cannot reliably be made from spatial models that omit biologically-relevant 
explanatory variables; in the present case constructing a detailed spatial habitat 
model would take far longer than the time available.   

2. Estimates would only be made covering the core sampling period, where at 
least 50% of the CPODs were operating in all years.  Any analysis would need to 
account for the fact that some locations did not have CPODs operating for the full 
time period in each year; data from each location and year should be weighted by 
the number of sample days.   

3. Inference from the analysis would be based on model-predicted click counts 
from the model at all sampled locations (n = 45).  An alternative would have 
been to predict click counts only at locations with no sampling effort in a particular 
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year, and to use observed click counts at the other locations for making between 
year comparisons; this approach was rejected firstly because of the uneven number 
of sampling days across locations (higher sampling error and thus less confidence 
that the raw data accurately represent activity levels at less frequently sampled 
locations) and secondly because the observed click counts are extremely variable, 
likely reflecting variations in vaquita behavior in the vicinity of the CPODs (e.g., 
variation in animal speed, foraging behavior, etc.) – it was felt that using a model to 
“smooth out” this variability would result in more reliable inference about trend and 
provide a better assessment of the uncertainty associated with an estimates. 

 
Description of Models 
 
The Panel agreed to use Bayesian inference approaches for the main models used to 
estimate rate of change.  There are many advantages of using Bayesian methods, but 
of particular value in the current context was the desire to obtain posterior 
probability distributions for annual rate-of-change, which in turn allow for 
straightforward estimation of the probability that the population declined between 
2011 and 2014. 
 
After consideration of numerous models, the Panel focused on two models with 
differing assumptions:  the Spatial Model and the Non-Spatial Mixture Model.  Here 
we describe the basis for these models with details in Appendix 2. 
 
Spatial Model Description 
 
The spatial model smoothed over the observed data, considering them to be a noisy 
version of an underlying smooth pattern of vaquita use.  Vaquitas move throughout 
the study area, and the number of clicks encountered at a station are considered as 
an imperfect sampler due to stochastic movements of vaquitas.  There is also 
unequal effort at locations, with some locations completely unsampled in some 
years.  The model partitions variability into a spatially smooth surface plus 
independent random error, where the variance of the independent part decreases in 
proportion to increasing effort (number of sampling days).  The estimated surface of 
vaquita use, then, is the predicted spatial surface. Each year is treated independently 
for predictions, but autocorrelation parameters are estimated by pooling across 
years.  
 
The spatial model was a Gaussian log-linear mixed model (i.e., data assumed normal 
on log scale) with spatially autocorrelated error structure.  Rationale for using this 
approach in favor of others is discussed below (see Basis for model choice).  Details 
of this model are in Appendix 2.  An overview is provided here. 
 
The response variable data (Wti) were the average number of clicks detected per 
day at each CPOD location i within a sampling year t.  Thus the sample size for 
analysis was the sum of the number of CPODs functioning during the core sampling 
period in each year; this totaled 128 “CPOD-years”.  The data were transformed by 
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adding 1 and taking the log of the values, i.e, Yti= log(Wti + 1), because some 
functioning detectors recorded zero clicks during some years.  The transformed data 
had reasonable variance:mean properties for using a Gaussian model (Appendix 3).  
 
The transformed data were thus fit by the following model: 
 
Yti ~ Normal(𝜇𝑡 + 𝑍𝑡𝑖,𝜎𝜀2/𝑛𝑡𝑖), 
 
where 𝜇𝑡 is the expected mean number of clicks per day across locations in year t, 
𝑍𝑡𝑖is a spatially autocorrelated random effect allowing the number of clicks per day 
at each location within a year to depart from the overall mean (with CPODs in closer 
proximity to each other expected to have more similar departures from the overall 
mean), and 𝜎𝜀2 is the variance for spatially independent random error, weighted by 
variable sampling effort (number of CPOD-days, 𝑛𝑡𝑖) across locations. 
 
Details for estimating the spatial component of the model (𝑍𝑡𝑖) are in Appendix 2.  
Worth noting here is that years were treated independently in the model, such that 
a different spatial surface was estimated from each year’s data, but all years were 
assumed to have the same autocorrelation structure (same exponential decay in 
spatial random effect covariance as function of distance between locations).  Also 
note that the spatial model is used to provide predictions forYti at all K CPOD 
locations (K = 45), including those not sampled in some years, by drawing on 
information (through the spatial model parameters) from surrounding CPODs. 
 
Inference was based on several summaries derived from the model parameter 
posterior distributions.   Let Sti be the predicted values for the average number of 
clicks per day (smoothed over the noisy process with variance 𝜎𝜀2), back-
transformed to the original scale of the data, 
 
Sti = exp(µt + Zti) -1  
 
 An index of abundance (Bt) is taken to be the average of these values across all 
KCPOD locations for each year.  Thus, given fitted estimates (predicted values) for 
Sti: 
 
𝐵𝑡 = 1

𝐾
∑ 𝑆𝑡𝑖𝐾
𝑖=1 . 

 
An estimate of the geometric mean annual rate of population change between 2011 
and 2014 is calculated as λ = (B2014/B2011)1/3.  The proportion of the posterior 
distribution for this quantity that is less than 1 provides an estimate for the 
probability that the population in the sampled area has declined between 2011 and 
2014. 
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Posterior summaries including means, medians, variances and credible intervals 
were obtained from MCMC samples.  MCMC specifications (including priors) are 
detailed in Appendix 2. 
 
Non-spatial Mixture Model Description 
 
The non-spatial mixture model draws on the strength of the sampling design 
(repeated samples from a fixed semi-regular grid throughout the study area).  
Predicted click levels at individual CPOD locations were not based on a spatial 
model.  Rather, within a generalized linear mixed model framework, individual 
CPOD locations were assigned probabilistically to one of V = 3 groups based on the 
level of detections they received across multiple years of sampling.  Predictions for 
individual locations are given by estimated means and random effect variances for 
the groups to which CPOD locations are attributed.  
 
The parameter of interest is θv[k],t the mean click rate (clicks per day) in year t for 
each of the V groups to which detector k is attributed. Because the data (total clicks 
per location per year, nkt) were overly dispersed for a Poisson model, they were 
treated as negatively binomially distributed with the expectation given by the 
product of the estimated θv[k],t and effort (number of CPOD days, dkt), i.e., 
 
nkt~ Negative Binomial (pkt, rv[k],t), 
 
where p and r are negative binomial parameters, and where μkt= θv[k],tdkt= rv[k],t (1-
pkt)/pktis the expectation for nkt.  Thus, variable sampling effort across CPOD 
locations is handled through its effect on the expectation and variance for nkt. 
 
Exploratory generalized additive model (GAM) analysis suggested that the click-rate 
data were well described by a negative binomial error distribution (see below).   
 
Individual CPODs were probabilistically assigned to a use-intensity group v based 
on the data recorded at k across the years during which CPOD k was functioning.  In 
OpenBUGS (Bayesian analysis software), this was done using the “categorical 
distribution” (multivariate generalization of the Bernoulli): 
 
v[k] ~ cat(svk),  
 
where svk is the vector of estimated probabilities for k being in group v, which come 
from a Dirichlet prior distribution (see details in Appendix 2). The degree of 
certainty in assigning a CPOD location to a particular group depends on how 
correlated detections were through time; sites with consistently low or high levels 
of detections are assigned to a group with greater confidence, and all else being 
equal, CPODs with 4 years of data are assigned more confidently to a group that 
sites with one or two years of data.  Uncertainty in group assignment is propagated 
through to estimates of other parameters. 
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In summary, the number of detections recorded across all CPODs are assumed to 
arise from a mixture of V negative binomial distributions.  Information across years 
is shared for the purpose of assigning each CPOD location to a particular group v, 
but the means and variances for each v, t are independent.  Predicted estimates for 
CPOD locations in years with missing data are based on the probability of belonging 
to group v, and the conditional mean and variance for group v in year t. 
 
Inference is on the overall mean values for daily click rate (Μt), which are simply the 
means of the θv[k],t weighted by the number of CPODs belonging to each group v, for 
each t, i.e., Μ𝑡 = 1

𝐾
∑ θ𝑣[𝑘]𝑡
𝐾
𝑘=1 .  The rate of change between 2011 and 2012 is Μ2/Μ1.  

The rate of change between 2012 and 2013 is Μ3/Μ2.  The rate of change between 
2013 and 2014 is Μ4/Μ3.  The mean annual rate of change across years, �̅�, is the 
geometric mean of these values.  The probability that the population declined from 
2011 to 2014 is the proportion of the Bayesian posterior distribution for  �̅� that is 
less than 1 (or the probability that �̅� – 1 is less than zero).  Inference about 
population change is based on posterior distribution summaries for these derived 
parameters. 
 
Spatial GAM Models 
 
In addition to the Bayesian models used to estimate the rate of change, the Panel 
agreed that a maximum likelihood approach (Generalized Additive Models) would 
be a useful comparison to the Bayesian methods.    In preliminary analyses, 
Generalized Additive Models (GAMs) were developed to quickly evaluate and 
compare alternative models for estimating population change and to evaluate 
acoustic metrics before implementing those models in Bayesian spatial models. 
However, GAMs were not favored by the Panel as the approach for making inference 
because GAMs do not provide posterior probability estimates for key parameters of 
interest. 
  
 
Five GAMs were fit to the 2011-2014 acoustic monitoring data with:  

1) Site and year as independent categorical variables, 
2) Site as a categorical variable and year as continuous (trend) variable, 
3) A constant spatial smooth of  location with year as a categorical variable, 
4) A constant spatial smooth of location with year as a continuous (trend) variable, and 
5) A year-varying spatial smooth of location. 

All models were fit with the mgcv package in R.  Spatial models used a two-
dimensional thin-plate spline.  The mean number of clicks per day for each site and 
year was used as the dependent variable with a negative binomial distribution and a 
log-link function.  The best-fit model was selected with AIC. 
 
Additional details on the GAMs are given in Appendix 2. 
 
Basis for model choice 
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The Panel’s charge was to give a best estimate of the current rate of change in 
vaquita detections.  Although the spatial and mixture models gave similar results 
(see below), the Panel carefully considered the merits of each.  Below we summarize 
the main differences between the two Bayesian approaches. 
 

• The spatial model assumes that the spatial distribution of clicks is different each 
year but uses multiple years to estimate the spatial auto-correlation.  The non-
spatial mixture model assumes that each site falls (probabilistically) into categories 
of high, medium or low click density and that the probability of membership in these 
categories is shared between years for a given site.   

 
• The spatial model uses information on site location to smooth over random spatial 

variations in click density.  The non-spatial model uses no information on site 
location or proximity between sites. 

 
• The spatial model assumes that the logarithm of mean clicks per day is normally 

distributed and the non-spatial model assumes that total click counts have a 
negative binomial distribution. 

 
The Panel agreed that both approaches had merit and that averaging results 
of the two models would form the best basis for estimating rate of change. 
 
Results and Discussion 
 
Annual trends in vaquita clicks were first measured using the direct-count method, 
based only those sites that were sampled in both years of adjacent pairs of years.  
The direct-counts indicated a total change in the number of recorded clicks of 0% 
from 2011 to 2012, -33% from 2012 to 2013, and -53% from 2013 to 2014, which 
gives a geometric mean rate of  -29.5% per year (negative changes are declines).  
However, as discussed previously, this method may be biased by non-random 
survey effort in space and time, and additionally does not provide any estimate of 
certainty in the true rate of change. 
 
The exploratory GAM analysis showed that total clicks for each site and year could 
not be adequately modeled with common distribution functions (Poisson, negative 
binomial and Tweedie distributions).  However, the negative binomial distribution 
provided a very good fit to mean clicks per day for each site and year (Appendix 2), 
and this distribution was used for subsequent analyses.  An analysis with the entire 
summer dataset was compared to one based only the core sampling period (when at 
least 50% of CPODS were active in all years).  Results showed that click rates trends 
differed for these two approaches.  Of the two, the Panel decided to conduct 
remaining analyses and base inferences on the core sampling period data, to avoid 
potential biases caused by unbalanced spatial and temporal coverage in the full 
dataset (also see Seasonal Effects Section above).   
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GAM analyses were also used to explore two alternative acoustic measures of 
vaquita relative abundance:  the mean number of minutes per day with vaquita 
clicks present (detection positive minutes – DPM) and the mean number of half-
hour periods per day with vaquita clicks present (detection positive half-hours – 
DPHH).  A negative binomial distribution function was used in a model that fit a 
common spatial pattern for all years.  Results showed that the mean rates of decline 
for these two metrics were qualitatively similar to declines estimated using the 
Bayesian spatial model and non-spatial mixture model, but the model fit was not as 
good as with mean clicks per day (Appendix 2). DPM and DPHH only indicate the 
presence of vaquitas during a fixed time period and do not indicate the number of 
animals present.  The vaquita distribution is very patchy, and these metrics tend to 
saturate at higher click count values (Figure 8) and are not thought to provide as 
much information on relative abundance as the number of clicks.   
 
The Panel agreed to use the pooled posterior distributions from both the Bayesian 
spatial and non-spatial mixture models and to use posterior means as the central 
estimate.  The average trend estimated from the spatial model is a change of -33% 
per year with a 95% posterior credibility interval from -56% to -11% per year, and 
the posterior probability of decline is 0.995.  The estimated spatial density of 
vaquitas from the spatial model is illustrated in Figure 9, and the full posterior 
probability distribution is illustrated in Appendix 2.  For the non-spatial mixture 
model, the average trend is a change of -28% per year.  This non-spatial model gave 
a narrower 95% posterior credibility interval (from -43% to -10% per year, see 
Appendix 2 for the full posterior probability distribution) and a higher posterior 
probability of a decline (0.9998).  Results of these two models are averaged by 
drawing equally from their respective Bayesian posterior samples for the growth 
rate parameter.  The model-averaged estimate for population change (Figure 
10) has a mean rate of decline of 31%/year (95% Bayesian Credible Interval -
51% – -10% per year).  This decline is considerably worse than the previously 
estimated (CIRVA V) 18.5% per year (95% Bayesian Credible Interval -46% – 
+19% per year) because of the very low number of detections in 2014, which 
resulted in an estimated rate of decline from 2013 to 2014 of 42%.   The Panel 
found that it is nearly certain the acoustic activity has declined (prob. = 0.996) 
with very high chance of a rate of decline greater than 10% per year (prob. = 
0.976). 
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Figure 9.  Estimated mean number of clicks per day predicted by the spatial model for 
the 45 C-POD sites with data for at least one year.  Values are posterior medians.  Sites 
with a circle/cross were missing in the indicated year.  The analysis did not constrain 
the density surface to be the same each year. The sites 49—53 were added in 2014 (not 
included in the analysis) and show that clicks dropped off rapidly along the southwest 
border. 
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Figure 10.  Posterior probability distribution from the pooled spatial and non-spatial 
mixture models.  The mean is a -31% change (decline) per year. 
 
The GAM analyses of the 2011-2014 acoustic monitoring generally gave higher rates 
of decline than the two Bayesian models (Table 2), especially those four models that 
assumed that the vaquita distribution did not change within the monitored area.  
The best-fit model was GAM #2 with site as a categorical variable and year as a 
continuous (trend) variable. 
 
Table 2.  Geometric mean annual rates of change from five GAM analyses using the 
2011-2014 acoustic monitoring data. 
GAM # Variable Specification Annual % 

Rate of 
Change 

Delta-AIC 

1 Site & year as categorical   -42 11.1 
2 Site as categorical and year as 

continuous (trend) 
-42 0.0 

3 Spatial smooth with year as 
categorical 

-43 40.0 

4 Spatial smooth with year as 
continuous (trend) 

-42 37.5 

5 Year-specific spatial smooth   -15 126.3 
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Conclusions 
 
The Panel agreed that the estimated rate of -31% should be considered as the 
best estimate of current rate of decline from the acoustic data alone.  The 
greatest mean rate of decline for any annual increment was found between 2013 
and 2014 by all three statistical approaches (spatial modeling –47%, non-spatial 
modeling –37%, GAMs model 3 -53%).  This is consistent with reports of increased 
illegal fishing both for totoaba and within the Vaquita Refuge. 
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students and serves on dissertation committees of four others.  At SIO, Jay teaches a 
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authored or co-authored 110 peer-reviewed journal articles and book chapters, 75 
numbered government reports, and edited one book.  He has been chief scientist on 
12 NOAA and one Australian research surveys. 
Dr. Jay VerHoef began his career as a statistician with the Alaska Department of Fish 
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Association (ASA) and past-Chair of the Section on Statistics and the Environment of 
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Appendix 2:  Model details 
 
SPATIAL MODELING OF VAQUITA ACCOUSTIC DATA FROM 2011 – 2014. 
 
Let Wt(si) denote a random variable for mean acoustic click counts at the ith spatial 
location in the tth year.  Because some of the data were zero, we used Yt(si) = log(Wt(si) + 
1) for analysis. 
 
To account for uneven effort per site, we divided the spatial model into a spatially 
structured component and an independent component (often called the nugget effect by 
geostatisticians). Then the set {Yt(si)} were treated as spatially autocorrelated in a spatial 
linear mixed model, 
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where nt,i is the number of sampling days for each site for each year.  The nt,i account for 
uneven sampling, and this can be also be viewed as measurement or sampling error in a 
hierarchical model.  Let the vector zt denotes all of the spatial random effects, )( itZ s , for 
the tth year,  
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where we assumed that years were independent, but that the spatial stochastic process had 
the same autocorrelation model among years; that is, 
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For spatial autocorrelation, we used the exponential model, 
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where h is Euclidean distance.  That is, let s = (sx,sy) be the x- and y-coordinates of one 
point, and v = (vx,vy) be the x- and y-coordinates of another point, then 

22 )()( yyxx vsvsh −+−= . 
For the spatial analysis, latitude and longitude coordinates were projected onto the plane 
using a Universal Transversal Mercator (UTM) projection with a user-defined central 
meridian.  The central meridian was computed as the center of the vaquita refuge.  This 
minimizes distortion from the projection, and UTM is a distance-preserving projection.  
After projection, the UTM coordinates were converted from meters to kilometers, and 
translated in space so that 0 on the x-coordinate corresponded with the western-most 
coordinate of the vaquita refuge, and 0 on the y-coordinate corresponded with the 
southern-most coordinate of the vaquita refuge. 
 
To complete the model, we specified the following prior distributions, 

µ2011 ~ UNIF(-10,10) 
µ2012 ~ UNIF(-10,10) 
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µ2013 ~ UNIF(-10,10) 
µ2014 ~ UNIF(-10,10) 

 
σz ~ UNIF(0,10) 
σε ~ UNIF(0,10) 
ρ ~ UNIF(0,500) 

Because the data were modeled on the log-scale, these are flat and non-informative priors 
that encompassed any reasonable range of values for the parameters.  The posterior 
distribution of the model is, 

].|,,,,[ yμzρσσ ε z  (A.2) 

We used Markov chain Monte Carlo (MCMC) methods, using the software package 
WinBUGS, to obtain a sample from the posterior distribution (A.2).  We used a burn-in 
of 10,000 iterations, and then used 1,000,000 further iterations.  For computer storage 
reasons, we kept a single iteration out of each 100, yielding a sample of 10,000 from the 
posterior distribution. 

We were interested in several summaries derived from the posterior distribution.  Let 
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be a spatially smoothed prediction for the tth year, at the ith site, and for the kth MCMC 
sample.  Notice that these predictions smooth over the noisy process with variance 2

εσ   
contained in the model specification at the data level, and that we are putting the 
predictions back on the original scale of the data.  Then, we take as an indicator of overall 
abundance, among all n sites for each year, as 
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Finally, we were interested in average rate of change, as a proportion, for the two time 
increments.  We decided to use the geometric mean1, 
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and based on this, the posterior probability of a decreasing population can be computed 
from the mean of 

)1ˆ(ˆ <= kk rIp , 
where I(.) is the indicator function.  Posterior summaries including means, medians, and 
variances of )(ˆ

i
k
tS s ,  k

tB̂ , kr̂ , and kp̂ , were obtained from the MCMC samples. 
 

                                                        
1 Note that kr̂  is the parameter for proportional rate of change which is referred to using 
the symbol λelsewhere in this Appendix and the body of the report. 
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RESULTS 
Maps of )(ˆ

i
k
tS s  for each year and location are given below, where we used the median 

from the MCMC sample.  The sites in 2011 - 2014 with circles around them and an ‘x’ 
through the circle indicate that data were missing for those years, so these are spatially 
interpolated values.  Because modeling occurred on the log-scale, these missing values in 
particular had a wider variance, which had a large effect on the mean value when taking 
exponents to get back on the original scale of the data.  So, for presentation purposes, we 
used the median.  Also note that sites numbered 49 - 53 only occurred in 2014.  There 
was some concern that the refuge was not capturing the majority of the vaquita 
population because, from 2011 - 2013, the highest abundance peaked along the southwest 
edge.  The sites 49 - 53 were not included in the analysis, but their mean clicks per day 
are plotted, showing that clicks dropped off rapidly along the southwest border. 

 
The posterior distribution of the annual proportional change, kr̂ , is given below, 
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The mean of the posterior distribution for kr̂  was 0.670, and the median was 0.674, 
indicating about 33% per year decrease in clicks. The 95% credibility interval, based on 
the 2.5% and 97.5% quantiles, was 0.444 to 0.891.  The probability kr̂  was less than one, 
i.e., kp̂ , was 0.995.  For annual increments, the mean of the posterior distribution for 

kk BB 20112012
ˆ/ˆ  was 0.712 with a 95% credibility interval from 0.193 to 1.439; the mean of 

the posterior distribution for kk BB 20122013
ˆ/ˆ  was 1.058 with a 95% credibility interval from 

0.440 to 2.534; the mean of the posterior distribution for kk BB 20132014
ˆ/ˆ  was 0.531 with a 

95% credibility interval from 0.179 to 1.149.  
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ASSESSING THE MODEL AND MCMC 
 
Our primary goal was to obtain a sample of kr̂ in order to project the current population 
estimate from 2010.  To test for convergence in the MCMC chain, we used the Geweke 
test, found in the R coda package. The result was a z-value of 0.863, which is assumed to 
be a standard normal random variate under the assumption that the MCMC sample is 
from a stationary distribution. Our result indicates very little reason to be concerned that 
this particular MCMC chain had not converged.  The MCMC trace is shown below. 

 
The trace of ρ is given below, 

 
Note that values seem to be truncated by the prior, which has an upper bound of 500.  We 
did a sensitivity analysis, and increased it to 1000.  Part of the explanation requires the 
trace of σz as well, which is given below.   
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When ρ is increased to 1000, then σz becomes truncated by its upper bound of 10. This is 
a well-known phenomenon in spatial statistics, where the model explores a more linear 
form of the autocorrelation function by increasing both ρ and σz.  In fact, the correlation 
between them, in the MCMC sample, is near 0.86.  However, very large values of ρ and 
σz, when they occur together, have little effect on the autocorrelation within the spatial 
distances seen within the data set.   We saw no change in our inferences by continuing to 
increase either ρ or σz, because eventually one of them would become truncated at their 
upper bound.  We left the upper bound for the prior of ρ as 500 (km), as that allowed a lot 
of autocorrelation among sites, and was far beyond the maximum distance among plots in 
the vaquita refuge. 
 
The trace of the mean parameters µ2011, µ2012, and µ2013 also wander throughout their 
whole prior distribution.  This is shown as a trace of the MCMC sample for µ2011 in the 
following figure, 

 
This may seem strange at first, especially since even the raw data (on the log scale) do 
not range from -10 to 10.  The explanation lies in the fact that spatially autocorrelated 
random variables, such as the )( itZ s , can wander far from their mean of zero, so the 
whole set },1);({ niZ it =s  may be positive or negative.  To examine this effect, we just 
chose )( 12011 skZ  from the MCMC chain, and its correlation with k

2011µ  was -0.988.  Thus, 
the MCMC sampler was behaving as expected. 
 
The trace of σε showed little irregularity, and is given below. 
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OTHER SPATIAL AND TEMPORAL MODELING CONSIDERATIONS 
Table 3 shows the raw data used for spatial modeling.  We tried several spatial models, 
including embedding the spatial linear model into a generalized linear model (called 
model-based geostatistics by Diggle et al.), where the untransformed data, conditional on 
the mean, followed a Poisson or negative binomial distribution.  However, estimation of 
site mean values, and even means over sites, was very unstable resulting in average click 
rates per year, such as k

tB̂ , that were often in the thousands. 
We also considered a spatial model where the spatial random effects were constant across 
years, so that the conditional mean in (A.1) was )( it Z s+µ  rather than )( itt Z s+µ .  This 
resulted in much steeper rates of decline, with a mean kr̂ of nearer 0.7 rather than 0.8.  
The reason can be seen in Table 3, and in particular if we focus on site 34.  If the random 
effects are held constant through the years, then the predicted values in 2011 will largely 
follow the pattern seen in 2012 and 2013.  For 2012 and 2013, site 34 was one of the 
highest sites, so when that “surface” is shifted to 2011, the predicted values had average 
values that were nearer 900 to 1000, rather than  around 300 seen in Table 3.  We felt that 
it was a strong assumption to hold the spatial surface constant across years, so we 
rejected the use of that model.  Although there are very few data to look at yearly trend 
(only 2 years for site 34) within site, the current model fits the general trend. 
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Table 3.  Mean click rates per site for each year, along with sampling effort.  Median 
values for )(ˆ

i
k
tS s  are shown in bold red for missing C-PODs in those years. 

Site Mean 
Clicks 
2011 

Mean 
Clicks 
2012 

Mean 
Clicks 
2013 

Sample 
Days 
2011 

Sample 
Days 
2012 

Sample 
Days 
2013 

1 6.05 0.00 2.00 62 60 58 
2 157.12 75.13 52.05 41 60 58 
3 56.60 9.27 75.87 62 60  
4 229.56 26.88 152.48 62 60 58 
5 0.00 0.00 0.00 62 60 58 
6 0.15 0.00 0.21 62 60 58 
7 96.79 4.22 24.35 62 60 37 
8     21.36 55.20 1.67  60 21 
9 24.32 61.67 11.45 62 60 62 

10     13.82 59.73 38.58  60 62 
11 0.71 2.78 2.76 62 60 37 
12     1.91 0.00 2.86  62  
13 0.40 81.65 6.66 58 60 62 
14 1781.57 3800.00 83.48 58 60 62 
15 158.75 83.57 83.98 57 60 62 
16 808.15 287.40 218.06 62 60 62 
19 694.00 81.68 23.40 62 59 10 
20 365.56 116.37 14.00 62 59 29 
21 48.36 1.47 13.78 58 59 37 
22 0.00 1.53 0.64 62 59 55 
23 37.47 3.73 19.55 62 59 62 
24 7.41 13.31 37.56  59 62 
25 0.00 17.47 1.76 49 62 62 
26 0.00 0.00 0.00 52 60 62 
27 12.65 0.00 4.66 62 54 62 
28 0.00 2.84 0.00 62 62 62 
29 10.33 53.81 15.82 57 62 62 
30 84.79 3.02 34.58 62 62 62 
31 548.44 136.71 115.95 62 62 42 
32 527.70 695.37 2116.02 20 62 62 
34 311.95 408.94 729.91  62 11 
35 413.58 77.68 148.84 62 62 50 
36 0.67 8.65 4.14 48 62 44 
37 26.77 1.82 4.82 47 62 45 
38 0.00 0.69 0.29 62 62 62 
39 0.00 0.00 0.00 61 55 62 
40 0.00 1.37 0.00 62 62 62 
41 0.00 0.68 0.00 54 34 62 
42 0.00 9.36 0.00 46 61 62 
43 252.53 595.46 462.84 62 61 62 
44 70.58 172.33 141.65 62 61 62 
45 0.00 0.00 0.00 62 61 62 
46 0.00 0.00 2.45 48 61 49 
47 0.00 0.38 0.56 57 61 62 
48 0.00 0.00 0.00 43 61 54 
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Non-spatial Mixture Model 
 
Rationale:  This approach attempts to draw on the strength of the sampling design; 
Spatial autocorrelation is not modeled. 

Basic assumptions: 
1. CPOD locations are representative of a sampled area that we wish to make inference 

about. 
 

2. The mean number of clicks-per-effort-day for a CPOD is linearly related to the 
amount of use in the area considered to be sampled by that CPOD.   Thus clicks-per-
effort-day is taken as an index of use-days in the area. 

If all CPOD locations had equivalent sampling effort, we could simply take the mean 
“clicks per effort-day” across CPODs in year t as a robust estimate of the use-index 
for that year.  Inference would be based on comparing the means between years and 
assessing the probability that they are different (which would depend on the 
variances of the estimates). 
 
However, data are missing for some CPOD locations in some years (call these 
missing “CPOD-years”), and precision of the overall mean detection rate could 
potentially be improved (thereby increasing the power to detect annual changes) by 
accounting for spatial heterogeneity in CPOD detection rates. Therefore, 
interpolating the value of the use-index for missing CPOD-years and improving 
precision in the annual estimates for the use-index are the analysis objectives.  
 
Data 
nkt = number of clicks recorded at location k, year t 
dkt = number of effort-days at location k, year t 
K = 45 = total number of CPOD locations with effort in at least one year 
The data are truncated in time, i.e., only using recorded clicks and effort-days 
between Julian dates 170 and 231 (inclusive). 
 
Model 
The non-spatial mixture model draws on the strength of the sampling design (repeat 
samples from a fixed semi-regular grid throughout the study area), emphasizing a 
design-based rather than model-based approach to inference.  Predicted click levels 
(mean number of clicks per season, nkt) at individual CPOD locations are not based 
on a spatial model.   Rather, within a generalized linear mixed model framework, 
individual CPOD locations are assigned probabilistically to one of V = 3 groups based 
on the level of detections they received across multiple years of sampling.  
 
Predictions for individual locations are given by estimated means for the groups to 
which CPOD locations are attributed, i.e., 

nkt~ Negative Binomial (pkt, rv[k],t), 
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where p and r are negative binomial parameters.  Exploratory generalized linear 
model (GAM) analysis suggested that the click-rate data were well described by a 
negative binomial error distribution (see GAM section below). The expectation for 
nkt (which we denote μkt) is a function of the expected mean number of clicks per 
day (θv[k],t) and sampling effort (dkt).  The former depends on the group membership 
for CPOD k and the year: 

μkt= θv[k],tdkt. 
 
For the negative binomial, the expectation μkt=  rv[k],t (1-pkt)/pkt.  We placed priors on 
θv[k],t and rv[k],t(see below), so that in each MCMC iteration, the value for 𝑝𝑘𝑡 =
 𝑟𝑣[𝑘],𝑡/(𝑟𝑣[𝑘],𝑡 +  𝜇𝑘𝑡). 
 
CPOD location k is probabilistically assigned to a use-intensity group v based on the 
data recorded at k across the years during which CPOD k was functioning.  In 
OpenBUGS, this was done using the “categorical distribution” (multivariate 
generalization of the Bernoulli): 

v[k] ~ cat(svk),  
where svk is the vector of probabilities for k being in group v, which come from a 
Dirichlet prior distribution: 

svk ~ Dirichlet(αv), 
where αv are the Dirichlet intensity parameters.  Setting α1 = α2 = α3 = 1 makes this 
distribution fairly uninformative, providing the flexibility for svk to take on any 
values that sum to 1 (across v for each k). 
 
The degree of certainty in assigning a CPOD location to a particular group depends 
on how correlated detections are through time; sites with consistently low or high 
levels of detections (or with more years of information, since there were some 
missing CPOD-years) are assigned to a group with greater confidence.  Uncertainty 
in group assignment is propagated through to estimates of other parameters. 
In short, the number of detections recorded across all CPODs are assumed to arise 
from a mixture of V negative binomial distributions in each year.  Information across 
years is shared for the purpose of assigning each CPOD location to a particular 
group v, but the means and variances for each v, t are independent.   Predicted 
estimates for CPOD locations in years with missing data are based on the probability 
of belonging to group v, and the conditional expected mean and variance for group v 
in year t. 
 
Inference is on the overall mean values for daily click rate (Μt), which are simply the 
means of the θv[k],t weighted by the number of CPODs belonging to each group v,for 
each t, i.e., Μ𝑡 = 1

𝐾
∑ θ𝑣[𝑘]𝑡
𝐾
𝑘=1 .  The rate of change between 2011 and 2012 is Μ2/Μ1.  

The rate of change between 2012 and 2013 is Μ3/Μ2.  The rate of change between 
2013 and 2014 is Μ4/Μ3.  The mean annual rate of change across years, �̅�, is the 
geometric mean of these values.  The probability that the population declined from 
2011 to 2014 is the proportion of the Bayesian posterior distribution for  �̅� that is 
less than 1 (or the probability that �̅� – 1 is less than zero). Inference about 
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population change is based on posterior distribution summaries for these derived 
parameters. 
 
Additional assumptions 
In addition to the basic assumptions above, we note the following: 

1. We used V = 3 groups based on visual inspection of the data, which indicates 
locations for which the mean number of clicks per effort day is consistently 
extremely low (just a few clicks/day), very high (clicks/day = hundreds to low 
thousands), or in-between (clicks per day = tens).  Using fewer groups, such as V = 1 
(single group, no mixture), ignores this information, potentially biasing estimates of 
𝜇𝑘,𝑡 for missing CPOD-years (and hence for the Μ𝑡).  On the other hand, assuming 
many groups (V > 3) may result in over-fitting the data, reducing precision in the 
estimates of 𝜇𝑘,𝑡 and thus increasing uncertainty in Μ𝑡.  In practice, data generated 
by a mixture of many processes tend to be well approximated by mixture models 
with just a few groups. 
 

2. Justification for this general approach relies on the assumption that there are stable 
high-use and low-use areas through time, i.e., on average, locations with the highest 
click-rates in three years will also have the highest click rates in the fourth year.  
However, the assumption, as modeled, allows for some flexibility in how the implied 
spatial patterns of vaquitas vary through time.  First, inconsistent relative use of 
individual detectors would result in uncertain group assignment and thus greater 
uncertainty in the expected click rates.  Second, the mean click-rate differences 
between groupings are estimated independently for each year.    Thus, for example, 
the mean click rate for “medium use” CPODs could theoretically be much higher 
than “low use” CPODS in one year but only slightly higher in another year.  Simple 
Spearman correlations suggest that it is indeed reasonable to assume that relative 
use across individual CPODs was similar through time (e.g., rs2011,2012 = 0.77; 
rs2012,2013 = 0.93; rs2011,2013 = 0.83).  Similarly, high certainty in the assignment of 
most CPODs to a particular one of the V groups (see below) provided additional 
support for this assumption. 
 

3. In contrast with spatial models, we are not borrowing information from 
surrounding CPODs to estimate values for CPOD k.  All CPOD locations are treated as 
independent sample locations.  The expected value for CPOD k,t depends on which 
group k belongs to (which is informed by data in other years at k) and on the mean 
and variance parameters for the group in year t (which are informed by other 
CPODs in the same group, but irrespective of their proximity to k). 
 

 
MCMC specifications 
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An MCMC chain of length 1,000,000 was run.  The first 500,000 samples were 
discarded.  Every 100th sample from the chain was retained, so that the posterior 
distributions were constructed from 10,000 samples. 
The following prior distributions were used: 
 
svk ~ Dirichlet(1, 1, 1)   # Probability of CPOD k belonging to group v 
log�𝜃𝑣[𝑘],𝑡� ~ Normal(−10, σ2=1000), for v = 1; 

𝜃𝑣[𝑘],𝑡 = 𝜃𝑣−1[𝑘],𝑡 + exp�Δlog�𝜃𝑣[𝑘],𝑡��, for 𝑣 =  2, 3 
Δlog�𝜃𝑣[𝑘],𝑡� ~ Normal(5, σ2=1000) (left-truncated at zero to be positive) 

𝑟𝑣[𝑘],𝑡 ~ Categorical(z)2, where z is a vector of probabilities for r = integers from 1 to 
10;  
 zr ~ Dirichlet(1) for all r 
𝑝𝑘𝑡 =  𝑟𝑣[𝑘],𝑡/(𝑟𝑣[𝑘],𝑡 +  𝜇𝑘𝑡)  # Negative binomial parameter 
 
Results 
Most CPODs were attributed to mixture group with high probability, though 
assignment was less clear (but still fairly confident) in a few cases (see examples in 
Figure 11). 
  

                                                        
2 In WinBUGS and OpenBUGS, the negative binomial r parameter must be an integer 
≥ 1. 
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Figure 11.  Sample OpenBugs output.  Posterior densities for assignment of individual CPODs to one of 
three mixture groups.  CPODs 1 through 6 shown here for example.  CPODs 1, 3, and 6 were assigned to 
group 2 (medium-use) with high certainty.  Detectors 4 and 5were assigned to groups 1 (low-use) and 3 
(high-use), respectively, with high certainty.  Assignment of CPOD2 was uncertain (similar probability of 
belonging to the medium- or high-use group). 
 
Figure 12 shows annual predictions of mean click rate (average number of clicks per 
day) for the 45 CPODs that functioned in at least one year.  Values depend on the 
mixture group to which the CPOD is most commonly assigned.  Assignment of 
CPODs to mixture groups was generally clear.  Detectors receiving almost no clicks 
in any year were assigned to one group; detectors receiving on the order of tens of 
clicks per day were assigned to a different group; and detectors receiving an 
average of hundreds of clicks per day in at least one year tended to be assigned to 
the third group.  This third group was the most variable; hence the expected 
clicks/day for CPODs in this group had the highest variance, as indicated by broader 
credible interval bars, but overall the pattern of residuals indicated reasonable fit of 
this model to the data. 
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Figure 12.  A) Observed and expected values for “mean clicks per day” at each CPOD location that 
functioned in at least one year, 2011 to 2014.  Solid black points are the observed values, with point size 
indicating the relative level of effort (large circles = more days of sampling).  Open circles are the model-
expected values (with 90% credible intervals),𝜃𝑣[𝑘],𝑡 ,for the three mixture groups (with most likely 
group indicated by different colors).  Horizontal black line is the estimated overall mean for the year, 
𝛭𝑡 .  Here, the y-axis only goes to 1000 (so that lower estimates may be visually resolved). 
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Figure 13.  B) Same as in A but the y-axis goes to 4000 to show data extremes. 

The posterior mean for �̅� was 0.72 with a 95% credible interval ranging from 0.57 to 
0.90 (Figure 14).  The probability that �̅� is less than 1 was 0.9998.  Annual results 
are presented in the table below. 

Posterior Mean 2.50% 97.50%
�̅� (N.2012/N.2011) 0.99 0.48 1.87
�̅� (N.2013/N.2012) 0.71 0.32 1.37
�̅� (N.2014/N.2013) 0.63 0.27 1.26
Geo mean �̅� 0.72 0.57 0.90
Geo mean r (�̅�- 1) -0.28 -0.43 -0.10
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mean.lam.geo.model sample: 10000

mean.lam.geo.model
0.4 0.6 0.8 1.0 1.2

 
Figure 14. OpenBugs output for 𝜆̅ , the geometric mean of Μ4/ Μ3, Μ3/ Μ2 and Μ2/ Μ1. Top panel shows 
the retained MCMC samples. 

Generalized Additive Models 

Exploratory GAM Analyses:  2011-2013 DataGeneralized Additive Models (GAMs) 
were developed to quickly evaluate and compare alternative models for estimating 
population change before implementing those models in Bayesian models.  In the 
GAMs, year was treated as a categorical explanatory variable (2011, 2012 and 2013) 
and spatial variation was modeled as a two-dimensional thin-plate spline using the 
mgcv package in R (v. 3.0.1).  It was assumed that the spatial distribution of vaquitas 
was the same across years and that, between years, relative densities changed 
proportionately among all sites.  GAMs that estimated different spatial patterns for 
each year were generally not stable and are not reported here.  The spatial 
distribution was modeled using all years, but inference on the rate of change in 
population size was based on the ratio of mean of predicted values in 2013 to the 
mean predicted values in 2011.  To maintain a balanced geographic coverage for 
this comparison, spatial predictions were made using predict.gam on the grid of 45 
C-POD stations for which data were available in at least one year.  Unless noted 
otherwise, the GAM analyses were based on the core sampling period (between 
Julian days 170 and 231, inclusive) when at least 50% of C-POD stations were 
deployed in each year.   
Three common statistical distributions (Poisson, negative binomial and Tweedie 
distributions) were fit to each dependent variable used, and the best fit was 
evaluated by visual appraisal of the QQ plots.  The negative binomial provided the 
best fit to all the dependent variables explored here.  Within mgcv, the binomial 
parameter theta was specified as a range and that range was adjusted as necessary 
to ensure that best-fit value was not outside the range of potential values.  When a 
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mean of daily values was used as a dependent variable, the number of days was 
used as an offset to account for the unequal sample size. 
Model Results 
When total clicks per day were used as a dependent variable, none of the statistical 
models provided a good fit, but the negative binomial (Fig. 15) fit better than the 
Poisson or Tweedie distributions.  When mean clicks per day (averaged over all 
days for a given site and year) was used as a dependent variable, a negative 
binomial distribution provided a very good fit to the data (Fig. 16).    

 
Figure 15. Quantile-quantile plot showing how well the best statistical distribution 
(negative binomial) fit the distribution of total clicks per day for 2011-2013.    Ideally, 
all the points would fall on the line if the theoretical distribution fit the distribution of 
the data perfectly. 
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Figure 16.  Quantile-quantile plot showing how well the best statistical distribution 
(negative binomial) fit the distribution of mean clicks per day (averaged over all days 
for each station and year).    Note that the negative binomial distribution provided a 
much better fit for mean clicks per day than for total clicks per day (Figure 15). 
 
Some previous studies of relative porpoise abundance using C-PODs have been 
based on detection positive minutes, that is the number of minutes per day with at 
least one porpoise click.  When mean detection positive minutes (DPM) per day 
(averaged over all days for a given site and year) was used as a dependent variable, 
a negative binomial distribution provided a reasonable fit to the data (Figure 17).   

 
Figure 17.  Quantile-quantile plot showing how well the best statistical distribution 
(negative binomial) fit the distribution of detection positive minutes (averaged over all 
days for each station and year).     
 
We also explored the potential of using detection positive half-hour periods as a 
measure of relative vaquita density, that is the number of half-hour periods per day 
with at least one porpoise click.  Preliminary analyses during the workshop showed 
that the vast majority of porpoise detections lasted less than half an hour, so half-
hour periods should be relatively independent of each other.  When mean detection 
positive half-hours (DPHH) per day (averaged over all days for a given site and year) 
was used as a dependent variable, a negative binomial distribution provided a 
marginally good fit to the data (Figure 18). A better fit was obtained using total 
DPHH per day instead of using the mean DPHH.  The negative binomial distribution 
fit total DPHH (Figure 19) much better than total clicks (Figure 15).  That total 
DPHH model result is given below.    
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Figure 18.  Quantile-quantile plot showing how well the best statistical distribution 
(negative binomial) fit the distribution of detection positive half-hours (averaged over 
all days for each station and year).    Note that the negative binomial distribution did 
not fit detection positive half-hours as well as it fit detection positive minutes (Fig. 14). 
 
 

 
Figure 19.  Quantile-quantile plot showing how well the best statistical distribution 
(negative binomial) fit the daily total of detection positive half-hours.     
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Appendix 3:  Further data description 
 
There were two efforts that were useful to Panelists in interpreting the data and 
considering how to choose an appropriate model.  Station numbers are given in 
Figure 20.  The first helpful effort was a representation of clicks through time for 
each station and for each year (Figure 21).  The second analysis showed the relation 
between the mean and variance for mean clicks/CPOD day (Figure 22). 
 

 
 

Figure 20. Position of the sampling sites inside the Vaquita Refuge (upper map, numbered circles). Below 
are the results of moorings and acoustic detectors deployed in 2011, 2012, and 2013. C-PODs were not 
deployed at sites 17, 18, and 33 in 2013 (X’s). The CPOD at site 32 in 2011 was recovered June 25, 2013 
and data were included in this analysis. Circles indicate sites where data are available, diamonds indicate 
all equipment lost at that site, and squares indicate sites where the mooring was recovered without the 
detector or the detector was recovered without any data.  
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Figure 21.  Detection Positive Minutes (DPM´s  represented by crosses) (2011-2013) for 
every available sampling station.  Tide heights for San Felipe (closest town to vaquita 
distribution area) are shown in the top panel for June – September, except for 2012 
where period is extended because data were available through November for sites 11 
and 15 (detectors recovered on 2013). In the lower panel blue triangles indicate the 
first sampling day and red triangles the last sampling day. C-PODs were turned 
throughout this period. 
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Figure 22. Variance and mean of log-transformed data, i.e., var[log(xk+1)] and 
mean[log(xk+1)], where xk is the mean number of clicks per day for an individual CPOD 
location in a particular year (128 unique values) using data from the core sampling 
period.  Each point represents the mean and variance of 10 ordered values (e.g., left-
most point is mean and variance of the 10 lowest xk values; next point is mean and 
variance of 2nd lowest to 11th lowest xk,, etc.).  Moving window approach results in 
serial autocorrelation in the variance values, but overall the variance is relatively 
constant with respect to the mean on the log scale (apart from a few outliers), 
justifying use of the Gaussian spatial model (constant variance assumption) of the log-
transformed data. 
 
 


