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ABSTRACT15

We investigate spatially explicit models and ensemble modeling techniques for estimating animal abun-
dance from line-transect survey data. Spatially explicit models are expected to be statistically more
efficient, resulting in more precise abundance estimates, than design-based abundance estimators that
rely heavily on assumptions about survey design. Ensemble models allow model selection uncertainty
to propagate to the abundance estimator. We develop density surface models using stochastic partial
differential equations and basis-penalty smoothers for a case study, belugas (Delphinapterus leucas) from
the Eastern Bering Sea (EBS) stock. EBS belugas are upper trophic level predators in a rapidly changing
ecosystem and are a vital nutritional and cultural resource for Alaska Natives. Effective management of
this stock requires regular monitoring to derive accurate and unbiased estimates of abundance. Since
1992, aerial line-transect surveys have been the primary means of surveying and estimating abundance
of EBS belugas in the region. We compared EBS beluga abundance estimates for 2017 and 2022 that
were derived using post-stratified, design-based abundance estimators with analogous estimates derived
using spatially explicit and ensemble modeling methods. Although the design-based estimators were
less precise than individual spatially-explicit models (with one exception), precision (CV) was essentially
equivalent between the design-based and ensemble model-averaged abundance estimators. The design-
based models estimated that there were 12,269 belugas in 2017 (CV = 0.12) and 20,635 belugas in
2022 (CV = 0.31; the study area was larger in 2022). The ensemble spatial models estimated that there
were 11,597 belugas in 2017 (CV = 0.12) and 17,197 belugas in 2022 (CV = 0.33). Among the individual
spatially-explicit models, abundance estimates ranged from 11,242 to 11,962 (CV = 0.11 to 0.12) in 2017
and 12,593 to 21,508 (CV = 0.18 to 0.29) in 2022. Because spatial models identify spatial patterns in
beluga density (the number of belugas per unit area) at finer resolutions than design-based models, we
argue that ensembles of spatially-explicit density models provide a reasonable path forward for estimating
EBS beluga abundance and distribution in a way that is useful to management and conservation efforts.
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INTRODUCTION39

Effective management of wild populations requires an accurate estimate of uncertainty, including both40

of its components, bias and precision. This is because natural resource management inevitably involves41

choosing among alternative actions that may have different effects on a population in the future. Our42

ability to predict the future depends on how well we know the ecosystem today and the magnitude43

and direction of cascading effects that may result from a particular management action. Transparent44

communication about scientific uncertainty is particularly important when managing populations that are45



hunted for Native subsistence, due to the animals’ nutritional, cultural, and spiritual value to Indigenous46

peoples.47

For decades, line-transect data were analyzed using a two-stage process invoking model-based48

inference to estimate detection probability, followed by design-based inference to extrapolate an estimate49

of the number of animals on the surveyed transects to an estimate of the number of animals throughout the50

study area. Design-based inference has a rich history in sampling (Cochran, 1977), and is appealing in its51

simplicity. In particular, random or systematic placement of transects ensures that simple extrapolations52

of densities from sampled to unsampled areas (using, e.g., simple random sampling or stratified random53

sampling estimators) will be unbiased, assuming that the specified design was correctly followed during54

field-sampling.55

We explore the use of post-stratified design-based abundance estimators and density surface models56

(DSMs) to estimate abundance. Since the early 2000s, model-based approaches to inference from57

line-transect survey data (Hedley and Buckland, 2004; Johnson et al., 2010; Miller et al., 2013; Yuan58

et al., 2017) have become more popular for a number of reasons. For instance, modeling animal59

density as a function of spatial or environmental covariates may increase precision and reduce bias in60

the overall abundance estimate for the survey area. This applies particularly to cases in which animal61

density is spatially heterogeneous and achieved survey coverage is non-uniform, for example due to62

incomplete survey effort or spatially heterogeneous detection probability (Hedley and Bravington, 2014).63

Additionally, DSMs can be used to create high-resolution maps of animal density, which are useful for64

marine spatial planning, estimating potential impacts from anthropogenic activities, and investigating65

ecological relationships. We are particularly interested in the sensitivity of abundance estimates to DSM66

model structure, how this variance propagates through ensemble models, and how model-based abundance67

estimates compare with conventional post-stratified design-based estimators. We identify similarities and68

differences among different analytical approaches both theoretically and with a case study, the Eastern69

Bering Sea (EBS) stock of belugas (Delphinapterus leucas), which is hunted for subsistence by Alaska70

Natives.71

EBS belugas are vital to Indigenous communities near Norton Sound and the Yukon River Delta in72

northwestern Alaska (Figure 1). The northern Bering Sea ecosystem is experiencing rapid ecological73

changes (Siddon, 2023) and increased human activities. EBS belugas are one of four beluga stocks that74

have been co-managed since 1988 by the Alaska Beluga Whale Committee and NOAA Fisheries (Adams75

et al., 1993; Frost et al., 2021). The ABWC includes hunters, resource managers, and scientists. The goals76

of the ABWC are to maintain healthy beluga populations in Alaskan waters, provide adequate subsistence77

harvest of beluga whales, and protect hunting privileges for Alaskan subsistence hunters (Frost et al.,78

2021). Since its founding, the ABWC has believed that education, maintaining accurate harvest data,79

and conducting surveys to estimate stock abundance on a regular schedule are critical to the health of80

northwestern Alaska’s beluga stocks and the communities who depend on them.81

The distribution and movement patterns of EBS belugas are primarily known from Indigenous82

and other local knowledge (Huntington and Communities of Buckland, Elim, Koyuk, Point Lay, and83

Shaktoolik, 1999; Oceana and Kawerak Inc., 2014; Lowry et al., 2017), aerial surveys (Lowry et al., 2017;84

Ferguson et al., 2023), telemetry studies (Citta et al., 2017), and genetics (e.g., O’Corry-Crowe et al.,85

2018; O’Corry-Crowe et al., 2021). EBS belugas predictably occur in the Norton Sound/Yukon Delta86

region during the period from shortly after sea ice breakup (usually mid-May) until freeze-up (usually87

November) (Lowry et al., 2017; Citta et al., 2017). Belugas from this stock are hunted by more than 2088

villages during spring, summer, and autumn (Lowry et al., 2019). EBS beluga distribution from spring89

through autumn reflects high densities of prey, particularly fishes (Lowry et al., 2017), and also can be90

affected by sea ice conditions and human disturbance (Huntington and Communities of Buckland, Elim,91

Koyuk, Point Lay, and Shaktoolik, 1999; Oceana and Kawerak Inc., 2014).92

To obtain an estimate of EBS beluga abundance that could be used to evaluate the sustainability of93

beluga subsistence harvests, the ABWC conducted aerial surveys in Norton Sound and along the Yukon94

River Delta each year from 1992 to 1995 and 1999 to 2000 (Lowry et al., 2017). In 1992, aerial surveys95

were conducted in May, June, and September to determine the best month for conducting future surveys.96

Based on those results, aerial surveys for all remaining years were conducted in June, when belugas tend97

to concentrate near Pastol Bay and the Yukon River Delta (Figure 1). Lowry et al. (2017) estimated EBS98

beluga abundance to be 6,994 belugas (95% confidence interval 3,162-15,472) based on the aerial surveys99

conducted in June 2000. This estimate included a correction factor of 2.0 to account for availability bias100
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(Marsh and Sinclair, 1989), which arises when belugas in the area searched during the surveys are out of101

the observers’ field of view or are underwater when the aircraft flies over them.102

During June 2017 and 2022, ABWC and NOAA Fisheries collaborated to conduct aerial line-transect103

survey in the Norton Sound/Yukon Delta region to collect data to derive updated abundance estimates for104

the EBS beluga stock. Ferguson et al. (2023) presented an estimate of EBS beluga abundance of 12,269105

belugas (CV = 0.12) based on the 2017 surveys. Their abundance estimate incorporated correction factors106

for availability bias and transect detection probability, and was derived using design-based methods with107

post-stratification (Ferguson et al., 2023). Compared to 2017, the 2022 surveys included less survey effort,108

and beluga sightings were more patchily distributed. We were interested in whether DSMs could provide109

a reasonable alternative to design-based abundance estimators for these two most recent survey years.110

There are a considerable number of ways to formulate DSMs. Therefore, we also examined how different111

types of DSMs performed on the same dataset. We expected to see differences among density surfaces and112

total population abundance estimates across DSMs due to differing assumptions about spatial covariance.113

This paper compares different analytical methods used to estimate population abundance from line-114

transect survey data for the purpose of effectively managing a population. The remainder of this paper115

is structured as follows: i) introduction to basic estimators of animal density and abundance from116

line-transect survey data; ii) definition of the marginal likelihood that forms the core of the DSMs; iii)117

definition of the random effects that form the basis of the different DSMs that we compared; iv) description118

of methods for predicting abundance from individual DSMs; v) explanation of model validation and119

evaluation methods; vi) description of methods for calculating uncertainty in abundance estimates for120

each individual DSM; vii) definition of the ensemble modelling approach that was used to account for121

model selection uncertainty; and, finally, viii) application to the EBS beluga case study, focusing on how122

results from the individual DSMs, ensemble DSMs, and design-based estimators of abundance compare.123

We assume that the reader is familiar with basic terminology and definitions associated with distance124

sampling (Buckland et al., 2001).125

MATERIALS & METHODS126

Fundamentally, our density surface model uses assumptions about the spatial relationships among animals127

in a particular geographic area to extrapolate from what is known about the number and distribution128

of animals sighted on transects during a survey to an estimate of the total number of animals that were129

truly present in the geographic area during the survey period. We estimate abundance independently130

for a specified point or period in time and do not explicitly model changes in abundance over time. A131

density surface represents the estimated density (number of individuals per unit area) of animals in each132

cell of a grid. To estimate total abundance during a given survey period, we integrate across the density133

surface, which involves multiplying each cell’s estimate of animal density by its geographic area and then134

summing cellwise abundances across all cells in the study area.135

The analytical methods that we present below may be used for a wide range of datasets and taxa. To136

understand the flexibility in the methods and critical elements that were included to accommodate the137

Eastern Bering Sea beluga case study, we note that three independent datasets were used in the case138

study: 1) aerial line-transect marine mammal observer (i.e., “aerial observer”) data from the eastern139

Bering Sea in 2017 and 2022 (Supplement 2, hereafter ”S2”) were used to estimate a multiple covariates140

distance-sampling (MCDS) detection function (S4) and to construct the DSMs; 2) aerial imagery collected141

in the eastern Chukchi and western Beaufort seas during July through October in 2018 and 2019 (S3)142

were used to estimate the probability of detecting a beluga group on the transect line (Buckland et al.,143

2015; Laake and Borchers, 2004; S4); and 3) VHF telemetry data from Bristol Bay, Alaska, in June 1983,144

and Cunningham Inlet, Somerset Island, Canada, in July 1988 (Frost et al., 1985; Frost and Lowry, 1995)145

were used to estimate availability probability (S4).146

Unless otherwise stated, the following text uses unbolded symbols to denote scalars, lower case bolded147

symbols to denote vectors, and upper case bolded symbols to denote matrices. See S1 for a Glossary of148

notation and abbreviations.149

Design-based estimator150

Although our primary focus is on developing density surface models for EBS belugas, previous abundance151

estimates for this stock were generated using a design-based estimator. A basic Horvitz-Thompson-like152

3/22



line-transect estimator of animal density is (Buckland et al., 2001; Burt et al., 2014):153

D̂ =
1
a

ng

∑
j=1

S j

p̂(z j; θ̂)
(1)

where154

ng : number of groups detected;155

S j : size of group indexed by j;156

a : area searched during line-transect survey, where a = 2Lw, L is the total length of157

transects surveyed, and w is the width of the strip searched on one side of the aircraft;158

p̂(z j; θ̂) : model-based estimate of the overall probability that an observer detects group159

j, given covariates z j that affect detectability. This term accounts for all sources of160

perception and availability bias (Marsh and Sinclair, 1989; S4);161

θ̂ : parameter estimates required to estimate detection probabilities.162

To derive an estimate of the total number of animals in the study area (N̂), we multiply the total study163

area size, A, by the density estimate from Eq. 1:164

N̂ = AD̂ (2)

Under this formulation, inference proceeds by first fitting detection function models to observed165

distances and other covariates to produce estimates of detection parameters (i.e., θ̂ ), before applying166

Eq. 1 in a second step. The abundance estimator in Eq. 2 is unbiased if certain assumptions about the167

survey design hold (Buckland et al., 2001; Hedley and Bravington, 2014). Hence, this N̂ is referred to as168

a design-based estimator.169

In addition to allowing calculation of the design-based estimator, we also use these estimates of170

detection probability when fitting DSMs. In the following, we shorten notation such that p j = p̂(z j; θ̂) for171

sightings and pi = p̂(zi; θ̂) for segments. For more information about detection probability calculations,172

see S4.173

DSMs: Marginal likelihood174

As with most DSM implementations, we construct a spatial model for counts of individuals, which in175

our case were summarized over 10-km transect segments (see Eastern Bering Sea beluga case study for176

further information). For all DSMs, we write a generic marginal likelihood of a parameter vector, ξ , given177

observed counts of individual animals, c, and other known variables, x, as178

L (ξ ;c,x) =
∫

η

[c|ξ ,η ,x][η |x,ξ ]dη . (3)

Here, [c|ξ ,η ,x] is the conditional probability density function of observed counts, given parameters,179

random effects (η), and known covariates. The counts represent the number of animals detected on180

rectangular transect segments (with width 2w, as in the design-based estimator). The component [η |x,ξ ]181

represents the distribution of random effects. We use the integral to indicate that the random effects will182

be integrated out of the joint likelihood - in our case using the Laplace approximation available in TMB183

software (Kristensen et al., 2015). As is usual in likelihood-based inferential statistics, the likelihood is184

viewed as a function of the unknown parameters, ξ .185

In order to derive [c|ξ ,η ,x], we must first specify a suitable probability mass or density function.186

Although it is customary to specify probability mass functions for count data, initial exploration of Poisson187

and negative binomial distributions indicated considerable lack-of-fit when applied to our EBS beluga188

data set. Specifically, model diagnostic plots examining the relationship between the mean and variance in189

the residuals compared to the theoretical distribution (Ver Hoef and Boveng, 2007), and quantile residuals190

computed using a probability integral transform (PIT; Dunn and Smyth, 1996) and visualized using the R191

package DHARMa (Hartig, 2022), showed that Tweedie distributions (Jørgensen, 1987; Dunn and Smyth,192

2005; Kendal, 2004) provided a better fit to the data. Therefore, we adopted a parameterization based on193

the Tweedie distribution.194
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The Tweedie distribution provides increased flexibility compared to the Poisson and negative binomial195

distributions, allowing a diversity of shapes and accommodating zero-inflation. It is a specific case of an196

exponential dispersion model, with mean µ , and variance V (µ) = φ µρ (Dunn and Smyth, 2005). We197

specifically set the range of ρ to be on 1 < ρ < 2, a parameterization variously known as “compound198

Poisson,” “compound gamma,” or “Poisson-gamma” (Dunn and Smyth, 2005; Kendal, 2004). This199

distribution has support on the non-negative real line, although authors often use this distribution for200

non-negative integers (e.g., counts; Kendal, 2002; Miller et al., 2013; Sigourney et al., 2020), which201

is our approach in this paper. Kendal (2002) and Kendal (2004) discuss the relationship between the202

Tweedie distribution and Taylor’s power law in ecology, which explains clustered spatial distributions as203

manifestations of power function relationships between the variance and mean number of organisms in an204

area (Taylor, 1961).205

For 1 < ρ < 2, the Tweedie distribution does not have a closed form, but can be evaluated numerically206

(e.g., using the ‘dtweedie’ function in the TMB library). Therefore, we symbolically write207

[c|ξ ,η ,x]≡ ∏
i

Tweedie(ci; µi,φ ,ρ). (4)

That is, the joint likelihood of observed counts on transect segments indexed by i is a product of208

conditionally independent univariate Tweedie density functions, with mean µi and constant dispersion209

and power parameters, φ and ρ . The mean, µi, is a function of fixed and random effects, and “known”210

detection probability and survey coverage offsets, such that211

µ = exp(β0 +δ + log(a)+ log(p)). (5)

Here, β0 represents an intercept parameter (no other fixed effects were included in our models), δ is a212

vector of ‘realized’ random effects for transect counts, a is a vector of the area surveyed for each transect213

segment (ai = 2Liw), and p is a vector of the overall detection probability (including both availability and214

perception bias corrections) for each segment (pi, see S4 Eq. 6).215

Note that this parameterization requires that any covariates used to estimate detectability relate only216

to the transect segment; observation-specific covariates (e.g., color, group size) cannot be used in this217

parameterization. See Miller et al. (2013) for an alternative parameterization that allows observation-218

specific covariates by specifying the response variable to be an estimate of bias-corrected abundance.219

The actual dimension of random effects often differs from the number of transect segments. Specifi-220

cally, we model δ = Aη , where the matrix A has dimension (ni,nη), with nη denoting the true number221

of random effects, and ni the number of transect segments. Next, we elaborate on the random effects222

specifications.223

Random effects specifications224

We have yet to describe [η |x,ξ ] in Eq. 3. This component defines the specification of spatially autocorre-225

lated random effects. For a given survey period (year) the data likelihood (Eq. 4) is the same for all the226

models that we considered, so the random effects specification is the only difference among the DSMs we227

developed.228

For all models, random effects were assumed to be drawn from a multivariate normal distribuion with229

mean zero, and a spatially patterned covariance matrix, Σ:230

η ∼ Multivariate normal(0,Σ).

Spatial autocorrelation is imparted by constraints on the (nη × nη) Σ matrix. In practice, we chose to231

work with a precision matrix Q = Σ
−1, which was often sparse, enabling greater computational efficiency.232

We employed two related, but conceptually different types of models to specify Q: stochastic partial233

differential equations (SPDEs) to approximate Matérn geostatistical models (Lindgren et al., 2011), and234

basis-penalty smoothers. The latter are commonly used in generalized additive models (e.g., Wood,235

2006), where smooth terms are often viewed as penalized fixed effects. However, it is also possible to236

conceptualize smooths as mean-zero random effects, with an associated precision matrix (Miller et al.,237
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2020), which is the approach we used in this paper. Further details on how Q is specified for individual238

models is provided below.239

We conducted all analyses in the R programming environment (R Core Team 2023), using the TMB240

package (Kristensen et al. 2015) to formulate marginal log-likelihoods and generate DSM parameter241

estimates, the mgcv package (Wood 2015) to set up spatial spline bases, and R-INLA (Rue et al. 2009) to242

create Delaunay triangulation meshes for SPDE models. All data and code used in this paper have been243

uploaded to github at URL, and will be publicly archived upon manuscript acceptance.244

SPDE models245

SPDE Matérn model We used an SPDE approximation to model the precision matrix associated with246

the Matérn covariance function (Lindgren et al., 2011). This required establishing a set of nη vertices247

at locations s ⊂ R2 (often termed “knots”). The knot locations s are each associated with one of the nη248

random effects. We used the function “inla.mesh.2d” from R-INLA to specify knot locations, creating a249

triangular mesh (i.e., spatial basis) that allows animal density to be predicted at any location on the mesh.250

A particular mesh is defined by a number of characteristics, including the spatial domain (i.e., geo-251

graphic boundary), location of knots, and maximum and minimum distances between knots. Additionally,252

boundary conditions must be imposed to create SPDE solutions on bounded domains (Lindgren and Rue,253

2015). R-INLA uses Neumann conditions, which results in variance inflation by a factor of two along254

straight boundaries and a factor of four near right-angled corners. At a distance equal to the geostatistical255

range (i.e., the distance at which the correlation between two points approaches zero), the boundary effect256

is negligible. To eliminate boundary effects in the area of interest, Lindgren and Rue (2015) recommend257

extending the outer boundary of the spatial domain by a distance at least equal to the range. Knot density258

can be reduced in the outer buffer area to minimize the additional computational burden of the knots259

located far from the data.260

Different meshes could result in different estimates of animal density. There are no strict rules on how261

to create a mesh for a particular dataset. Therefore, we used preliminary analyses with a variety of meshes262

to guide our decisions on which mesh was best suited to each year’s data. For example, a certain mesh263

might be a poor fit to the data because the numerical optimization of the geostatistical range parameter can264

fail if spatial autocorrelation occurs at a much finer scale than the minimum distance between knots. In265

general, we followed the suggestions of Belmont (2022) to create the meshes. Initial knot locations were266

placed at the transect segment midpoints. The maximum distance between knots in the buffer area was267

twice that in the aerial survey boundaries. The minimum distance between knots equaled 1
5 the maximum268

distance between knots. The extension radius used to set the overall boundary of the spatial domain269

(hence, the width of the buffer area) was approximately 35% of the diameter of the aerial survey study270

area.271

Interpolations of random effects between knot locations and data locations are made with a bilinear272

interpolation matrix (A), where the data location is taken to be the centroid of each 10-km transect273

segment. We used the R-INLA function “inla.spde.make.A” to create interpolation matrices. Interpolation274

matrices are completely determined by the underlying mesh and the data locations, and are nonzero for275

only three elements of each row (corresponding to the three triangular vertices that surround a given276

point).277

To define a precision matrix for the Matérn covariance model at knot locations, we used the function278

“inla.spde2.matern” in R-INLA (Rue et al., 2009; Lindgren et al., 2011), which generates three structure279

matrices, M0, M1, and M2. The precision matrix is then specified using these three matrices, together with280

two unknown parameters, τ and κ:281

Q = τ
2(κ4M0 +2κ

2M1 +M2) (6)

Here, τ can be be interpreted as a precision parameter and κ as an inverse geostatistical range parameter.282

Eq. 6 results from applying finite-element methods to approximate a stochastic partial differential equation283

representing diffusion. Using notation from Lindgren et al. (2011), we see that a diffusive SPDE for284

second-order adjacency results in a precision with the form:285

Q = KC−1K (7)
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where K = κ2(C+G) and where C and G are both sparse matrices. Replacing C with a diagonal matrix286

C̃ (so that C̃−1 remains sparse), plugging in K, and simplifying, we then obtain Eq. 6 where M0 = C̃,287

M1 = G, and M2 = GC̃−1G. However, we retain M-notation in Eq. 6 to maintain consistency with288

terminology that is common when using the R-INLA package.289

SPDE Matérn model with barriers The SPDE model defined above approximates a stationary, isotropic290

Matérn covariance function. Conditional on τ and κ , the only variable affecting spatial autocorrelation is291

the distance between knots. However, in areas with complex coastlines (such as islands, bays, peninsulas,292

and points), it is plausible that spatial connectivity for the distribution and density of marine animals293

would be interrupted by land barriers, making points that are close together in the contiguous ocean294

more “alike” than two points separated at the same distance on the opposite sides of a land barrier.295

Therefore, we implemented an alternative SPDE Matérn model that accounts for land-based barriers.296

Specifically, we followed the approach outlined by Bakka et al. (2019), where locations that occur on land297

are assigned a small, fixed effective range value, and the range parameter for locations at sea is estimated298

during model fitting. To implement the Q matrix for this model in TMB, we used the code template at299

https://github.com/skaug/tmb-case-studies/tree/master/spdeBarrier. This300

essentially specifies a high value for decorrelation rate κ for knots over land, to ensure that correlations301

between locations in water are calculated from the set of paths over water.302

Basis-penalty smoother models303

We considered several types of basis-penalty smoothers as alternatives for specifying spatial random304

effects. In each case, we used mgcv to construct spline bases and appropriate penalization matrices, then305

passed these into TMB when formulating our marginal log-likelihood. We implemented three types of306

bivariate smoothing splines: isotropic, thin plate regression splines (tprs) with shrinkage (Wood, 2003);307

anisotropic tensor product splines (Wood, 2017) comprising tprs with shrinkage; and isotropic soap308

film smoothing splines (Wood et al., 2008). The first two types of splines treat spatial correlation as309

depending on distance only (isotropic tprs), or distance and direction (tensor product splines). The soap310

film smoother allows spatial correlation to be interrupted when there are barriers, such as land, between311

suitable habitat. We reasoned this would be a desirable property given the complex coastline in our study312

area, which included multiple peninsulas and estuaries (Figure 1).313

Bivariate and isotropic thin plate regression spline For the bivariate and isotropic thin plate regres-314

sion spline, we used the gam() function in the mgcv R package to construct a bivariate “ts” spline basis315

of easting and northing for observed data (A, typically referred to as a design matrix in this context), an316

interpolation matrix for predictions (Apred), and a penalization matrix, S. We then set Q = λS in our317

TMB optimization, where the smoothing parameter λ was treated as an estimated parameter. This proce-318

dure follows the example by H. Skaug at https://github.com/skaug/tmb-case-studies/319

tree/master/pSplines.320

Tensor product smoother The tensor product smoother produces an anisotropic spline basis, allowing321

different correlations on the dimensions corresponding to easting and northing in our analysis. For the322

tensor product smoother, we again used a gam() function in the mgcv R package to construct a “ts”323

spline basis for observed data (A) and an interpolation matrix for predictions (Apred). In this case, mgcv324

produces two penalization matrices, S1 and S2 (one for easting and one for northing). Following code from325

D. Miller (https://github.com/dill/mgcvminusminus), we set Q = λ1S1 +λ2S2, where λ1326

and λ2 are treated as estimated parameters.327

Soap film smoother The soap film smoother (Wood et al., 2008; Miller and Wood, 2014) is another328

approach to constructing a smooth surface over space where correlation does not persist over boundaries329

(e.g., penninsulas). To produce A, Apred , and penalization matrices, we again used mgcv. In particular, we330

supplied the gam() function with a data frame delineating study area boundaries. Like the tensor product331

smoother, the soap film smoother option in mgcv produces two penalization matrices, S1 and S2, this time332

associated with boundaries and internal space, respectively. However, we constructed the precision matrix333

in the same manner (i.e., Q = λ1S1 +λ2S2, where λ1 and λ2 are treated as estimated parameters).334

Prediction335

For each model and year of analysis, we used Monte Carlo integration to generate abundance predictions336

of the number of belugas in each hexagonal grid cell h in our study area (see Eastern Bering Sea beluga337
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case study for how these were defined). Specifically, we calculated338

N̂h = exp(β̂0 + δ̂h + log(ah)). (8)

Note that ah gives the area of ocean in hexagon h (i.e., omitting land). There is no offset for detection339

probability because we are interested in all belugas, not just those that are detectable and detected.340

The vector of “realized” random effects δ̂ are calculated as δ̂ = Apredη̂ where η̂ is the value of η that341

maximizes the joint likelihood conditional upon the MLE ξ̂ for fixed effects (termed the empirical Bayes342

estimator for η). This predictor for N̂h is called the “plug-in estimator” because it plugs in the empirical343

Bayes estimator as if it were fixed. For SPDE models, the (nh,nη) interpolation matrix, Apred was344

constructed using the “inla.spde.make.A” function in R-INLA, using the centroid of each hexagon as the345

prediction location. For basis-penalty smoothers, we obtained Apred using mgcv’s “predict()” function346

with “type=lpmatrix,” again using the centroids of each hexagon as prediction locations. An estimate of347

total abundance is then calculated as N̂ = ∑h N̂h.348

Model evaluation and final candidate model selection349

To evaluate DSMs and select the final candidate DSMs for the ensemble model, we advocate using several350

criteria, including: examining PIT residuals via the DHARMa package (Hartig, 2022); extrapolation351

metrics (defined below); and visual examination of maps showing the DSM predictions overlaid with the352

sightings used to build the models. We provide a detailed example in the Eastern Bering Sea beluga case353

study.354

To identify models whose predictions might be unreliable due to extrapolation bias, we considered355

two types of ad hoc metrics. First, for each combination of model and cell (i.e., hexagon, h), we computed356

the following ratio:357

λm,h

λm,max
(9)

Where λm,h is the predicted abundance from model m for unsampled location h, and λm,max is the358

maximum predicted abundance across all sampled cells. Second, for each model we counted the number359

of unsampled cells (i.e., cells that did not have line-transect survey effort) with predicted abundance360

exceeding the maximum predicted abundance in sampled cells. These procedures are motivated by a361

generalized version of Cook’s independent variable hull (Cook, 1979; Conn et al., 2015).362

Uncertainty estimation363

Correcting for detransformation bias364

Random effects η are treated as random variables (and marginalized across) during maximum likelihood365

estimation, but are then treated as if they were fixed at the modes of their distributions (conditional on the366

MLEs for the fixed effects) by the plug-in estimator. However, η will generally have substantial variance367

and skewness, and this will cause the plug-in estimator to be a poor estimator for the expectation of N368

when integrating across the distribution for random effects.369

To better estimate the expectation for N, we employed the epsilon bias-correction procedure described370

by Thorson and Kristensen (2016) and implemented in TMB to obtain estimates and standard errors.371

This epsilon method corrects for both the nonlinearity of the transformation (i.e., exponentiation in Eq.372

8) and the variance and skewness of random effects. Thorson and Kristensen (2024, Chap. 6) shows a373

closed-form calculation for the epsilon method in a simplified scenario involving a single (scalar-valued)374

random effect, and confirms that it provides very close to the known expectation when transforming375

skewed random variables with a number of different nonlinear functions.376

Variance estimation377

We relied on the law of total variance to construct an unconditional variance estimator for each DSM378

that includes uncertainty from the MCDS contribution to detection probability, pg (S5). Specifically, we379

calculated380

V̂ar(N̂) = E(V̂ar(N̂|p̃g))+ V̂ar(E(N̂|p̃g)). (10)
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The first part of Eq. 10, E(V̂ar(N̂|p̃g)), is the expected variance of the abundance estimator given a381

particular realization of detection probability, p̃g. We approximated this component with V̂ar(N̂|p̂g),382

which is the variance of the abundance estimator conditioned on the MLEs for detection probability383

from the MCDS analysis. This variance estimate is produced by the TMB software, using the algorithm384

detailed below (see Conditional variance of abundance estimator).385

The second component of Eq. 10, V̂ar(E(N̂|p̃g)), in effect gives the variance of the mean, representing386

how estimates of abundance vary depending on the values of pg that are sampled. To approximate387

V̂ar(E(N̂|p̃g)), we used the following bootstrap procedure (see S5 for pseudocode):388

1. For k ∈ 1,2, . . . ,K, sample pg
(k) ∼ f (pg), where f (pg) is the joint predictive distribution of detection389

probabilities from the MCDS detection function analysis. In practice, each sample p(k)
g was obtained390

by assuming that the parameters of the detection function had a multivariate normal distribution on391

the logit scale.392

2. For each k, fit a TMB DSM to the beluga data, treating pg = p(k)
g as a fixed value, and record the393

abundance estimate, N̂(k).394

3. Approximate V̂ar(E(N̂|p̃g)) as K−1
∑k(N̂(k)− N̄)2, where N̄ is the mean abundance estimate from395

all K bootstrap iterations.396

Following application of this procedure, to generate estimates of total uncertainty in the abundance397

estimate from each individual DSM (i.e., CVtot(N̂m) in Eq. 5 of S5), the delta method (Dorfman 1938)398

could be used to incorporate the uncertainty due to independent estimates of transect detection probability399

or availability probability.400

Conditional variance of abundance estimator We compute an estimator for the variance of Eq. 8 that401

accounts for uncertainty in both fixed and random effects. We call this a conditional estimator because we402

are specifically conditioning on a fixed vector of detection probabilities. Although different estimators are403

available, TMB software uses the estimator from Kass and Steffey (1989). This involves calculating the404

joint precision Q joint for fixed and random effects:405

Q joint =

(
H1 −H1∇

−∇tH1 ∇tH1∇+H2

)
(11)

where H2 is the matrix of second derivatives for logL (ξ |c,x) (the “outer Hessian matrix”), H1 is the406

matrix of second derivatives for log([c|ξ ,η ,x][η |x,ξ ]) conditional upon the MLE for fixed effects ξ (the407

“inner Hessian matrix”), and ∇ is the matrix of gradients of predicted random effects with respect to fixed408

effects (the “outer Jacobian matrix”).409

We then compute the variance for derived quantity N̂ from this joint precision. We specifically410

calculate the gradient J of N̂ with respect to the vector of fixed and random effects. We then compute411

V̂ar(N̂|p̂g) = JQ−1
jointJ

t (12)

Ensemble model412

Fitting multiple DSMs to sightings raises the question of which model, or collection of models, should be413

used to generate a final abundance estimate and density surface. The question is particularly important414

when different models produce markedly different estimates of abundance. We chose to base ultimate415

inference on an ensemble (Araújo and New, 2007), whereby estimates from different models are averaged416

to produce a final estimate. Specifically, we compute417

N̂ens = ∑
m

wmN̂m (13)

where N̂m is the MLE of abundance from TMB for each model m. The model weight is wm, where418

∑m wm = 1.0. The advantage of averaging models is that there is often a reduction in prediction error419

(Burnham and Anderson, 2002; Dormann et al., 2018).420
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There are different approaches for setting the model weights (Dormann et al., 2018). For instance, a421

common approach is to use Akaike’s information criterion (AIC) associated with fitted models to calculate422

weights (Burnham and Anderson, 2002). However, calculation of AIC weights relies on the complexity423

of a model, often computed as the effective degrees of freedom from a generalization of the hat-matrix,424

and this is difficult to compute in a hierarchical model using maximum-likelihood methods. Instead, we425

used equal model weights, which have been shown to perform well in prediction of species distributions426

(Dormann et al., 2018). This procedure has the added advantage that a single model with an extremely427

high or low abundance estimate will not dominate inference.428

The variance of model-averaged predictions was calculated using the standard unconditional variance429

estimator (i.e., Burnham and Anderson, 2002):430

ˆVar(N̂ens) =

[
∑
m

wm

√
Var(N̂m)+(N̂m − N̂ens)2

]2

(14)

Because Var(N̂m) did not include uncertainty from the estimate of transect detection probability in the431

beluga case study (i.e., p̂MR(0,z j; θ̂ MR) in S4), we apply the delta method to add this component of432

uncertainty to ˆVar(N̂ens), resulting in ˆVartot(N̂ens) (see Eq. 4 of S5).433

Eastern Bering Sea beluga case study434

The data collection methods and sighting and effort summaries are presented in S2 for the aerial line-435

transect surveys and S3 for the aerial imagery. The analytical methods used to estimate detection436

probabilities are presented in S4. See Frost et al. (1985) and Frost and Lowry (1995) for details about437

the VHF telemetry data and analyses. There were no estimates of uncertainty for availability probability438

(Ferguson et al., 2023); therefore, this parameter was included as a known constant in the offset for the439

DSM (Eq. 5).440

To derive spatially-explicit estimates of EBS beluga abundance, we constructed density surface models441

separately for each year, 2017 and 2022. DSMs were constructed using aerial line-transect sighting and442

effort summaries for 10-km segments of transect effort. This segment length is approximately the distance443

between adjacent transects (9.3 km). The segments were created by sequentially slicing transect effort444

conducted in Beaufort Sea State ≤ 4, beginning with the start of each transect. End segments < 10 km445

were added to adjacent segments so that all segments used in the analysis were ≥ 10 km. Predictions from446

the DSM were based on a hexagonal grid with cell midpoints located 10 km apart. All geospatial data447

were projected into an equidistant conic projection (false easting: 0.0; false northing: 0.0; central meridian:448

-164.0o; latitude of origin: 63.5o; standard parallels: 62.5o, 64.5o; WGS84 datum; linear unit: kilometer),449

and this projection was used when calculating cell areas and distances for the spatial correlation functions450

or splines.451

The DSMs required segment-specific estimates of detection probability, pi (Eq. 5). The best-fitting452

MCDS detection function for EBS belugas included covariates for Beaufort Sea State (integer-valued) and453

turbidity (binary) (S4). To build the DSMs, effort data for these variables were summarized by segment.454

The segment-specific Beaufort Sea State variable was calculated as the average value of integer-valued455

Beaufort Sea State for all records that were located on the segment; all records were weighted equally.456

The segment-specific turbidity variable was calculated by assigning the binary turbidity variable an integer457

value (no = 0; yes = 1), computing the average of the integer-valued turbidity values for all records located458

on the segment, and rounding the result. For example, if segment i comprised three data records with459

turbidity “yes”, “yes”, and “no”, the average of their integer-valued analogs would be 1 + 1 + 0 = 0.67,460

which rounds to 1, so the segment would be designated as turbidity = “yes”.461

For 2017 and 2022, 13 and 12 DSMs, respectively, were constructed and examined. Overviews of462

key aspects of each model are provided in Tables S6.1 and S6.2. We followed the guidance provided463

in the helpfile for the mgcv function ”gam.check” to determine whether the basis dimensions for the464

basis-penalty smooths were sufficient. In particular, we used ”gam.check” to compare the estimated465

degrees of freedom (EDF) to the maximum possible EDF, and examined the value of the p-value associated466

with the reported k-index. For all basis-penalty smooths, the EDF was much smaller than the maximum467

possible EDF. The p-values (although approximate) were considerably larger than 0.1 for all models468

except the isotropic bivariate thin plate regression spline, whose simulated p-value was 0.085. Based on469

these diagnostics, the basis dimensions for the basis-penalty DSMs were adequate.470
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Identical DSMs were fit in mgcv and TMB, with the exception of the barrier SPDE models, for which471

mgcv functions defining this type of basis were not available, so they were constructed only in TMB.472

We constructed identical models in both software platforms for two reasons: 1) to apply the methods473

presented in Miller et al. (2020) to the EBS beluga data and confirm that nearly identical results could be474

derived using mgcv and TMB; and 2) to evaluate whether the existing ”ds varprop” function in the dsm475

package (Bravington et al., 2021; Miller et al., 2022) would be an alternative to Eq. 10 and the methods476

presented in S5 for propagating uncertainty from the MCDS detection function model into the overall477

estimate of uncertainty in the abundance estimate. However, as of dsm version 2.3.3, the ”dsm varprop”478

function needs to be modified to propagate errors through SPDE models (pers. comm. M. Ferguson with479

D. Miller 7 September 2023).480

For comparison with the 2017 EBS beluga DSM results, we examined the post-stratified design-based481

abundance estimator of Ferguson et al. (2023). Their variance estimator had three components: 1)482

variation from uncertainty in estimating the MCDS parameters; 2) variation from uncertainty in estimating483

transect detection probability; and 3) variation in abundance due to random sample selection. The first484

and third components were estimated by the ”dht” function from the R package mrds (Laake et al., 2023),485

using the delta method to compute the MCDS variance and the default encounter rate estimator N̂/L for486

the random sample variability. Ferguson et al. (2023) used the delta method to incorporate uncertainty487

from the estimate of transect detection probability into the overall estimate of uncertainty in the abundance488

estimator.489

The detection function model used in the design-based estimator for 2017 was based on only a single490

year of data, whereas the detection function model used in the model-based estimators for 2017 and 2022491

was based on data from both years pooled (S4). However, the CV of the former detection function model492

was 0.043 and the CV of the latter was 0.037, only trivially smaller; therefore, we do not believe that this493

difference in detection function models affected our overall comparison of the precision in the different494

abundance estimators.495

To derive an analogous design-based estimator of abundance for 2022, we used the methods of496

Ferguson et al. (2023) with an MCDS detection function model based on the pooled data from 2017 and497

2022.498

RESULTS499

Here, we focus on results of the EBS beluga case study. None of the 13 candidate models for 2017500

exhibited signs of extrapolation bias based our extrapolation diagnostics (Table S6.1). For 2022, four501

of the 12 candidate models had at least one cell with extrapolation ratios >1.0 (Eq. 9). Of those four502

models, the total number of cells per model with outliers ranged from one to three, out of a total of 554503

cells in the prediction grid (Table S6.2). Based on these metrics, we did not find evidence for concern504

about extrapolation bias.505

The number of models per year that were selected for inclusion in the ensemble model average was506

not chosen a priori. Rather, we examined PIT residuals via the R package DHARMa (Hartig, 2022; S6),507

extrapolation metrics, and visual inspection of maps of N̂ predictions and sightings and effort to narrow508

the field to four candidate models per year (Table 1; S6). For both years, the SPDE Matérn models with509

maximum edge length less than 60 km exhibited a number problems in the DHARMa residual analyses,510

including significant dispersion tests, quantile deviations, and significant combined adjusted quantile tests.511

The SPDE Matérn model with barriers was eliminated from the ensemble model for 2017 because the512

residual analyses from the DHARMa package showed quantile deviations and the combined adjusted513

quantile tests were significant. The tensor product smoother was eliminated from the ensemble model for514

2022 because it predicted that there were 51,645 belugas in the study area; this represented an extreme515

outlier and was consdiered to be biologically implausible.516

The candidate DSMs included in the ensemble for 2017 were the SPDE Matérn, soap film smoother,517

tensor product smoother, and bivariate isotropic thin plate regression spline (Figure 2). The candidate518

DSMs included in the ensemble for 2022 were the SPDE Matérn with and without barriers, soap film519

smoother, and bivariate isotropic thin plate regression spline (Figure 3). The number of random effects520

used to fit each candidate model in the ensembles for 2017 and 2022 are shown in Table 2. The percent521

deviance explained is also shown in Table 2, and it was computed as 100∗ (1− R1
R0 ), where R1 is the sum522

of squared deviance residuals for model m and R0 is the sum of squared deviance residuals for the null523

(intercept-only) model. The candidate DSMs for 2017 explained between 45.7% (bivariate and isotropic524
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thin plate regression spline) and 56.7% (tensor product smoother) of the deviance. Among the 2022525

candidate DSMs, the percent deviance explained ranged from 62.1% (bivariate and isotropic thin plate526

regression spline) to 83.4% (SPDE Matérn).527

The maximum predicted abundance per cell was lower in 2017 than 2022. In 2022, the year with528

less transect effort and fewer beluga sightings, the SPDE models tended to result in relatively confined529

clusters of high abundance, whereas the predictions from the basis-penalty smoothers were relatively530

more diffuse (Figure 3). To investigate these differences among the 2022 DSMs further, we conducted531

pairwise comparisons of predicted beluga abundance for all pairs of DSMs selected for the ensemble532

model. Specifically, for each cell h, we computed scaled differences in predicted abundance between533

models m1 and m2 as (N̂m1,h − N̂m1,h)/max(abs(N̂m1,h − N̂m1,h)). The resulting values are constrained to534

[-1,1]. Two points are worth highlighting from these comparisons (Figure 4). First, predicted abundance535

was largely consistent between models throughout the overwhelming majority of the study area. The536

largest discrepancies in model predictions were in areas of high beluga sighting density (Figure S2.2):537

basis-penalty smoothers tended to estimate higher abundance in a small cluster of cells near Scammon538

Bay (where some of the largest beluga groups were detected in 2022) and their high-abundance hotspots539

were more dispersed than the predictions from the SPDE models around Stuart Island.540

The area-integrated estimates of EBS beluga abundance (with and without detransformation bias541

correction via the epsilon method) are shown in Table 1 for the following: each of the candidate DSMs542

included in the 2017 and 2022 ensemble models; the ensemble models; and the conventional (post-543

stratified design-based) estimator. For the candidate DSMs in 2017, epsilon bias correction resulted in544

abundance estimates that were 7% to 13% larger than the plug-in estimators. For the candidate DSMs in545

2022, the corresponding increase was higher, ranging between 18-33%. In 2017, the epsilon-corrected546

area-integrated abundance estimates ranged from 11,242 to 11,962 (CV = 0.11 to 0.12). In 2022, the547

analogous range was wider, from 12,593 to 21,508 (CV = 0.18 to 0.29). Nevertheless, within a survey548

year, the 95% lognormal confidence intervals for abundance overlapped across all candidate DSMs. The549

ensemble spatial models estimated that there were 11,597 belugas in 2017 (CV = 0.12) and 17,197 belugas550

in 2022 (CV = 0.33). For comparison, the conventional, design-based models estimated that there were551

12,269 belugas in 2017 (CV=0.12; Ferguson et al., 2023) and 20,635 belugas in 2022 (CV = 0.31).552

The abundance estimates for the full 2022 study area that were derived from each of the candidate553

DSMs, the ensemble model, and the conventional estimator were all higher than the corresponding554

estimates for 2017. To investigate how much of this larger abundance in 2022 was due to the larger study555

area, we used each individual candidate DSM from 2022 to compute area-integrated abundances for the556

area corresponding to the geographic strata from the 2017 analysis. The results of this investigation were557

split between modeling paradigms: the SPDE DSMs estimated that there were fewer belugas in that558

subarea during 2022 compared to 2017, whereas the basis-penalty DSMs estimated that there were more559

belugas within that subarea in 2022 (Table 1).560

The Tweedie parameter estimates from each of the candidate DSMs in 2022 provide some insight into561

the question of whether there were spatially-restricted clusters of high abundance in a few locations or high562

abundances over a broader spatial area. Specifically, estimates of the dispersion and power parameters563

(φ and ρ , respectively) were higher for the basis-penalty DSMs compared to the SPDE DSMs (Table 3).564

This suggests that the spatial random effects in the SPDE DSMs might have been able to better match565

the patchiness in the data. This is consistent with the variability in percent deviance explained among566

the 2022 models: the SPDE DSMs explained a higher percentage of the deviance than the basis-penalty567

DSMs (Table 2).568

DISCUSSION569

In this paper, we present detailed methods for constructing and evaluating hierarchical spatially-explicit570

density models to estimate abundance from line-transect survey data using two leading model frameworks,571

SPDE approximations to geostatistical models and basis-penalty smoothers. Critical issues that we572

addressed include: 1) accounting for the precision and bias of all components of the hierarchical model in573

the final estimate of uncertainty in abundance via a parametric bootstrap; 2) applying the epsilon bias574

correction factor (Thorson and Kristensen, 2016) to account for detransformation bias in the DSM; 3)575

implementing a thorough model evaluation and selection process that incorporated examination of PIT576

residuals, maps of model predictions, and extrapolation diagnostic metrics; and 4) using ensemble model577

averaging techniques to derive the ultimate estimates of abundance and uncertainty to account for model578
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selection uncertainty, which is especially important in situations for which different structurally sound579

models seem to produce widely ranging results.580

We demonstrated our methods using Eastern Bering Sea belugas as a case study. This was a particularly581

informative case study because aerial line-transect surveys were conducted using identical protocols582

during two years in which survey effort and beluga distribution differed dramatically, 2017 and 2022.583

The goals of the EBS beluga analysis were to: 1) assess whether DSMs represent an improvement over584

conventional, post-stratified design-based estimators; 2) produce updated estimates of abundance for585

this stock; and 3) produce detailed maps of beluga density in the survey area during the 2017 and 2022586

survey periods. For the case study, we constructed identical DSMs using two alternative methods to587

construct basis functions representing spatially correlated variation in population density, i.e., the SPDE588

approximation to the Matèrn correlation function and bivariate splines.589

For EBS belugas, DSMs produced similar estimates to the conventional design-based estimator in590

2017, and averaged lower but had a range that included the design-based estimator in 2022. Precision of591

individual DSM models was higher than for the design-based estimator, but precision of the ensemble of592

DSM models was equivalent to the design-based estimator. Because density surface modeling paradigm593

also enables estimation of higher resolution maps of species density (Figures 2,3), we view DSMs as an594

improvement in statistical methodology for analyzing EBS beluga data to maximize utility in management595

and conservation decisions.596

Our ensemble estimate of abundance in 2022 (N̂ens=17,089) was larger than for 2017 (N̂ens=11,553).597

There are several possible reasons for this difference, including random error, actual population decrease598

or increase between years, emigration or immigration from the system, and increased survey area between599

2017 and 2022. ABWC advocated for the larger survey area in 2022. They noted that Indigenous600

knowledge has confirmed that the southern extent of the EBS beluga stock’s distribution during early601

summer extends farther south than the historical survey boundaries. We recommend the 2022 ensemble602

abundance estimate as the most pertinent for management at present, recognizing that there are still some603

unaddressed issues (e.g., no sampling of belugas in rivers; Castellote et al., 2023) that likely make it a604

slight underestimate.605

Although we recommend the 2022 estimate for EBS beluga management, we note that the estimated606

precision is considerably less than for our 2017 estimate. Additionally, the CV of the 2022 ensemble607

abundance estimate (CV = 0.33) does not meet the precision threshold recommended by regulatory608

entities (CV=0.3; International Whaling Commission, 2003; National Marine Fisheries Service, 2023).609

Decreased precision in 2022 is likely a function of both decreased survey effort and increased beluga610

clustering, particularly in the southern end of the survey area that had not be covered by aerial line-transect611

surveys for belugas in the past. The three extremely large groups of belugas (67, 87, and 120 belugas)612

detected nearshore, North of Scammon Bay, in 2022 (Figure S2.2) increased overdispersion in the data613

(Table 3), and thus added to uncertainty about whether there are large groups in unsurveyed locations (i.e.,614

between transects within the existing survey area boundaries). Increased survey effort, redistribution of615

survey effort, or some combination thereof will be needed in future surveys to reduce uncertainty in the616

abundance estimate.617

Our study offers a number of lessons for researchers seeking to implement DSMs, whether with618

belugas or other species. First, it was apparent from our analysis of the 2022 data that models with619

different spatial basis function formulations have the potential to produce quite different abundance620

estimates. This is likely due to the way in which estimated abundance is interpolated (and extrapolated)621

into unsampled areas. The tendency for this to occur may be affected by sampling intensity (lower in622

2022) and the level of overdispersion (several large group sizes in 2022). Therefore, we strongly caution623

against employing just one form of spatial model; instead, we recommend that investigators routinely fit624

models with different spatial basis functions, and consider ensemble modeling (Araújo and New, 2007) if625

models produce different predictions.626

Our approach in this paper was to employ ensemble models with equal weighting. Alternatives, such627

as using an information criterion (Burnham and Anderson, 2002) to weight models, are certainly possible.628

However, computing the effective degrees of freedom as a measurement of model complexity can be629

difficult in spatial models with random effects. To our knowledge, the performance of marginal AIC (i.e.,630

ignoring spatial random effects when counting parameters) for model weighting has not been rigorously631

evaluated. In our case, using marginal AIC to weight models would have placed virtually all model weight632

on a single model for 2022. To be conservative, we thus adopted an equal weighting strategy, which has633
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been shown to be reasonable in practice (Dormann et al., 2018). Alternative strategies for DSM ensemble634

weighting would make for useful future research.635

Although we recommend spatial DSMs for EBS belugas, this is not a disavowal of general principles636

of survey design. Such principles (e.g., randomization and replication; Buckland et al., 2001) help to637

ensure that model-based estimators will be unbiased and should be regarded as good practice in transect638

surveys, no matter the method used to analyze the data (Hedley and Bravington, 2014). Design-based639

concepts in survey design (e.g. systematic random samples) are still important for the quality of inference640

in DSMs.641

CONCLUSIONS642

Density surface models (DSMs) are commonly fitted to counts obtained during line-transect surveys643

of marine mammal populations as an alternative to conventional design-based estimators. For EBS644

belugas, we found DSMs to be preferable, given the extra information one gains through maps of spatial645

distributions. However, when fitting DSMs, researchers need to be cognizent that different spatial basis646

functions can result in different estimates, particularly when animals are patchily distributed. In such647

cases, use of ensemble predictions are likely warranted. Further, investigators should take care to properly648

account for uncertainty by propagating uncertainty in detection probability into resultant estimates, and to649

account for possible detransformation bias.650
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Ciuti, S., Elith, J., Gerstner, K., et al. (2018). Model averaging in ecology: A review of Bayesian,691

information-theoretic, and tactical approaches for predictive inference. Ecological Monographs,692

88(4):485–504.693

Dunn, P. K. and Smyth, G. K. (1996). Randomized quantile residuals. J Comput Graph Stat, 5(3):236–244.694

Dunn, P. K. and Smyth, G. K. (2005). Series evaluation of Tweedie exponential dispersion model densities.695

Statistics and Computing, 15:267–280.696

Ferguson, M., Brower, A., Willoughby, A., and Sims, C. (2023). Distribution and estimated abundance of697

eastern Bering Sea belugas from aerial line-transect surveys in 2017. NOAA technical memorandum698

NMFS-AFSC, 471.699

Frost, K. and Lowry, L. (1995). Radio tag based correction factors for use in beluga whale population700

estimates. Working paper for Alaska Beluga Whale Committee Scientific Workshop, Anchorage, AK,701

5-7 April 1995.702

Frost, K. J., Gray, T., Goodwin Sr, W., Schaeffer, R., and Suydam, R. (2021). Alaska Beluga Whale703

Committee—a unique model of co-management. Polar Research, 40.704

Frost, K. J., Lowry, L. F., and Nelson, R. R. (1985). Radiotagging studies of belukha whales (Delphi-705

napterus leucas) in Bristol Bay, Alaska. Marine Mammal Science, 1(3):191–202.706

Hartig, F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression707

Models. R package version 0.4.6.708

Hedley, S. and Bravington, M. (2014). Comments on design-based and model-based abundance estimates709

for the rmp and other contexts. Paper SC/65b/RMP11 presented to the 65b IWC Scientific Committee,710

9.711

Hedley, S. and Buckland, S. (2004). Spatial models for line transect sampling. J. Agric. Biol. Environ.712

Stat., 9:181–199.713

Huntington, H. P. and Communities of Buckland, Elim, Koyuk, Point Lay, and Shaktoolik (1999).714

Traditional knowledge of the ecology of beluga whales (Delphinapterus lencas) in the eastern Chukchi715

and northern Bering Seas, Alaska. Arctic, 52:49–61.716

15/22



International Whaling Commission (2003). Report of the scientific committee. J Cetacean Res Manage717

(Suppl), 5:1–92.718

Johnson, D., Laake, J., and Ver Hoef, J. (2010). A model-based approach for making ecological inference719

from distance sampling data. Biometrics, 66:310–318.720

Jørgensen, B. (1987). Exponential dispersion models. J. R. Stat. Soc. B, 49:127–162.721

Kass, R. E. and Steffey, D. (1989). Approximate Bayesian inference in conditionally independent hierar-722

chical models (parametric empirical Bayes models). Journal of the American Statistical Association,723

84(407):717–726.724

Kendal, W. S. (2002). Spatial aggregation of the colorado potato beetle described by an exponential725

dispersion model. Ecological Modelling, 151(2):261–269.726

Kendal, W. S. (2004). Taylor’s ecological power law as a consequence of scale invariant exponential727

dispersion models. Ecological Complexity, 1(3):193–209.728

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2015). TMB: Automatic differentia-729

tion and Laplace approximation. J Stat Softw, 70:doi: 10.18637/jss.v070.i05.730

Laake, J. and Borchers, D. (2004). Methods for incomplete detection at distance zero. In Buckland, S.,731

Anderson, D., Burnham, K., Laake, J., Borchers, D., and Thomas, L., editors, Advanced Distance732

Sampling, pages 108–189. Oxford University Press, Oxford, U.K.733

Laake, J., Borchers, D., Thomas, L., Miller, D., Bishop, J., and McArthur, J. (2023). mrds: Mark-734

Recapture Distance Sampling. R package version 2.3.0.735

Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of statistical software,736

63(19).737

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian738

Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B, 73(4):423–739

498.740

Lowry, L. F., Citta, J. J., O’corry-Crowe, G., Quakenbush, L. T., Frost, K. J., Suydam, R., Hobbs, R. C.,741

and Gray, T. (2019). Distribution, abundance, harvest, and status of western Alaska beluga whale,742

Delphinapterus leucas, stocks. Marine Fisheries Review, 81:54–71.743

Lowry, L. F., Kingsley, M. C., Hauser, D. D., Clarke, J., and Suydam, R. (2017). Aerial survey estimates744

of abundance of the eastern Chukchi Sea stock of beluga whales (Delphinapterus leucas) in 2012.745

Arctic, pages 273–286.746

Marsh, H. and Sinclair, D. (1989). Correcting for visibility bias in strip transect aerial surveys of aquatic747

fauna. J Wildlife Manage, 53:1017–1024.748

Miller, D. L., Burt, M. L., Rexstad, E. A., and Thomas, L. (2013). Spatial models for distance sampling749

data: recent developments and future directions. Methods in Ecology and Evolution, 4:1001–1010.750

Miller, D. L., Glennie, R., and Seaton, A. E. (2020). Understanding the stochastic partial differential751

equation approach to smoothing. Journal of Agricultural, Biological and Environmental Statistics,752

25(1):1–16.753

Miller, D. L., Rexstad, E., Burt, L., Bravington, M. V., Hedley, S., Ferguson, M., and Kelly., N. (2022).754

dsm: Density Surface Modelling of Distance Sampling Data. R package version 2.3.3.755

Miller, D. L. and Wood, S. N. (2014). Finite area smoothing with generalized distance splines. Environ-756

mental and Ecological Statistics, 21:715–731.757

National Marine Fisheries Service (2023). Guidelines for Preparing Stock Assess-758

ment Reports Pursuant to the 1994 Amendments to the MMPA. Available at759

https://www.fisheries.noaa.gov/national/marine-mammal-protection/760

guidelines-assessing-marine-mammal-stocks. Accessed 7 February 2024.761

Oceana and Kawerak Inc. (2014). Bering Strait marine life and subsistence use762

data synthesis. Available at https://oceana.org/publications/reports/763

the-bering-strait-marine-life-and-subsistence-data-synthesis.764

O’Corry-Crowe, G., Ferrer, T., Citta, J. J., Suydam, R., Quakenbush, L., Burns, J. J., Monroy, J., Whiting,765

A., Seaman, G., Goodwin Sr, W., et al. (2021). Genetic history and stock identity of beluga whales in766

Kotzebue Sound. Polar Research, 40:https://doi.org/10.33265/polar.v40.7623.767

O’Corry-Crowe, G., Suydam, R., Quakenbush, L., Potgieter, B., Harwood, L., Litovka, D., Ferrer, T.,768

Citta, J., Burkanov, V., Frost, K., et al. (2018). Migratory culture, population structure and stock identity769

in north Pacific beluga whales (Delphinapterus leucas). PLoS One, 13(3):e0194201.770

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent Gaussian models771

16/22



by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B:772

Statistical Methodology, 71(2):319–392.773

Siddon, E. (2023). Ecosystem assessment. In Siddon, E., editor, Ecosystem Status Report 2023: Eastern774

Bering Sea, Stock Assessment and Fishery Evaluation Report. North Pacific Fishery Management775

Council, 1007 West 3rd Ave., Suite 400, Anchorage, Alaska 99501.776

Sigourney, D. B., Chavez-Rosales, S., Conn, P. B., Garrison, L., Josephson, E., and Palka, D. (2020).777

Developing and assessing a density surface model in a Bayesian hierarchical framework with a focus778

on uncertainty: insights from simulations and an application to fin whales (Balaenoptera physalus).779

PeerJ, 8:e8226.780

Taylor, L. (1961). Aggregation, variance and the mean. Nature, 189:732–735.781

Thorson, J. and Kristensen, K. (2024). Spatio-Temporal Models for Ecologists. Chapman and Hall/CRC.782

Thorson, J. T. and Kristensen, K. (2016). Implementing a generic method for bias correction in statistical783

models using random effects, with spatial and population dynamics examples. Fisheries Research,784

175:66–74.785

Ver Hoef, J. M. and Boveng, P. L. (2007). Quasi-Poisson vs. negative binomial regression: how should786

we model overdispersed count data? Ecology, 88(11):2766–2772.787

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society Series B:788

Statistical Methodology, 65(1):95–114.789

Wood, S. N. (2006). Generalized additive models. Chapman & Hall/CRC, Boca Raton, Florida.790

Wood, S. N. (2017). P-splines with derivative based penalties and tensor product smoothing of unevenly791

distributed data. Statistics and Computing, 27:985–989.792

Wood, S. N., Bravington, M. V., and Hedley, S. L. (2008). Soap film smoothing. Journal of the Royal793

Statistical Society Series B: Statistical Methodology, 70(5):931–955.794

Yuan, Y., Bachl, F. E., Lindgren, F., Borchers, D. L., Illian, J. B., Buckland, S. T., Rue, H., and Gerrodette,795

T. (2017). Point process models for spatio-temporal distance sampling data from a large-scale survey796

of blue whales. Annals of Applied Statistics, 11:2270–2297.797

17/22



N̂ in 2017 Strata N̂ in 2022 Strata
Year Model Uncorrected Corrected Uncorrected Corrected
2017 SPDE 10140 11242 (0.11)
2017 soap 10583 11729 (0.12)
2017 te 10539 11962 (0.12)
2017 s 10664 11453 (0.11)
2017 Ensemble 11597 (0.12)
2017 Conventional 12269 (0.12)
2022 SPDE 7856 9425 10687 12593 (0.18)
2022 SPDE with barriers 8422 10985 10900 14525 (0.23)
2022 soap 10513 14133 15272 20162 (0.26)
2022 s 11794 14837 17079 21508 (0.29)
2022 Ensemble 17197 (0.33)
2022 Conventional 20635 (0.31)

Table 1. Estimated abundance (N̂) of Eastern Bering Sea belugas from models fitted to 2017 and 2022
aerial line-transect survey data. For spatial models, we present both uncorrected estimates and those that
employed epsilon bias correction (“Corrected”). As precision estimates were numerically intensive to
calculate, and only of primary interest for epsilon bias-corrected models, we provide estimated CVs
(parentheses) for epsilon bias-corrected estimates and for the full area surveyed each year. We also
provide point estimates of abundance based on the 2022 survey data that were restricted to the area within
the 2017 strata to allow comparison between years for the same region. SPDE = SPDE Matérn model.
SPDE with barriers = SPDE Matérn model with barriers. soap = Soap film smoother. te = Tensor product
smoother. s = Bivariate and isotropic thin plate regression spline.

2017 2022
Model # RE Pct. Dev. Expl. # RE Pct. Dev. Expl.
SPDE Matérn 198 53.6 307 83.4
SPDE Matérn with barriers NA NA 312 80.3
Soap film smoother 79 51.1 146 72.6
Tensor product smoother 224 56.7 NA NA
Bivariate isotropic thin plate regression spline 29 45.7 29 62.1

Table 2. Number of random effects (# RE) used in the density surface models fitted to 2017 and 2022
Eastern Bering Sea beluga aerial line-transect survey data and included in the ensemble model for each
year. For a given model type, the number of random effects can differ between years due to differences in
the sample sizes available for fitting the models and in the study area extent. The percent deviance
explained (Pct. Dev. Expl.) for each candidate model in the ensemble is also shown. Models showing
”NA” in the table were not included in the ensemble model for that year.
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Year Model φ ρ

2017 SPDE 5.80 1.42
2017 Soap film smoother 5.95 1.43
2017 Tensor product smoother 5.56 1.42
2017 Bivariate isotropic thin plate regression spline 6.34 1.44
2022 SPDE 5.26 1.40
2022 SPDE with barriers 6.24 1.46
2022 Soap film smoother 7.42 1.49
2022 Bivariate isotropic thin plate regression spline 9.27 1.53

Table 3. Estimates of Tweedie dispersion (φ ) and power (ρ) parameters for density surface models fitted
to Eastern Bering Sea beluga aerial line-transect survey data, where Var(Y ) = φ µρ .

Figure 1. Study area for the Eastern Bering Sea beluga case study.
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Figure 2. Predicted abundance of Eastern Bering Sea belugas in 2017 based on the four candidate
density surface models selected for the ensemble model. soap: soap film smoother. SPDE: SPDE Matérn
model. te: tensor product smoother. s: bivariate and isotropic thin plate regression spline.
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Figure 3. Predicted abundance of Eastern Bering Sea belugas in 2022 based on the four candidate
density surface models selected for the ensemble model. soap: soap film smoother. SPDE: SPDE Matérn
model. SPDE.bnd: SPDE Matérn model with barriers. s: bivariate and isotropic thin plate regression
spline.
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Figure 4. Pairwise comparisons of density surface model (DSM) predictions for Eastern Bering Sea
belugas in 2022. Each map shows the scaled differences between two DSMs (m1, m2) in predicted beluga
abundance by cell (h): (N̂m1,h − N̂m1,h)/max(abs(N̂m1,h − N̂m1,h)). Comparisons between all pairs of
DSMs selected for the ensemble model are shown. soap: soap film smoother. SPDE: SPDE Matérn model.
SPDE.bnd: SPDE Matérn model with barriers. s: bivariate and isotropic thin plate regression spline.
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Supplement 1
Glossary of Notation and Abbreviations

a : area searched during line-transect survey, where a = 2Lw, L is the total length
of transects surveyed, and w is the width of the strip searched on one side of
the aircraft

a : vector of the area surveyed for each transect segment (ai = 2Liw)]

A : total study area size

A : an (ni, nη) interpolation matrix used to convert raw random effects into
transect-specific values. For SPDE models, this is constructed with a Delauney
triangulation. For basis-penalty smooth models, A is simply the design matrix
associated with spatial smooth parameters.

Apred : an (nh, nη) interpolation matrix used to convert raw random effects into grid-
cell specific predictions. For SPDE models, this is constructed with a Delauney
triangulation. For basis-penalty smooth models, A is a design matrix associated
with locations of grid-cell centroids (obtained using the “predict” function in
mgcv).

c : vector of observed counts of individual animals

ci : observed number of individual animals on transect segment i

[c|ξ,η,x ]: conditional probability density function of observed counts, given parameters,
random effects, and known covariates

CV : coefficient of variation

D̂ : estimate of density of animals (number of animals per unit area)

DSM : density surface model

EBS belugas : Eastern Bering Sea belugas

g(yj , zj ; θ̂g) : probability of detecting an animal at distance yj , given that it is available to
be seen and is associated with covariates zj , assuming perfect detection on the
transect

h : grid cell index

i : segment index

j : group index

k : bootstrap replicate index

L : transect length

ng : number of groups detected

ni : number of transect segments in DSM

nh : number of grid cells in DSM

nη : number of random effects in DSM

N̂ : estimate of the total number of animals in the study area

p̂(zj ; θ̂) : model-based estimate of the overall probability that an observer detects a
group of whales, given covariates zj that affect detectability. This term accounts
for all sources of perception and availability bias (Marsh and Sinclair 1989; S4).
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p̂g(zj ; θ̂g) : average probability that an observer detects an object that is available to be
seen in the area searched, given covariates zj that affect detectability, assuming
transect detection probability is 1.0

pg : vector of p̂g(zj ; θ̂g) for a collection of sightings indexed by j

pi : shorthand for p̂(zi; θ̂) for transects. Note that making the change from group-
level detection probability (subscript j) to transect-level detect probability (sub-
script i) requires that we omit group-specific covariates, such as group size.

pi : vector of the overall detection probability (including both availability and
perception bias corrections) for each segment, pi.

pj : shorthand for p̂(zj ; θ̂) for groups

p∗(yj , zj ; θ̂) : probability of detecting an animal at distance yj , given that it is associated
with covariates zj

p̂A : estimate of availability probability, defined as the probability that a group is
at the surface within an observer’s field of view

p̂MR(0, zj ; θ̂MR : estimate of transect detection probability, defined as the probability of detect-
ing an animal on the transect (or left-truncation point, if applicable)

s : vector of knot locations for SPDE models

Sj : size of group indexed by j

SPDE : stochasic partial differential equation

Q : precision (inverse covariance) matrix for random effects

Var : variance

w : distance (width) searched on one side of the transect

x : vector of known covariates used in the DSM

yj : perpendicular distance from the transect line to the sighting of group j

zi : covariates that affect detectability on segment i

zj : covariates that affect detectability of group j

β0 : DSM intercept parameter

δ : vector of ‘realized’ random effects for transect counts

η : vector of random effects for the DSM

[η|x, ξ ]: probability density function of random effects for the DSM

θ̂ : parameter estimates required to estimate detection probabilities

µ : mean of a Tweedie probability density function

µi : expected number of whales encountered on transect segment i

ξ : vector of unknown parameters for the DSM

ρ : power parameter for the Tweedie probability density function

ϕ : dispersion parameter for the Tweedie probability density function

τ : Matérn precision parameter

κ : Matérn inverse range parameter

λ : penalization parameter(s) for basis-penalty smooths

λm,h : predicted abundance from model m for unsampled location h

λm,max : maximum predicted abundance across all sampled cells
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Supplement 2 

Aerial line-transect surveys for Eastern Bering Sea Belugas 

in 2017 and 2022 

Survey methods 

The Eastern Bering Sea (EBS) beluga study area encompasses Norton Sound and the Yukon 
River Delta (Figure S2.1). Norton Sound is a shallow bay (average depth 13 m) located along 
western Alaska, south of the Seward Peninsula, spanning approximately 160 km from Cape 
Nome to the Yukon River Delta (Figure S2.1). The Sound is seasonally covered with sea ice. 
During June, sea ice is usually absent, which was the case in June 2017 and 2022. Outflow from 
the Yukon River creates a nearshore zone of turbid water, extending approximately 40 km 
offshore, bounded by a sharp oceanographic front, beyond which the waters are more clear and it 
is possible to see below the surface of the water from an aerial platform.  

Aerial line-transect surveys were flown in Norton Sound and along the Yukon River Delta, from 
16 to 29 June 2017 (Figure S2.1) and from 24 to 30 June 2022 (Figure S2.2). Following Lowry 
et al. (2017), systematic transects were placed 9.3 km apart, based on a grid with a randomly 
selected start point. Transect length varied from approximately 10 to 250 km. Transects were 
oriented east-west, along lines of latitude, from shore to 166o W. The northernmost transect in 
both years was located in Norton Bay. The southernmost transect in 2017 was located at 62.3o N, 
approximately 50 km north of Scammon Bay (Figure S2.1). In 2022, the southern boundary of 
the study area extended farther south than any previous aerial line-transect survey of EBS 
belugas had flown (Figures S2.2; Lowry et al. 2017). This southward extension was incorporated 
into the survey design to determine the southern extent of the range of EBS belugas. The total 
study area was 41,417 km2 in 2017 and 47,381 km2 in 2022 (Table S2.1).  

During the surveys conducted in 2017 and 2022, the Turbo Commander aircraft provided and 
flown by Clearwater Air, Inc., was based in Nome, Alaska. Unalakleet, Alaska, was an alternate 
airport that was used for refueling when conducting surveys of the central and southern transects. 
The Turbo Commander is a twin-turbine, high-wing aircraft. The plane had bubble windows for 
the left- and right-side primary observers, allowing unobstructed views from directly beneath the 
plane out to the horizon. Surveys were conducted at 320 m altitude at 213 km/h. 

The survey team comprised two primary observers and one dedicated data recorder. The data 
recorder input sighting data related to detectability and species density into a laptop computer, 
connected to a GPS, running specialized, menu-driven software (Clarke et al. 2020; MML 
unpublished report). Time and position data (latitude, longitude, altitude) were automatically 



recorded in 30-sec intervals or whenever a manual data entry was recorded. Environmental and 
viewing conditions, including integer-valued Beaufort Sea State, turbidity (binary, yes or no), 
visibility range perpendicular to the aircraft on each side of the plane (< 1 km, 1-2 km, 2-3 km, 
3-5 km, 5-10 km, or unlimited), sky conditions (clear, partly cloudy, overcast), integer-valued 
sea ice percent (the average from both sides of the plane), and impediments to visibility (glare, 
fog, haze, precipitation, ice on the window, low ceiling) on each side of the plane were recorded 
in 5-min intervals or whenever conditions changed.  

Primary observers scanned with the naked eye, using binoculars only to check potential targets 
or get a magnified view on a confirmed target. Declination angles from the horizon to each 
sighting were measured using handheld clinometers when the sighting was abeam.  

One “sighting” or “group” was defined as all animals of the same species within 5 body lengths 
of each other. Therefore, a group could comprise one or more animals. Belugas in the study area 
during June are typically distributed in small groups comprising only a few animals. If group size 
could not be determined with confidence, high and low estimates could also be recorded.  

Beluga calves were identified primarily based on size: calves were noticeably smaller than the 
other animals. In addition to being smaller, coloration (typically grayish or brownish 
pigmentation) and close proximity to an adult helped observers identify beluga calves. However, 
it is not always possible for aerial observers to distinguish beluga calves of the year from 
juveniles; therefore, animals recorded as beluga calves likely include belugas up to a few years 
old.  

Sightings that could not be positively identified to species were recorded at the taxonomic level 
to which they could be identified (e.g., unidentified cetacean or small unidentified pinniped).  

Aerial observers watched for any abrupt and unexpected changes in marine mammals’ initially 
observed behavior, presumably due to the aircraft. Observed responses and the number of 
animals that responded were recorded in the database. 

Weather permitting, survey effort along each transect was uninterrupted; the aircraft diverted 
from the transect to circle sightings only in exceptional situations (e.g., to photograph carcasses 
or investigate sightings of cetaceans that were not belugas, and to confirm species identification). 
Four survey modes were used for data collection: deadhead, transect, circling from transect, and 
search. No sighting data were collected during transit or when weather was not conducive to 
surveying (i.e., during “deadhead” effort). During the remaining three survey modes, observers 
were actively surveying and all sightings and environmental data were recorded. Transect effort 
refers to systematic survey effort along a prescribed transect line. Search refers to non-systematic 
survey effort between transects. Circling from transect occurred when the aircraft diverted from 
flat and level flight to circle a localized area to investigate a sighting or potential sightings. 



Sighting and effort summaries 

There was more line-transect survey effort and beluga sightings in 2017 compared to 2022. Ferguson 
et al. (2023) present detailed results for the 2017 survey; therefore, we provide only an overview 
here. Between 16 and 29 June 2017, a total of 16 survey flights (62 flight hours) were conducted over 
12 days. Each transect in the study area was surveyed at least once, and most transects were surveyed 
twice (Figure S2.1). The total number of living belugas detected in 2017 was 1,897 (Table S2.1), 
including 95 calves (as defined above); an additional 2 beluga carcasses were detected. Beluga group 
sizes during the 2017 surveys ranged from 1 to 39 whales. The geographic stratum with the largest 
average group size (3.5 belugas per group) was located south of the Yukon Delta (Figure S2.1). 

Between 24 and 30 June 2022, a total of 8 survey flights (30 flight hours) were conducted over 4 
days. All transects from Pastol Bay to the southern end of the study area (Hooper Bay) were 
surveyed (Figure S2.2). Most of the transects north of Pastol Bay where relatively high densities of 
belugas had been detected in previous years (Lowry et al. 2017; Ferguson et al. 2023) were surveyed 
(Figure S2.2). Due to poor weather, transects in the northern portion of the study area, between 
Shaktoolik and Stuart Island, were not completed. Figure S2.3 shows all transect effort completed 
during Beaufort Sea State ≤ 4, color-coded by Beaufort Sea State conditions at the time the survey 
was conducted. A total of 821 living belugas were detected in 2022 (Table S2.1), including 5 calves; 
an additional 1 beluga carcass was detected. Beluga group sizes during the 2022 surveys ranged from 
1 to 120 whales. The three largest groups were sighted near the barrier islands north of Scammon 
Bay, an area that had not been surveyed during any previous beluga surveys conducted by the Alaska 
Beluga Whale Committee or NOAA Fisheries (Lowry et al. 2017; Ferguson et al. 2023; Figure S2.2). 
The aerial survey observers estimated that these large groups comprised 67, 87, and 120 belugas.  
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Table S2.1 Summary statistics from the line-transect aerial surveys for belugas conducted in the 
Norton Sound/Yukon Delta region between 1992 and 2022 by the Alaska Beluga Whale 
Committee and NOAA Fisheries. 

Survey Dates Transect 

Effort 

(km) 

Belugas Counted Encounter Rate 

(belugas/km) 

Study Area (km2) 

17-21 June 1992 7,278 1,625 0.223 6,145 

14-18 June 1993 5,539 374 0.068 10,975 

11-16 June 1994 5,746 370 0.064 13,965 

5-8 June 1995 4,450 750 0.169 19,983 

20-22 June 1995 1,776 456 0.257 3,352 

15-17 June 1999 3,366 589 0.175 15,794 

17-20 June 2000 4,226 428 0.101 38,104 

16-29 June 2017 8,587 1,897 0.221 41,416 

24-30 June 2022 3,557 821 0.231 47,381 

 

  



 

Figure S2.1. 2017 Eastern Bering Sea beluga aerial line-transect survey study area, survey 
design, and field results. All live beluga sightings and transects flown during Beaufort Sea State 
≤ 4 are shown. Waters shallower than 5 m are shaded. The outlines of the geographic strata 
defined in Lowry et al. (2017) and used in the present analysis are shown. The extent of the 2022 
Eastern Bering Sea study area is shown using hexagonal cells.  



 

Figure S2.2. 2022 Eastern Bering Sea beluga aerial line-transect survey study area, survey 
design, and field results. All live beluga sightings and transects flown during Beaufort Sea State 
≤ 4 are shown. Waters shallower than 5 m are shaded. The outlines of the geographic strata 
defined in Lowry et al. (2017) are shown.   



 

Figure S2.3. 2022 Eastern Bering Sea beluga aerial line-transect survey design. All transects 
flown during Beaufort Sea State ≤ 4 are shown, color-coded by Beaufort Sea State conditions at the 
time the survey was conducted. 

 



Supplement 3 
Aerial Imagery Collection and Processing Methods 

A brief overview of the aerial imagery collection and processing methods is provided here. See 
Clarke et al. (2019, 2020) and Willoughby et al. (2021) for comprehensive details. The methods 
used to estimate transect detection probability from these data are detailed in Ferguson et al. 
(2023). 

During the 2017 and 2022 Eastern Bering Sea (EBS) beluga surveys, data were not collected to 
estimate  the detection probability for beluga groups on the transect line (defined as 
�̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝒋𝒋;𝜽𝜽�𝑀𝑀𝑀𝑀� below and in S4). Therefore, we relied on the best information available to us, 
which was collected during the Aerial Surveys of Marine Mammals (ASAMM) line-transect 
surveys conducted in the eastern Chukchi and western Beaufort seas from July through October 
in 2018 and 2019 (Clarke et al. 2019, 2020). We believe the estimates of transect detection 
probability from ASAMM provide reasonable approximations to the actual value for the 2017 
and 2022 EBS beluga aerial surveys based on similarities in survey protocols and beluga group 
size distributions, which affect detectability. ASAMM surveys targeted belugas and larger 
cetaceans; marine mammal observer and imagery data were collected concurrently. ASAMM 
line-transect survey protocols were comparable to those used during the 2017 and 2022 EBS 
beluga aerial surveys and are detailed in Clarke et al. (2019, 2020). Additionally, the same 
aircraft (including bubble windows) and marine mammal observer configuration used during the 
2017 and 2022 EBS beluga aerial surveys were also used to conduct the ASAMM flights that 
collected the data we describe below. ASAMM surveys were flown at the same target speed (213 
km/h speed) and a similar target altitude (400 m) as the 2017 and 2022 EBS beluga surveys (320 
m). Beluga group size distributions were comparable in the 2017 and 2022 EBS beluga data and 
the relevant ASAMM survey data. For the 2017 EBS beluga survey, 54.7% (338/618) of the 
sightings were of single belugas, 23.6% (146/618) comprised two belugas, 21.4% (132/618) had 
3-10 belugas, and < 1% (2/618) had more than 10 belugas. For the 2022 EBS beluga survey, 
75% (180/241) of the sightings were of single belugas, 13% (31/241) comprised two belugas, 8% 
(19/241) had 3-10 belugas, and 5% (11/241) had more than 10 belugas. In the 2018-2019 
ASAMM survey data, 70.9% (720/1015) of the sightings were of single belugas, 17.1% 
(174/1015) comprised two belugas, 10.6% (108/1015) had 3-10 belugas, and 1.3% (13/1015) had 
more than 10 belugas. 

To estimate transect detection probability for marine mammal observers during ASAMM line-
transect surveys, a downward-pointing digital single lens reflex camera with a 20- or 21-mm lens 
mounted to the belly of the aircraft collected true color (red, green, and blue [RGB]) imagery 
(Clarke et al. 2019, 2020; Willoughby et al. 2021). At 400 m survey altitude, a single image 
taken with the 21-mm lens captured a parcel of water measuring approximately 684 m 
perpendicular to the transect (342 m on each side of the transect) and 457 m along the transect. 



One image was collected every 2 to 3 seconds, resulting in each parcel of water being visible in 
three to four images. The imagery served as an “independent observer” for a mark-recapture 
analysis of the ASAMM aerial observer data. 

Willoughby et al. (2021) provide detailed imagery collection and analysis methods and results; 
here, we present a brief overview. Metadata automatically written to each image included 
latitude, longitude, date, and time. Every third image collected was manually reviewed post-
flight for marine mammal sightings by trained photo analysts. All sightings detected in the 
imagery were manually compared to the aerial observer database to determine matches based on 
date, time, and location (side of plane and distance from transect). The results of the matching 
analysis could be one of three categories: matched, not matched, and “inconclusive results” 
(abbreviated “IR”). Inconclusive results meant that the photo analyst could not determine for 
certain whether an imagery sighting was also detected by the aerial observers.  

See Ferguson et al. (2023) for comprehensive details on estimating transect detection probability 
from these data. 
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Supplement 4 
Eastern Bering Sea Beluga Detection Probabilities 

 

Basic density estimator 
A basic Horvitz-Thompson-like line-transect estimator of animal density is (Buckland et al. 
2001; Burt et al. 2014; Marques and Buckland 2003): 

 
𝐷𝐷� =

1
𝑎𝑎
�

𝑆𝑆𝑗𝑗
�̂�𝑝�𝒛𝒛𝑗𝑗;𝜽𝜽��

𝑛𝑛𝑔𝑔

𝑗𝑗=1

 
[1] 

where 

𝑛𝑛𝑔𝑔 = total number of groups detected; 

𝑆𝑆𝑗𝑗 = size of group indexed by j; 

𝑎𝑎 = area searched, equal to 2𝑤𝑤𝑤𝑤, where 𝑤𝑤 is the total length of transects surveyed 
and 𝑤𝑤 is the width of the strip searched on one side of the aircraft; 

�̂�𝑝� 𝒛𝒛𝑗𝑗;𝜽𝜽�� = estimate of the overall probability that an aerial observer detects group j 
located in the area searched. This probability depends on estimated parameters 
(𝜽𝜽�) and other possible covariates (𝒛𝒛𝑗𝑗) that affect detectability. This term 
accounts for all sources of perception and availability bias (Marsh and Sinclair 
1989). Note that �̂�𝑝�𝒛𝒛𝑗𝑗;𝜽𝜽�� does not depend on distance from the transect line, 
since we integrate the detection function over the truncation width of the 
transect as suggested by Marques et al. (2003) to reduce overall variability in 
the estimator (see Eq. 5 below). 

Eastern Bering Sea beluga observation model 
The underlying observation model for the Eastern Bering Sea (EBS) beluga aerial survey was a 
scaled version of a multiple covariates distance sampling (MCDS) detection function, 
𝑔𝑔�𝑦𝑦𝑗𝑗  , 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔�, (Marques and Buckland 2003, Laake and Borchers 2004): 

 �̂�𝑝∗�𝑦𝑦𝑗𝑗 , 𝒛𝒛𝑗𝑗;𝜽𝜽�� = �̂�𝑝𝐴𝐴�̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀�𝑔𝑔�𝑦𝑦𝑗𝑗  , 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔�. [2] 

where 



𝑔𝑔�𝑦𝑦𝑗𝑗  , 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔� = probability of detecting an animal at distance 𝑦𝑦𝑗𝑗, given that it is 
available to be seen and is associated with covariates 𝒛𝒛𝑗𝑗, assuming perfect 
detection on the transect; 

�̂�𝑝∗�𝑦𝑦𝑗𝑗 , 𝒛𝒛𝑗𝑗;𝜽𝜽�� = probability of detecting an animal at distance 𝑦𝑦𝑗𝑗, given that it is 
associated with covariates 𝒛𝒛𝑗𝑗. This probability allows for intermittent 
availability and imperfect detection on the transect. 

The MCDS detection function assumes the probability of detecting an object on the transect 
equals 1.0; it specifies the functional form (shape and scale) of the observation model. The 
scaling factors in the observation model include an estimated availability probability, �̂�𝑝𝐴𝐴, and a 
mark-recapture component, �̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀�.  

Availability probability is the probability that a beluga is at the water’s surface and within the 
observers’ field of view sometime during the period that a plane passes overhead. The mark-
recapture component is the probability that a group is detected on the transect line, given that it is 
at the surface and within the observers’ field of view. Together, �̂�𝑝𝐴𝐴 and �̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀� 
determine the location of the intercept in the observation model.  

Values for �̂�𝑝𝐴𝐴 and �̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀� were taken from Ferguson et al. (2023) and are described in 
more detail below. First, we describe how the MCDS detection function was estimated using 
data from EBS beluga surveys.   

Multiple covariates distance sampling detection function for the EBS beluga 
aerial surveys 
The MCDS detection function was constructed using data only from the 2017 and 2022 EBS 
beluga aerial surveys, which were filtered prior to fitting the model. Only beluga sightings made 
by primary observers during transect effort conducted in Beaufort Sea State 0-4 that had 
recorded declination angles were used to construct the detection function.  

Additionally, sighting data were truncated close to and far from the transect. Data were left-
truncated to account for lower sighting probabilities very close to the aircraft (Hain et al. 1999). 
The histogram of perpendicular distances to beluga sightings indicated fewer than expected 
sightings within 75 m of the transect; therefore, the data were left-truncated at 75 m (Figure 
S4.1). The farthest 5% of sightings were omitted from the detection function analysis to 
minimize the effects of outliers. This right-truncation distance was 5.2 km. The width of the strip 
searched on one side of the aircraft equals the right-truncation distance minus the left-truncation 
distance, w = 4.45 km.  



A MCDS model can take various forms, specified by its key function, such as the half-normal 
key function or hazard-rate key function. For the EBS beluga aerial surveys, MCDS detection 
function models with half-normal and hazard-rate key functions were considered. A half-normal 
model in which the standard deviation (scale parameter) is a linear function of covariates 
affecting detection probability may be represented as: 

 
𝑔𝑔�𝑦𝑦𝑗𝑗  , 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔� = exp�
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2� 

[3] 

An analogous hazard-rate model may be represented as: 
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We used the R package mrds (Laake et al. 2021) to fit MCDS detection functions to observed 
perpendicular distances of beluga groups, including effects of additional covariates that 
potentially affect detectability. The covariates that we considered were four different group size 
variables, turbidity, and Beaufort Sea State (Table S4.1). mrds uses maximum likelihood to fit 
models. AIC was used to compare the two functional forms for distance data (half-normal vs. 
hazard-rate), conduct model selection, and ultimately derive maximum likelihood estimates and 
variances of parameters, 𝜽𝜽�𝑔𝑔. The null hazard-rate models had considerably lower AIC values and 
exhibited better fit (based on visual inspection of the detection function curve overlaid on the 
histogram of perpendicular sighting distances) than the half-normal models, so covariate 
selection proceeded with only the hazard-rate key function. Although four different group size 
covariates were considered in the initial univariate model, only the covariate with the lowest AIC 
value among the univariate group size models was retained for further consideration in the model 
fitting and selection process. The best-fitting MCDS detection function model for EBS belugas 
included covariates for Beaufort Sea State and turbidity. 

The average probability that an aerial observer detects an object that is available to be seen in the 
area searched, given covariates 𝒛𝒛𝑗𝑗 that affect detectability, assuming transect detection 
probability is 1.0, is (Marques and Buckland 2003): 
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[5] 

The effective strip half-width (ESW) equals �̂�𝑝𝑔𝑔�𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔�𝑤𝑤 and it is noteworthy because as many 
groups are detected within the ESW as are missed beyond the ESW. Due to the left-truncation in 
the EBS beluga analysis, the ESW stretches from the left-truncation distance to the right-
truncation distance. 



Mark-recapture detection probability 
The MCDS detection function does not account for animals that are missed on the transect line 
(or left truncation point, in our case). In absence of a dedicated double-observer study during the 
EBS beluga surveys, we relied on estimates of 𝜽𝜽�𝑀𝑀𝑀𝑀 from previous surveys of belugas in the 
Chukchi and Beaufort seas in 2018 and 2019 (Aerial Surveys of Arctic Marine Mammals 
[ASAMM]; Ferguson et al. 2023) to determine �̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀�. Briefly, during ASAMM aerial 
line-transect surveys, images of whales were collected from a camera system concurrently with 
visual line-transect survey data. Based on a mark-recapture distance sampling (MRDS) analysis, 
the proportion of whales detected in the imagery that were also detected by human observers was 
estimated to be 75.3% (�̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀� = 0.753). Comprehensive details on the MRDS analysis 
are provided in Ferguson et al. (2023). 

Availability probability 
Availability probability, 𝑝𝑝𝐴𝐴, is the probability that a group is at the surface within an observer’s 
field of view (Marsh and Sinclair 1989). Animals that spend a low proportion of their time at the 
surface where observers can detect them (i.e., low availability) will be detected infrequently 
relative to their true density (i.e., raw counts will have considerable bias relative to true density). 
The inverse of availability probability is the availability bias correction factor. Availability 
probability is a function of the animals’ respiratory patterns and the duration of time in which the 
ocean at perpendicular distance 𝑦𝑦 is in the observer’s view (i.e., viewing time). We used the 
estimate of availability probability from Ferguson et al. (2023); therefore, we present only a brief 
summary of the analytical methods here. 

We assumed that the effect of distance on detectability was captured by the MCDS detection 
function model. Therefore, we used the estimate of availability probability on the transect, 
�̂�𝑝𝐴𝐴(0), effectively scaling the transect detection probability (Ferguson et al. 2023). Because the 
field of view from the windows in the EBS beluga survey aircraft was unobstructed ahead of the 
plane at the left-truncation distance (Ferguson et al. 2021), the length of time for which a 
sighting was in view on the transect was assumed to be a function of the distance at which a 
beluga can be detected. The resulting estimate of viewing time on the transect was 15.9 sec.  

The best available information on beluga respiration patterns was from behavioral observations 
made on three adult female belugas tagged with VHF radio tags: one beluga tagged in Bristol 
Bay, Alaska, in June 1983; and two belugas tagged in Cunningham Inlet, Somerset Island, 
Canada, in July 1988 (Frost et al. 1985; Frost and Lowry 1995). Using data from these belugas, 
we determined that, on average, 50% of belugas would be at the surface sometime during the 
15.9 sec it took the survey aircraft to pass overhead, resulting in �̂�𝑝𝐴𝐴 = 0.5, equating to an 
availability bias correction factor of 2.0. There were no estimates of uncertainty for availability 
probability (Ferguson et al. 2023). 



Now, we can decompose the detection probability term �̂�𝑝�𝒛𝒛𝑗𝑗;𝜽𝜽�� from Eq. 1 into its component 
parts: 

 �̂�𝑝�𝒛𝒛𝑗𝑗;𝜽𝜽�� = �̂�𝑝𝐴𝐴 �̂�𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝑗𝑗;𝜽𝜽�𝑀𝑀𝑀𝑀��̂�𝑝𝑔𝑔�𝒛𝒛𝑗𝑗;𝜽𝜽�𝑔𝑔�. [6] 
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Table S4.1. Definitions of covariates considered for inclusion in the multiple covariates distance 

sampling detection function models for the Eastern Bering Sea beluga line-transect aerial surveys 

in 2017 and 2022. 

Covariate Name Definition Categories 

size Observed group size of the sighting  

loggs log10(size)  

catsize Categorical group size {1, >1} 

catsize3 Categorical group size {1, 2, >2} 

iBeauf Integer-valued Beaufort Sea State  

Turb Turbidity yes, no 

 

  



 
Figure S4.1. Perpendicular distances (km) to beluga sightings during the 2017 and 2022 Eastern 
Bering Sea beluga aerial line-transect surveys. Bin widths are 75 m.  



Supplement 5 

Bootstrap Pseudo-code for Estimating Uncertainty in  

Model-based Estimates of Beluga Abundance 

Goal: Incorporate uncertainty from the multiple covariates distance sampling (MCDS) detection function 
(ddf) model, the spatially-explicit density surface model (DSM), and the mark-recapture distance sampling 
detection function estimate of transect detection probability into the estimate of uncertainty for the model-
based estimated abundance (𝑁𝑁�) of belugas from aerial line-transect surveys.  

1. Fit MCDS model to EBS beluga sighting data from 2017 and 2022. Obtain: (1) estimated regression 
parameters, 𝜷𝜷� and their associated covariance matrix 𝚺𝚺�𝛽𝛽; and (2) predictions of detection probability 
𝑝𝑝�𝑔𝑔,𝑖𝑖 for each transect segment i. In this case, we limit the MCDS coefficients to segment variables, 
not observation variables. The value 𝑝𝑝�𝑔𝑔,𝑖𝑖 is the average detection probability, computed as the 
integral of the detection function over the 1/2-width, divided by the 1/2-width (S4 Eq. 5). In S4 Eq. 
5, we refer to 𝒑𝒑�𝑔𝑔 using the longhand notation �̂�𝑝𝑔𝑔�𝒛𝒛𝒋𝒋;𝜽𝜽�𝑔𝑔�. This is the value returned from using the 
mrds::predict( ) function on a ddf object.  

2. Fit each of the m=1,…,M DSMs to beluga sighting and effort data in TMB, using the 𝒑𝒑�𝑔𝑔 from step 1 
when computing offsets for each count model. The estimated beluga density surfaces from the TMB 
models are used to compute model-specific estimates of abundance, 𝑁𝑁𝑚𝑚� . We also obtain a 
conditional variance, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔), from the TMB DSMs. These estimates of 𝑁𝑁𝑚𝑚�  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔) 
incorporate a correction for detransformation bias via the epsilon algorithm (Thorson and 
Kristensen 2016). We are using this approach rather than simulating from the DSMs posterior 
distributions of random effects because the latter led to problems with extremely high outliers (i.e., 
implausibly high abundance estimates). 

3. To account for increased variance due to uncertainty in 𝒑𝒑�𝑔𝑔, we rely on the law of total variance, 
which in our context states 
 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑚𝑚� � = 𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉�𝑵𝑵�𝒎𝒎|𝑝𝑝�𝒈𝒈�) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔)).     Eqn 1 

For 𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑚𝑚� �𝒑𝒑�𝑔𝑔)), we simply substitute our conditional variance estimate from the original TMB 
DSM, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔), obtained in step 2.  

Heuristically, the additional piece, 𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔)), describes how abundance estimates might vary 
with different values of 𝒑𝒑�𝑔𝑔. To estimate this variance, we apply the following bootstrap procedure 
for each candidate DSM: 

a. Extract the covariance matrix, 𝚺𝚺�𝛽𝛽 for the estimated detection function model (ddf.obj) 
parameters:  

ddf.sigma <- solve(ddf.obj$hessian) 

b. Extract the detection function model parameters, 𝜷𝜷�: 

ddf.beta <- ddf.obj$par 



c. Implement bootstrap algorithm: 

for(k in 1:500){ #repeat the following steps 500 times 

• Create bootstrap sample bs.beta for iteration i from the detection function model 
parameters, assuming a multivariate normal distribution with covariance ddf.sigma:  

bs.beta <- mgcv::rmvn(1, ddf.beta, ddf.sigma) 

• Generate new bootstrap detection probabilities 𝑝𝑝�𝑔𝑔,(𝑘𝑘): 
bs.ddf <- ddf.obj 
bs.ddf$par <- bs.beta 
bs.p <- predict(bs.ddf, gam.data)$fitted 

• Re-fit and optimize the TMB DSM for model m using the bootstrap detection 
probabilities bs.p in the calculation of the offset. Compute the bootstrap estimate of 
abundance for iteration i, 𝑁𝑁�𝑚𝑚,(𝑘𝑘). 

} #end bootstrap algorithm 

d. For bootstrapped DSMs that exhibited numerical convergence, compute 𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁�𝑚𝑚,(𝑘𝑘)�.  
e. Use Eqn 1 to compute 𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁�𝑚𝑚� from 𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑚𝑚� �𝒑𝒑�𝑔𝑔)) generated in step 2 and 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁�𝑚𝑚,(𝑘𝑘)� = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(𝑁𝑁𝑚𝑚� |𝒑𝒑�𝑔𝑔)) from step 3d. This value 𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁�𝑚𝑚� is an unconditional 
estimate of variance that includes uncertainty attributable to MCDS parameters and to the 
distribution of observed counts.  

4. The estimate of abundance for the ensemble model, 𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒, is calculated as the arithmetic average of 
the 𝑁𝑁�𝑚𝑚 from the candidate DSMs:  

𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒 = 1
𝑀𝑀
∑ 𝑁𝑁�𝑚𝑚𝑀𝑀
𝑚𝑚=1        Eqn 2 

5. Calculate the variance of model-averaged predictions using the standard unconditional variance 
estimator (i.e., Burnham and Anderson 2004, Eq. 4.9): 

𝑉𝑉𝑉𝑉𝑉𝑉� �𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒� = �∑ 𝑤𝑤𝑚𝑚𝑀𝑀
𝑚𝑚=1 �𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁�𝑚𝑚� + �𝑁𝑁�𝑚𝑚 − 𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒�

2�
2

  Eqn 3 

6. Because our estimate of transect detection probability, 𝑝𝑝𝑀𝑀𝑀𝑀�0, 𝒛𝒛𝒋𝒋;𝜽𝜽�𝑀𝑀𝑀𝑀�, was derived from aerial 
line-transect survey data and imagery collected in a different study area during a different year, we 
assumed that it was independent of the MCDS detection function and the DSMs. Therefore, we used 
the delta method to incorporate uncertainty from transect detection probability into the estimate of 
total uncertainty for the ensemble model estimate of abundance: 

𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡�𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒� = �𝑉𝑉𝑉𝑉𝑉𝑉� (𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒)

𝑁𝑁�𝑒𝑒𝑒𝑒𝑒𝑒
2 + �𝐶𝐶𝑉𝑉�𝑝𝑝𝑀𝑀𝑀𝑀�0,𝒛𝒛𝒋𝒋;𝜽𝜽�𝑀𝑀𝑀𝑀���

2
   Eqn 4 

Similarly, the delta function was used to estimate the total CV in estimated abundance from any 
single DSM: 

𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡�𝑁𝑁�𝑚𝑚� = �𝑉𝑉𝑉𝑉𝑉𝑉� (𝑁𝑁�𝑚𝑚)

𝑁𝑁�𝑚𝑚
2 + �𝐶𝐶𝑉𝑉�𝑝𝑝𝑀𝑀𝑀𝑀�0,𝒛𝒛𝒋𝒋;𝜽𝜽�𝑀𝑀𝑀𝑀���

2
    Eqn 5 

7. There were no estimates of uncertainty for availability probability, �̂�𝑝𝐴𝐴 (Ferguson et al. 2013); 
therefore, this parameter did not contribute to the estimated uncertainty in abundance. 
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Table S6.1. Key aspects of all 2017 Eastern Bering Sea beluga density surface models constructed and evaluated. Blue highlighting indicates models included in the ensemble.

Year Spatial Formulation
Number of 

Observations

Number of 
Transect 
Segments

Number of 
Prediction 

Cells
Number 
of Nodes

max.edge 
Inside 

(Outside) Cutoff Inner Boundary Outer Boundary Smoothing Spline Variables

number unsampled cells 
with extreme predicted 

abundance

2017 SPDE Matérn 598 604 342 595 25 (50) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints, plus a 
buffer of 25 km

offset from the inner 
boundary by a distance equal 
to 1/3 the latitudinal range 
of the study area NA 0

2017 SPDE Matérn 598 604 342 564 25 (50) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2017 SPDE Matérn 598 604 342 528 25 (50) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 20% of the inner 
boundary diameter NA 0

2017 SPDE Matérn 598 604 342 289 50 (100) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2017 SPDE Matérn 598 604 342 160 75 (150) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2017 SPDE Matérn 598 604 342 199 60 (120) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2017 SPDE Matérn with barriers 598 604 342 675 25 (50) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2017 SPDE Matérn with barriers 598 604 342 295 50 (100) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2017 SPDE Matérn with barriers 598 604 342 177 75 (150) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2017 SPDE Matérn with barriers 598 604 342 213 60 (120) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2017 Soap film smoother 598 604 342 NA NA NA NA NA s(easting, northing, bs="so", k=30) 0
2017 Tensor product smoother 598 604 342 NA NA NA NA NA te(easting, northing, bs="ts", k=15) 0
2017 Bivariate isotropic tprs 598 604 342 NA NA NA NA NA s(easting, northing, bs="ts") 0


 NSDL_dsm_tmb_spde_nobnd_smry

				lyr.name		Year		Spatial Formulation		number of observations (sightings) used to build the model		nrow.A = number of segments used to build model		ncol.A = number of mesh nodes		nrow.A_pred = number of hex cells for prediction		ncol.A_pred = number of mesh nodes		max.edge		detailed mesh definition		range.tmb		n.tmb.hi		mgcv DHARMa notes		TMB DHARMa notes		Summary Notes		Ensemble Candidate?

		1		NSDL17dsm_tmb_mgcv_spde_tw_mesh1		2017		SPDE (Matérn)		598		604		595		342		595		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); bound.outer = diff(range(seg.dat$y))/3; max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5) 		159.1371827838		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		2		NSDL17dsm_tmb_mgcv_spde_tw_mesh2		2017		SPDE (Matérn)		598		604		564		342		564		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		150.0763159688		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		3		NSDL17dsm_tmb_mgcv_spde_tw_mesh3		2017		SPDE		598		604		528		342		528		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.20); max.edg1 <- 25; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		132		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		4		NSDL17dsm_tmb_mgcv_spde_tw_mesh4		2017		SPDE		598		604		289		342		289		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		162		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		50 max edge might still be too small		N

		5		NSDL17dsm_tmb_mgcv_spde_tw_mesh5		2017		SPDE		598		604		160		342		160		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 75; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		154		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly worse than the mesh6 analog; this model also has higher AIC than mesh6.		N

		6		NSDL17dsm_tmb_mgcv_spde_tw_mesh6		2017		SPDE		598		604		199		342		199		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 60; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		172		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly better than the mesh5 analog; this model also has lower AIC than mesh5.		Y

		7		NSDL22dsm_tmb_mgcv_spde_tw_mesh1		2022		SPDE		241		317		831		554		831		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		29		0				dispersion test significant; quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		8		NSDL22dsm_tmb_mgcv_spde_tw_mesh3		2022		SPDE		241		317		257		554		257		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg3 <- 75; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		78		0		quantile deviations detected; combined adjusted quantile test significant						N

		9		NSDL22dsm_tmb_mgcv_spde_tw_mesh4		2022		SPDE		241		317		351		554		351		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0								N

		10		NSDL22dsm_tmb_mgcv_spde_tw_mesh5		2022		SPDE		241		317		308		554		308		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 60; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		71		0		quantile deviations detected; combined adjusted quantile test n.s.				Chose lowest AIC out of mesh3, mesh4, mesh5, and mesh6		Y

		11		NSDL22dsm_tmb_mgcv_spde_tw_mesh6		2022		SPDE		241		317		326		554		326		55		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 55; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		73		0								N

		12		NSDL17dsm_tmb_spde_tw_bnd_mesh1		2017		barrier SPDE		598		604		675		342		675		25		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 25; mesh1 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		104		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		13		NSDL17dsm_tmb_spde_tw_bnd_mesh4		2017		barrier SPDE		598		604		295		342		295		50		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 50; mesh4 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		122		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		14		NSDL17dsm_tmb_spde_tw_bnd_mesh5		2017		barrier SPDE		598		604		177		342		177		75		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg5 <-75; mesh5 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		116		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		15		NSDL17dsm_tmb_spde_tw_bnd_mesh6		2017		barrier SPDE		598		604		213		342		213		60		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg6 <-60; mesh6 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg6,cutoff = max.ed6/5)		105		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		16		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh1		2017		oscillating SPDE		598		604		595		342		595		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; bound.outer = diff(range(seg.dat$y))/3; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5)		136		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		17		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh2		2017		oscillating SPDE		598		604		564		342		564		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		106		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		18		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh3		2017		oscillating SPDE		598		604		528		342		528		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.2); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		80		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		19		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh4		2017		oscillating SPDE		598		604		289		342		289		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg4 <- 50; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		108		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa flag; retained lowest AIC out of osc_mesh4, 5, and 6		N

		20		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh5		2017		oscillating SPDE		598		604		160		342		160		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg5 <- 75; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		111		0						Retained lowest AIC out of osc_mesh4, 5, and 6		Y

		21		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh6		2017		oscillating SPDE		598		604		199		342		199		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg6 <- 60; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		109		0						Retained lowest AIC out of osc_mesh4, 5, and 6		N

		22		NSDL22dsm_tmb_spde_tw_bnd_mesh1		2022		barrier SPDE		241		317		350		554		350		55		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 55; mesh1 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		54		0						Retained lowest AIC out of bnd_mesh1 and 2		N

		23		NSDL22dsm_tmb_spde_tw_bnd_mesh2		2022		barrier SPDE		241		317		312		554		312		60		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg2 <- 60; mesh2 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg2,cutoff = max.edg2/5)		67		0						Retained lowest AIC out of bnd_mesh1 and 2		Y

		24		NSDL22dsm_tmb_spde_tw_bnd_mesh3		2022		barrier SPDE		241		317		251		554		251		75		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg3 <- 75; mesh3 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		74		1						tmb.bc.Nhat_pred.sd NA		N

		25		NSDL22dsm_tmb_spde_tw_bnd_mesh4		2022		barrier SPDE		241		317		642		554		642		40		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 40; mesh4 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		50		0				quantile deviations detected; combined adjusted quantile test significant		DHARMa red flag		N

		26		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh3		2022		oscillating SPDE		241		317		257		554		257		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg3 <- 75; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		76		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		27		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh4		2022		oscillating SPDE		241		317		351		554		351		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg4 <- 50; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		28		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh5		2022		oscillating SPDE		241		317		308		554		308		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg5 <- 60; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		Y

		29		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh6		2022		oscillating SPDE		241		317		326		554		326		55		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg6 <- 55; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		30		NSDL17dsm_tmb_tw_soap_xy_10000		2017		soap(x,y)				NA		NA		NA		NA		NA		NA		NA		0								Y

		31		NSDL17dsm_tmb_tw_te_10000		2017		te(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		0				quantile deviations detected; combined adjusted quantile test n.s.				Y

		32		NSDL17dsm_tmb_tw_xy_10000		2017		s(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		0								Y

		33		NSDL22dsm_tmb_tw_soap_xy_10000		2022		soap(x,y)				NA		NA		NA		NA		NA		NA		NA		2								Y

		34		NSDL22dsm_tmb_tw_te_10000		2022		te(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		3								N

		35		NSDL22dsm_tmb_tw_xy_10000		2022		s(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		2		KS test significant				Signficant KS test for mgcv model, but DHARMa detected nothing unusual for tmb model. No other flags.		Y





cleanish

				lyr.name		Year		Spatial Formulation		number of observations		number of segments		number of nodes		number of cells		max.edge inside (outside)		cutoff		inner boundary		outer boundary		detailed mesh definition (delete for final draft)		range.tmb		number unsampled cells with extreme predicted abundance		mgcv DHARMa notes (add to Summary Notes)		TMB DHARMa notes (add to Summary Notes)		Summary Notes		Include in Ensemble

		1		NSDL17dsm_tmb_mgcv_spde_tw_mesh1		2017		SPDE (Matérn)		598		604		595		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); bound.outer = diff(range(seg.dat$y))/3; max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5) 		159.1371827838		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		2		NSDL17dsm_tmb_mgcv_spde_tw_mesh2		2017		SPDE (Matérn)		598		604		564		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		150.0763159688		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		3		NSDL17dsm_tmb_mgcv_spde_tw_mesh3		2017		SPDE		598		604		528		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.20); max.edg1 <- 25; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		132		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		4		NSDL17dsm_tmb_mgcv_spde_tw_mesh4		2017		SPDE		598		604		289		342		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		162		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		50 max edge might still be too small		N

		5		NSDL17dsm_tmb_mgcv_spde_tw_mesh5		2017		SPDE		598		604		160		342		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 75; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		154		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly worse than the mesh6 analog; this model also has higher AIC than mesh6.		N

		6		NSDL17dsm_tmb_mgcv_spde_tw_mesh6		2017		SPDE		598		604		199		342		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 60; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		172		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly better than the mesh5 analog; this model also has lower AIC than mesh5.		Y

		7		NSDL22dsm_tmb_mgcv_spde_tw_mesh1		2022		SPDE		241		317		831		554		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		29		0				dispersion test significant; quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		8		NSDL22dsm_tmb_mgcv_spde_tw_mesh3		2022		SPDE		241		317		257		554		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg3 <- 75; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		78		0		quantile deviations detected; combined adjusted quantile test significant						N

		9		NSDL22dsm_tmb_mgcv_spde_tw_mesh4		2022		SPDE		241		317		351		554		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0								N

		10		NSDL22dsm_tmb_mgcv_spde_tw_mesh5		2022		SPDE		241		317		308		554		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 60; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		71		0		quantile deviations detected; combined adjusted quantile test n.s.				Chose lowest AIC out of mesh3, mesh4, mesh5, and mesh6		Y

		11		NSDL22dsm_tmb_mgcv_spde_tw_mesh6		2022		SPDE		241		317		326		554		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 55; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		73		0								N

		12		NSDL17dsm_tmb_spde_tw_bnd_mesh1		2017		barrier SPDE		598		604		675		342		25 (50)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 25; mesh1 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		104		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		13		NSDL17dsm_tmb_spde_tw_bnd_mesh4		2017		barrier SPDE		598		604		295		342		50 (100)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 50; mesh4 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		122		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		14		NSDL17dsm_tmb_spde_tw_bnd_mesh5		2017		barrier SPDE		598		604		177		342		75 (150)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg5 <-75; mesh5 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		116		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		15		NSDL17dsm_tmb_spde_tw_bnd_mesh6		2017		barrier SPDE		598		604		213		342		60 (120)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg6 <-60; mesh6 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg6,cutoff = max.ed6/5)		105		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		16		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh1		2017		oscillating SPDE		598		604		595		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; bound.outer = diff(range(seg.dat$y))/3; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5)		136		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		17		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh2		2017		oscillating SPDE		598		604		564		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		106		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		18		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh3		2017		oscillating SPDE		598		604		528		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.2); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		80		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		19		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh4		2017		oscillating SPDE		598		604		289		342		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg4 <- 50; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		108		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa flag; retained lowest AIC out of osc_mesh4, 5, and 6		N

		20		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh5		2017		oscillating SPDE		598		604		160		342		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg5 <- 75; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		111		0						Retained lowest AIC out of osc_mesh4, 5, and 6; excluded from ensemble due to structural similarity to ensemble model		N

		21		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh6		2017		oscillating SPDE		598		604		199		342		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg6 <- 60; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		109		0						Retained lowest AIC out of osc_mesh4, 5, and 6		N

		22		NSDL22dsm_tmb_spde_tw_bnd_mesh1		2022		barrier SPDE		241		317		350		554		55 (110)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 55; mesh1 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		54		0						Retained lowest AIC out of bnd_mesh1 and 2		N

		23		NSDL22dsm_tmb_spde_tw_bnd_mesh2		2022		barrier SPDE		241		317		312		554		60 (120)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg2 <- 60; mesh2 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg2,cutoff = max.edg2/5)		67		0						Retained lowest AIC out of bnd_mesh1 and 2		Y

		24		NSDL22dsm_tmb_spde_tw_bnd_mesh3		2022		barrier SPDE		241		317		251		554		75 (150)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg3 <- 75; mesh3 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		74		1						tmb.bc.Nhat_pred.sd NA		N

		25		NSDL22dsm_tmb_spde_tw_bnd_mesh4		2022		barrier SPDE		241		317		642		554		40 (80)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 40; mesh4 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		50		0				quantile deviations detected; combined adjusted quantile test significant		DHARMa red flag		N

		26		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh3		2022		oscillating SPDE		241		317		257		554		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg3 <- 75; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		76		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		27		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh4		2022		oscillating SPDE		241		317		351		554		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg4 <- 50; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		28		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh5		2022		oscillating SPDE		241		317		308		554		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg5 <- 60; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6; excluded from ensemble due to structural similarity to SPDE model		N

		29		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh6		2022		oscillating SPDE		241		317		326		554		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg6 <- 55; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		30		NSDL17dsm_tmb_tw_soap_xy_10000		2017		soap(x,y)				NA		NA		NA		NA								NA		NA		0								Y

		31		NSDL17dsm_tmb_tw_te_10000		2017		te(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		0				quantile deviations detected; combined adjusted quantile test n.s.				Y

		32		NSDL17dsm_tmb_tw_xy_10000		2017		s(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		0								Y

		33		NSDL22dsm_tmb_tw_soap_xy_10000		2022		soap(x,y)				NA		NA		NA		NA								NA		NA		2								Y

		34		NSDL22dsm_tmb_tw_te_10000		2022		te(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		3								N

		35		NSDL22dsm_tmb_tw_xy_10000		2022		s(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		2		KS test significant				Signficant KS test for mgcv model, but DHARMa detected nothing unusual for tmb model. No other flags.		Y





TableS6_1

		Year		Spatial Formulation		Number of Observations		Number of Transect Segments		Number of Prediction Cells		Number of Nodes		max.edge Inside (Outside)		Cutoff		Inner Boundary		Outer Boundary		Smoothing Spline Variables		number unsampled cells with extreme predicted abundance

		2017		SPDE Matérn		598		604		342		595		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		NA		0

		2017		SPDE Matérn		598		604		342		564		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		528		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		289		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		160		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		199		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn with barriers		598		604		342		675		25 (50)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		295		50 (100)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		177		75 (150)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		213		60 (120)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		Soap film smoother		598		604		342		NA		NA		NA		NA		NA		s(easting, northing, bs="so", k=30)		0

		2017		Tensor product smoother		598		604		342		NA		NA		NA		NA		NA		te(easting, northing, bs="ts", k=15)		0

		2017		Bivariate isotropic tprs		598		604		342		NA		NA		NA		NA		NA		s(easting, northing, bs="ts")		0

		Year		Spatial Formulation		Number of Observations		Number of Transect Segments		Number of Prediction Cells		Number of Nodes		max.edge Inside (Outside)		Cutoff		Inner Boundary		Outer Boundary		Smoothing Spline Variables		number unsampled cells with extreme predicted abundance

		2022		SPDE Matérn		241		317		554		831		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		257		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		351		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		308		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		326		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn with barriers		241		317		554		350		55 (110)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		SPDE Matérn with barriers		241		317		554		312		60 (120)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		SPDE Matérn with barriers		241		317		554		251		75 (150)		0.2*max.edge		coastline and study area boundaries		NA		NA		1

		2022		SPDE Matérn with barriers		241		317		554		642		40 (80)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		Soap film smoother		241		317		554		NA		NA		NA		NA		NA		s(easting, northing, bs="so",k=60)		2

		2022		Tensor product smoother		241		317		554		NA		NA		NA		NA		NA		te(easting, northing, bs="ts", k=15)		3

		2022		Bivariate isotropic tprs		241		317		554		NA		NA		NA		NA		NA		s(easting, northing, bs="ts")		2







Table S6.2. Key aspects of all 2022 Eastern Bering Sea beluga density surface models constructed and evaluated. Blue highlighting indicates models included in the ensemble.

Year Spatial Formulation
Number of 

Observations

Number of 
Transect 
Segments

Number of 
Prediction 

Cells
Number 
of Nodes

max.edge 
Inside 

(Outside) Cutoff Inner Boundary Outer Boundary Smoothing Spline Variables

number unsampled cells 
with extreme predicted 

abundance

2022 SPDE Matérn 241 317 554 831 25 (50) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2022 SPDE Matérn 241 317 554 257 75 (150) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2022 SPDE Matérn 241 317 554 351 50 (100) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2022 SPDE Matérn 241 317 554 308 60 (120) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2022 SPDE Matérn 241 317 554 326 55 (110) 0.2*max.edge

non-convex hull 
around all 
segment 
midpoints

offset from the inner 
boundary by a distance equal 
to 35% of the inner 
boundary diameter NA 0

2022 SPDE Matérn with barriers 241 317 554 350 55 (110) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2022 SPDE Matérn with barriers 241 317 554 312 60 (120) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2022 SPDE Matérn with barriers 241 317 554 251 75 (150) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 1

2022 SPDE Matérn with barriers 241 317 554 642 40 (80) 0.2*max.edge

coastline and 
study area 
boundaries NA NA 0

2022 Soap film smoother 241 317 554 NA NA NA NA NA s(easting, northing, bs="so",k=60) 2
2022 Tensor product smoother 241 317 554 NA NA NA NA NA te(easting, northing, bs="ts", k=15) 3
2022 Bivariate isotropic tprs 241 317 554 NA NA NA NA NA s(easting, northing, bs="ts") 2


 NSDL_dsm_tmb_spde_nobnd_smry

				lyr.name		Year		Spatial Formulation		number of observations (sightings) used to build the model		nrow.A = number of segments used to build model		ncol.A = number of mesh nodes		nrow.A_pred = number of hex cells for prediction		ncol.A_pred = number of mesh nodes		max.edge		detailed mesh definition		range.tmb		n.tmb.hi		mgcv DHARMa notes		TMB DHARMa notes		Summary Notes		Ensemble Candidate?

		1		NSDL17dsm_tmb_mgcv_spde_tw_mesh1		2017		SPDE (Matérn)		598		604		595		342		595		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); bound.outer = diff(range(seg.dat$y))/3; max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5) 		159.1371827838		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		2		NSDL17dsm_tmb_mgcv_spde_tw_mesh2		2017		SPDE (Matérn)		598		604		564		342		564		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		150.0763159688		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		3		NSDL17dsm_tmb_mgcv_spde_tw_mesh3		2017		SPDE		598		604		528		342		528		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.20); max.edg1 <- 25; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		132		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		4		NSDL17dsm_tmb_mgcv_spde_tw_mesh4		2017		SPDE		598		604		289		342		289		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		162		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		50 max edge might still be too small		N

		5		NSDL17dsm_tmb_mgcv_spde_tw_mesh5		2017		SPDE		598		604		160		342		160		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 75; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		154		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly worse than the mesh6 analog; this model also has higher AIC than mesh6.		N

		6		NSDL17dsm_tmb_mgcv_spde_tw_mesh6		2017		SPDE		598		604		199		342		199		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 60; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		172		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly better than the mesh5 analog; this model also has lower AIC than mesh5.		Y

		7		NSDL22dsm_tmb_mgcv_spde_tw_mesh1		2022		SPDE		241		317		831		554		831		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		29		0				dispersion test significant; quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		8		NSDL22dsm_tmb_mgcv_spde_tw_mesh3		2022		SPDE		241		317		257		554		257		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg3 <- 75; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		78		0		quantile deviations detected; combined adjusted quantile test significant						N

		9		NSDL22dsm_tmb_mgcv_spde_tw_mesh4		2022		SPDE		241		317		351		554		351		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0								N

		10		NSDL22dsm_tmb_mgcv_spde_tw_mesh5		2022		SPDE		241		317		308		554		308		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 60; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		71		0		quantile deviations detected; combined adjusted quantile test n.s.				Chose lowest AIC out of mesh3, mesh4, mesh5, and mesh6		Y

		11		NSDL22dsm_tmb_mgcv_spde_tw_mesh6		2022		SPDE		241		317		326		554		326		55		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 55; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		73		0								N

		12		NSDL17dsm_tmb_spde_tw_bnd_mesh1		2017		barrier SPDE		598		604		675		342		675		25		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 25; mesh1 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		104		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		13		NSDL17dsm_tmb_spde_tw_bnd_mesh4		2017		barrier SPDE		598		604		295		342		295		50		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 50; mesh4 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		122		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		14		NSDL17dsm_tmb_spde_tw_bnd_mesh5		2017		barrier SPDE		598		604		177		342		177		75		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg5 <-75; mesh5 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		116		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		15		NSDL17dsm_tmb_spde_tw_bnd_mesh6		2017		barrier SPDE		598		604		213		342		213		60		strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg6 <-60; mesh6 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg6,cutoff = max.ed6/5)		105		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		16		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh1		2017		oscillating SPDE		598		604		595		342		595		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; bound.outer = diff(range(seg.dat$y))/3; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5)		136		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		17		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh2		2017		oscillating SPDE		598		604		564		342		564		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		106		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		18		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh3		2017		oscillating SPDE		598		604		528		342		528		25		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.2); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		80		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		19		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh4		2017		oscillating SPDE		598		604		289		342		289		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg4 <- 50; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		108		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa flag; retained lowest AIC out of osc_mesh4, 5, and 6		N

		20		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh5		2017		oscillating SPDE		598		604		160		342		160		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg5 <- 75; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		111		0						Retained lowest AIC out of osc_mesh4, 5, and 6		Y

		21		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh6		2017		oscillating SPDE		598		604		199		342		199		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg6 <- 60; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		109		0						Retained lowest AIC out of osc_mesh4, 5, and 6		N

		22		NSDL22dsm_tmb_spde_tw_bnd_mesh1		2022		barrier SPDE		241		317		350		554		350		55		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 55; mesh1 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		54		0						Retained lowest AIC out of bnd_mesh1 and 2		N

		23		NSDL22dsm_tmb_spde_tw_bnd_mesh2		2022		barrier SPDE		241		317		312		554		312		60		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg2 <- 60; mesh2 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg2,cutoff = max.edg2/5)		67		0						Retained lowest AIC out of bnd_mesh1 and 2		Y

		24		NSDL22dsm_tmb_spde_tw_bnd_mesh3		2022		barrier SPDE		241		317		251		554		251		75		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg3 <- 75; mesh3 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		74		1						tmb.bc.Nhat_pred.sd NA		N

		25		NSDL22dsm_tmb_spde_tw_bnd_mesh4		2022		barrier SPDE		241		317		642		554		642		40		bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 40; mesh4 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		50		0				quantile deviations detected; combined adjusted quantile test significant		DHARMa red flag		N

		26		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh3		2022		oscillating SPDE		241		317		257		554		257		75		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg3 <- 75; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		76		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		27		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh4		2022		oscillating SPDE		241		317		351		554		351		50		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg4 <- 50; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		28		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh5		2022		oscillating SPDE		241		317		308		554		308		60		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg5 <- 60; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		Y

		29		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh6		2022		oscillating SPDE		241		317		326		554		326		55		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg6 <- 55; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		30		NSDL17dsm_tmb_tw_soap_xy_10000		2017		soap(x,y)				NA		NA		NA		NA		NA		NA		NA		0								Y

		31		NSDL17dsm_tmb_tw_te_10000		2017		te(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		0				quantile deviations detected; combined adjusted quantile test n.s.				Y

		32		NSDL17dsm_tmb_tw_xy_10000		2017		s(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		0								Y

		33		NSDL22dsm_tmb_tw_soap_xy_10000		2022		soap(x,y)				NA		NA		NA		NA		NA		NA		NA		2								Y

		34		NSDL22dsm_tmb_tw_te_10000		2022		te(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		3								N

		35		NSDL22dsm_tmb_tw_xy_10000		2022		s(x,y, bs="ts")				NA		NA		NA		NA		NA		NA		NA		2		KS test significant				Signficant KS test for mgcv model, but DHARMa detected nothing unusual for tmb model. No other flags.		Y





cleanish

				lyr.name		Year		Spatial Formulation		number of observations		number of segments		number of nodes		number of cells		max.edge inside (outside)		cutoff		inner boundary		outer boundary		detailed mesh definition (delete for final draft)		range.tmb		number unsampled cells with extreme predicted abundance		mgcv DHARMa notes (add to Summary Notes)		TMB DHARMa notes (add to Summary Notes)		Summary Notes		Include in Ensemble

		1		NSDL17dsm_tmb_mgcv_spde_tw_mesh1		2017		SPDE (Matérn)		598		604		595		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); bound.outer = diff(range(seg.dat$y))/3; max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5) 		159.1371827838		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		2		NSDL17dsm_tmb_mgcv_spde_tw_mesh2		2017		SPDE (Matérn)		598		604		564		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		150.0763159688		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		3		NSDL17dsm_tmb_mgcv_spde_tw_mesh3		2017		SPDE		598		604		528		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.20); max.edg1 <- 25; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		132		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		4		NSDL17dsm_tmb_mgcv_spde_tw_mesh4		2017		SPDE		598		604		289		342		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		162		0		quantile deviations detected; combined adjusted quantile test significant		quantile deviations detected; combined adjusted quantile test significant		50 max edge might still be too small		N

		5		NSDL17dsm_tmb_mgcv_spde_tw_mesh5		2017		SPDE		598		604		160		342		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 75; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		154		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly worse than the mesh6 analog; this model also has higher AIC than mesh6.		N

		6		NSDL17dsm_tmb_mgcv_spde_tw_mesh6		2017		SPDE		598		604		199		342		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 60; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		172		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa resids for TMB model look slightly better than the mesh5 analog; this model also has lower AIC than mesh5.		Y

		7		NSDL22dsm_tmb_mgcv_spde_tw_mesh1		2022		SPDE		241		317		831		554		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg1 <- 25; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		29		0				dispersion test significant; quantile deviations detected; combined adjusted quantile test significant		25 m max.edge is bad		N

		8		NSDL22dsm_tmb_mgcv_spde_tw_mesh3		2022		SPDE		241		317		257		554		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg3 <- 75; mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		78		0		quantile deviations detected; combined adjusted quantile test significant						N

		9		NSDL22dsm_tmb_mgcv_spde_tw_mesh4		2022		SPDE		241		317		351		554		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg4 <- 50; mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0								N

		10		NSDL22dsm_tmb_mgcv_spde_tw_mesh5		2022		SPDE		241		317		308		554		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg5 <- 60; mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		71		0		quantile deviations detected; combined adjusted quantile test n.s.				Chose lowest AIC out of mesh3, mesh4, mesh5, and mesh6		Y

		11		NSDL22dsm_tmb_mgcv_spde_tw_mesh6		2022		SPDE		241		317		326		554		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc); boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); max.edg6 <- 55; mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		73		0								N

		12		NSDL17dsm_tmb_spde_tw_bnd_mesh1		2017		barrier SPDE		598		604		675		342		25 (50)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 25; mesh1 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		104		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		13		NSDL17dsm_tmb_spde_tw_bnd_mesh4		2017		barrier SPDE		598		604		295		342		50 (100)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 50; mesh4 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		122		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		14		NSDL17dsm_tmb_spde_tw_bnd_mesh5		2017		barrier SPDE		598		604		177		342		75 (150)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg5 <-75; mesh5 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		116		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		15		NSDL17dsm_tmb_spde_tw_bnd_mesh6		2017		barrier SPDE		598		604		213		342		60 (120)		0.2*max.edge		coastline and study area boundaries				strat.bnd <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg6 <-60; mesh6 = INLA::inla.mesh.2d(boundary = strat.bnd,loc=loc,max.edge=c(1,2)*max.edg6,cutoff = max.ed6/5)		105		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		16		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh1		2017		oscillating SPDE		598		604		595		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; bound.outer = diff(range(seg.dat$y))/3; mesh1 <- INLA::inla.mesh.2d(loc=loc,boundary=boundary,max.edge=c(1,2)*max.edg1,offset=c(max.edg1, bound.outer),cutoff = max.edg1/5)		136		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		17		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh2		2017		oscillating SPDE		598		604		564		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh2 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		106		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		18		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh3		2017		oscillating SPDE		598		604		528		342		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg1 <- 25; boundary3 = INLA::inla.nonconvex.hull(loc,convex = -0.2); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary3),max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		80		0				quantile deviations detected; combined adjusted quantile test significant		exclude based on DHARMa 		N

		19		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh4		2017		oscillating SPDE		598		604		289		342		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg4 <- 50; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		108		0				quantile deviations detected; combined adjusted quantile test n.s.		DHARMa flag; retained lowest AIC out of osc_mesh4, 5, and 6		N

		20		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh5		2017		oscillating SPDE		598		604		160		342		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg5 <- 75; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		111		0						Retained lowest AIC out of osc_mesh4, 5, and 6; excluded from ensemble due to structural similarity to ensemble model		N

		21		NSDL17dsm_tmb_mgcv_spde_tw_osc_mesh6		2017		oscillating SPDE		598		604		199		342		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);             max.edg6 <- 60; boundary2 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary2),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		109		0						Retained lowest AIC out of osc_mesh4, 5, and 6		N

		22		NSDL22dsm_tmb_spde_tw_bnd_mesh1		2022		barrier SPDE		241		317		350		554		55 (110)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg1 <- 55; mesh1 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg1,cutoff = max.edg1/5)		54		0						Retained lowest AIC out of bnd_mesh1 and 2		N

		23		NSDL22dsm_tmb_spde_tw_bnd_mesh2		2022		barrier SPDE		241		317		312		554		60 (120)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg2 <- 60; mesh2 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg2,cutoff = max.edg2/5)		67		0						Retained lowest AIC out of bnd_mesh1 and 2		Y

		24		NSDL22dsm_tmb_spde_tw_bnd_mesh3		2022		barrier SPDE		241		317		251		554		75 (150)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg3 <- 75; mesh3 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		74		1						tmb.bc.Nhat_pred.sd NA		N

		25		NSDL22dsm_tmb_spde_tw_bnd_mesh4		2022		barrier SPDE		241		317		642		554		40 (80)		0.2*max.edge		coastline and study area boundaries				bnd22 <- inla.mesh.segment(loc=cbind(buff.bnd.list$x,buff.bnd.list$y)); loc <- cbind(seg.dat$x, seg.dat$y); max.edg4 <- 40; mesh4 = INLA::inla.mesh.2d(boundary = bnd22,loc=loc,max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		50		0				quantile deviations detected; combined adjusted quantile test significant		DHARMa red flag		N

		26		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh3		2022		oscillating SPDE		241		317		257		554		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg3 <- 75; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh3 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg3,cutoff = max.edg3/5)		76		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		27		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh4		2022		oscillating SPDE		241		317		351		554		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg4 <- 50; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh4 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg4,cutoff = max.edg4/5)		66		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		28		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh5		2022		oscillating SPDE		241		317		308		554		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg5 <- 60; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh5 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg5,cutoff = max.edg5/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6; excluded from ensemble due to structural similarity to SPDE model		N

		29		NSDL22dsm_tmb_mgcv_spde_tw_osc_mesh6		2022		oscillating SPDE		241		317		326		554		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		loc = cbind(seg.dat$x, seg.dat$y); boundary = INLA::inla.nonconvex.hull(loc);           max.edg6 <- 55; boundary1 = INLA::inla.nonconvex.hull(loc,convex = -0.35); mesh6 <- INLA::inla.mesh.2d(loc=loc,boundary=list(boundary,boundary1),max.edge=c(1,2)*max.edg6,cutoff = max.edg6/5)		65		0						Retained lowest AIC out of osc_mesh3, 4, 5, and 6		N

		30		NSDL17dsm_tmb_tw_soap_xy_10000		2017		soap(x,y)				NA		NA		NA		NA								NA		NA		0								Y

		31		NSDL17dsm_tmb_tw_te_10000		2017		te(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		0				quantile deviations detected; combined adjusted quantile test n.s.				Y

		32		NSDL17dsm_tmb_tw_xy_10000		2017		s(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		0								Y

		33		NSDL22dsm_tmb_tw_soap_xy_10000		2022		soap(x,y)				NA		NA		NA		NA								NA		NA		2								Y

		34		NSDL22dsm_tmb_tw_te_10000		2022		te(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		3								N

		35		NSDL22dsm_tmb_tw_xy_10000		2022		s(x,y, bs="ts")				NA		NA		NA		NA								NA		NA		2		KS test significant				Signficant KS test for mgcv model, but DHARMa detected nothing unusual for tmb model. No other flags.		Y





TableS6_1

		Year		Spatial Formulation		Number of Observations		Number of Transect Segments		Number of Prediction Cells		Number of Nodes		max.edge Inside (Outside)		Cutoff		Inner Boundary		Outer Boundary		Smoothing Spline Variables		number unsampled cells with extreme predicted abundance

		2017		SPDE Matérn		598		604		342		595		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints, plus a buffer of 25 km		offset from the inner boundary by a distance equal to 1/3 the latitudinal range of the study area		NA		0

		2017		SPDE Matérn		598		604		342		564		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		528		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 20% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		289		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		160		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn		598		604		342		199		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2017		SPDE Matérn with barriers		598		604		342		675		25 (50)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		295		50 (100)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		177		75 (150)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		SPDE Matérn with barriers		598		604		342		213		60 (120)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2017		Soap film smoother		598		604		342		NA		NA		NA		NA		NA		s(easting, northing, bs="so", k=30)		0

		2017		Tensor product smoother		598		604		342		NA		NA		NA		NA		NA		te(easting, northing, bs="ts", k=15)		0

		2017		Bivariate isotropic tprs		598		604		342		NA		NA		NA		NA		NA		s(easting, northing, bs="ts")		0

		Year		Spatial Formulation		Number of Observations		Number of Transect Segments		Number of Prediction Cells		Number of Nodes		max.edge Inside (Outside)		Cutoff		Inner Boundary		Outer Boundary		Smoothing Spline Variables		number unsampled cells with extreme predicted abundance

		2022		SPDE Matérn		241		317		554		831		25 (50)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		257		75 (150)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		351		50 (100)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		308		60 (120)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn		241		317		554		326		55 (110)		0.2*max.edge		non-convex hull around all segment midpoints		offset from the inner boundary by a distance equal to 35% of the inner boundary diameter		NA		0

		2022		SPDE Matérn with barriers		241		317		554		350		55 (110)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		SPDE Matérn with barriers		241		317		554		312		60 (120)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		SPDE Matérn with barriers		241		317		554		251		75 (150)		0.2*max.edge		coastline and study area boundaries		NA		NA		1

		2022		SPDE Matérn with barriers		241		317		554		642		40 (80)		0.2*max.edge		coastline and study area boundaries		NA		NA		0

		2022		Soap film smoother		241		317		554		NA		NA		NA		NA		NA		s(easting, northing, bs="so",k=60)		2

		2022		Tensor product smoother		241		317		554		NA		NA		NA		NA		NA		te(easting, northing, bs="ts", k=15)		3

		2022		Bivariate isotropic tprs		241		317		554		NA		NA		NA		NA		NA		s(easting, northing, bs="ts")		2







2017 candidate models in 
ensemble



2017 TMB SPDE mesh6 (max.edge = 60 km)



2017 TMB soap(easting,northing)



2017 TMB te(easting,northing)



2017 TMB s(easting,northing,bs=“ts”)



2022 candidate models in 
ensemble



2022 TMB SPDE mesh5 (max.edge = 60 km)



2022 TMB SPDE w/barriers mesh2 (max.edge = 60 km)



2022 TMB soap(easting,northing)



2022 TMB s(easting,northing,bs=“ts”)



What to do when you can’t choose just one:
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