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ABSTRACT 14 

Spatially-explicit models of animal density, such as density surface models (DSMs), are diverse, 15 
flexible, and powerful tools for investigating spatial patterns in animal density, examining 16 
associations between animal density and environmental covariates, and estimating abundance. 17 
Advances in spatial modeling methods and subsequent incorporation into widely accessible software 18 
allow the non-specialist to add these tools to their analytical toolbox. However, limitations in some 19 
software may prevent a thorough treatment of uncertainty. We expanded the functionality of tools 20 
for constructing DSMs from line-transect survey data to derive a population abundance estimate 21 
that honestly accounts for multiple sources of detection bias and associated uncertainty. As an 22 
illustrative case study, we used data collected during an aerial line-transect survey for Western Arctic 23 
bowhead whales (Balaena mysticetus) over their summering grounds in the Beaufort Sea and 24 
Amundsen Gulf during August 2019. Using spatially explicit hierarchical generalized additive models 25 
that incorporated correction factors and associated uncertainty for perception and availability bias, 26 
we estimated the abundance of the Western Arctic bowhead whale population to be 17,175 whales 27 
(𝐶𝐶𝐶𝐶�  = 0.237; 95% confidence interval = [10,793, 27,330]). This model-based abundance estimate is 28 
similar in magnitude to the two most recent estimates for this population based on data from ice-29 
based surveys in 2011 and 2019 . Additionally, our abundance estimate is sufficiently precise to 30 
inform management decisions for this protected species. The enhanced precision of our abundance 31 
estimate over the estimate derived using design-based analytical methods applied to the same data is 32 
due to explicit modeling of the spatial correlation in whale density. Applying the power of DSMs to 33 
the aerial line-transect survey data made this survey methodology a viable alternative to ice-based 34 
surveys, which are facing obstacles due to climate change, for updating abundance estimates for 35 
Western Arctic bowhead whales in the future. Our analytical developments can easily be applied to 36 
other line-transect datasets with similar and common challenges due to multiple survey platforms, 37 
spatial heterogeneity in animal density and environmental conditions, and habitat partitioning among 38 
groups (e.g., defined by age, sex, activity state) in the target population.   39 
 40 
INTRODUCTION 41 

Understanding population dynamics, assessing population status, and investigating a population’s 42 
ecological role often require knowledge of the population’s size and spatial distribution. Line-43 
transect surveys are a reliable method for collecting data to address these and other questions. If 44 



2 
 

certain assumptions about the survey design hold, line-transect survey data can be analyzed to derive 45 
valid abundance estimates using relatively simple “design-based” methods (Buckland et al. 2001; 46 
Hedley and Bravington 2014; Miller and Bravington 2017). In a spatially explicit modeling 47 
framework (e.g., Hedley and Buckland 2004; Johnson et al. 2010; Miller et al 2013), the number of 48 
questions that data from line-transect surveys and opportunistic surveys can address proliferates. For 49 
example, spatial models may be used to identify spatial patterns in animal density (the number of 50 
animals per unit area) at finer resolutions than design-based models; assist investigations into local or 51 
remote ecological mechanisms that shape spatial patterns in animal density; derive unbiased 52 
estimates of abundance; and provide input into protected species management, monitoring, and 53 
mitigation issues, such as spatial planning, impacts analysis, and designing effective monitoring 54 
protocols. 55 

To estimate absolute abundance or density from line-transect survey data, a number of parameters 56 
related to the observation process must be estimated. First, the probability that an animal that is 57 
within an observer’s field of view is also available to be seen may be less than 1.0. This availability 58 
bias (Marsh and Sinclair 1989) is especially relevant for cetaceans, who spend the majority of their 59 
time underwater where they cannot be detected by an aerial or vessel-based observer. Availability 60 
bias may be a function of animal behavior, observer field of view, or environmental factors such as 61 
turbidity or glare that affect the ability to see underwater animals. Second, the probability that an 62 
animal that is available to be seen is actually detected is typically less than 1.0. This issue, termed 63 
perception bias (Marsh and Sinclair 1989), is often characterized by an inverse relationship between 64 
detection probability and distance between the animal and the observer: the probability of detecting 65 
an animal located very close to the survey platform is relatively high (but often less than 1.0), 66 
whereas animals located farther away are smaller, the field of view is wider, and the animal is harder 67 
to detect (Buckland et al. 2001). Other factors that may affect perception bias include characteristics 68 
of the animal (body size, coloration, group size, behavior) or environment (glare, precipitation, 69 
clouds, water color and clarity, wind waves, presence of sea ice). None of the parameters describing 70 
availability and perception bias are known with certainty.  71 

In a decision making context, it is crucial that scientific advice accurately and honestly depicts the 72 
uncertainty in quantities relevant to management. This is particularly true for protected or harvested 73 
species for which policy decisions hinge on both population status and uncertainty therein. In the 74 
case of line-transect data, the uncertainty stems from the variability in sightings across sample units 75 
and the parameters describing availability and perception bias. The methods available to propagate 76 
this uncertainty depend on the overall modeling framework (e.g., Hedley and Bravington 2014; 77 
Bravington and Miller 2021).  78 

Density surface models (DSMs) can be used as a framework to both estimate abundance and 79 
propagate uncertainty. DSMs are particularly useful for estimating abundance from line-transect 80 
survey data when assumptions for design-based methods are not met (Hedley and Bravington 2014; 81 
Miller and Bravington 2017). We use “design-based” to refer to analytical methods that rely on 82 
assumptions about the survey design or sampling procedure, although other authors (e.g., Miller and 83 
Bravington 2017) refer to them as Horvitz-Thompson estimators, and Fewster and Buckland (2004) 84 
explain that estimating abundance from line-transect data fundamentally requires analytical methods 85 
that are not purely design-based. Design-based methods may produce biased results when survey 86 
coverage is not constant throughout the study area, or when sighting conditions and animal density 87 
are spatially heterogeneous. Even when design-based modeling assumptions hold, analyzing data 88 
using a DSM may improve precision or reduce bias in the abundance estimate or its estimated 89 
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uncertainty (Miller and Bravington 2017). Furthermore, DSMs assume that animal density is spatially 90 
correlated and they estimate correlation parameters, allowing estimation of animal abundance (or 91 
density) and associated uncertainty at finer spatial resolutions than design-based models (Hedley and 92 
Bravington 2014). In a design-based analysis, the sample unit for estimating variance is typically the 93 
transect, and 10-20 transects located across a survey region are needed to reliably estimate precision 94 
(Fewster and Buckland 2004; Hedley and Bravington 2014). Therefore, transect number and spacing 95 
limit the spatial resolution of abundance estimates using design-based methods. 96 

Two broad classes of DSMs for analyzing line-transect survey data are one-stage models and two-97 
stage models. One-stage DSMs jointly estimate parameters for the observation process and the 98 
spatial density surface in a single model (e.g., Yuan et al. 2017; Johnson et al. 2010). In a two-stage 99 
DSM, parameters for the observation process are estimated first, and then bias-corrected counts of 100 
animals comprise the response variable for fitting a density surface model. We focus on the two-101 
stage DSM because well-developed tools exist to create models that meet the needs of a variety of 102 
datasets and to evaluate model fit at each stage.   103 

Estimating population abundance for Western Arctic bowhead whales (Balaena mysticetus) from data 104 
collected during a broad-scale aerial line-transect survey over the majority of the population’s 105 
summer range (Clarke et al. 2020) provides an ideal case study for propagating multiple sources of 106 
uncertainty through a DSM. In this case, the additional parameters that need to be estimated and 107 
incorporated into the abundance estimate along with the DSM parameters relate to the estimates of 108 
perception and availability bias for two types of aircraft, and the effects of bowhead whale activity 109 
state (feeding, traveling, socializing or resting at the surface) on availability bias for each sighting. 110 
The Western Arctic bowhead whale population is a conservation and management priority because 111 
it is vitally important to Alaska Native subsistence and culture. The aboriginal subsistence harvest is 112 
governed by the Whaling Convention Act and co-managed by the Alaska Eskimo Whaling 113 
Commission (AEWC) and the National Marine Fisheries Service (NMFS), according to a quota 114 
from the International Whaling Commission (IWC; IWC 2018). Furthermore, this population was 115 
severely depleted due to commercial whaling that occurred between 1848 and 1914 (Bockstoce and 116 
Burns 1993). As a result, the population was listed as endangered under the US Endangered Species 117 
Conservation Act in 1970, and has been listed as endangered under the US Endangered Species Act 118 
since 1973, although prudent management has allowed the population to successfully rebound 119 
(Givens et al. 2021a; Muto et al. 2021). The population receives additional protection under the US 120 
Marine Mammal Protection Act. Lastly, bowhead whales are endemic to the Arctic, one of the most 121 
rapidly changing places on Earth (Moon et al. 2021). 122 

Long-term monitoring and precise and unbiased abundance estimates have been integral to the 123 
management strategy for Western Arctic bowhead whales. From 1978 to 2011, the gold standard for 124 
Western Arctic bowhead whale abundance estimates was derived from data collected during spring 125 
by visual observers stationed on land-fast sea ice who recorded bowhead whales migrating past 126 
Point Barrow, Alaska, to summering grounds in the Beaufort Sea and Amundsen Gulf; during some 127 
years, concurrent passive acoustic monitoring was used to estimate availability bias (Givens et al. 128 
2016, 2021a; Suydam et al. 2019). Up through 2011, there were 21 attempted ice-based surveys 129 
(George et al. 2013), which resulted in a series of 12 abundance estimates. Additionally, three 130 
abundance estimates (1986, 2004, and 2011) were derived from aerial imagery using photo 131 
identification (photo-ID) in a mark-recapture framework (da Silva et al. 2000; Koski et al. 2010; 132 
Givens et al. 2018). 133 
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There are limitations to the established data collection and analytical methods, especially due to rapid 134 
climate changes. Spring sea ice conditions are changing, resulting in safety and logistical challenges 135 
for the ice-based survey team and deviations in the whales’ migration path. Climate forecasts predict 136 
that Arctic sea ice will continue to decline (Wang and Overland 2015). Existing methods to match 137 
photos of individual whales are time-consuming and require specialized expertise. Additionally, there 138 
is considerable uncertainty in the proportion of the population that is “unmarked”, a parameter that 139 
is essential to the photo-ID mark-recapture estimator (Givens et al. 2018). Furthermore, mark-140 
recapture abundance estimates can be subject to bias from unexplained heterogeneity (Laake et al. 141 
2008). Therefore, during 2019, a spring ice-based visual survey (Givens et al. 2021a) and a summer 142 
aerial line-transect survey were conducted with the goal of generating independent abundance 143 
estimates for Western Arctic bowhead whales during the same year. The August 2019 aerial line-144 
transect survey was a pilot study to determine whether this methodology provides a viable 145 
alternative to ice-based surveys for updating abundance estimates for Western Arctic bowhead 146 
whales in the future, while continuing to minimize bias and maximize precision in the estimate. 147 

Here, we advance estimation methods from line-transect methods in two ways. First, we illustrate 148 
how to honestly account for multiple sources of bias and associated uncertainty in the line-transect 149 
observation process, and to accurately propagate that uncertainty through the density surface model. 150 
Second, we evaluate the extent to which the precision in the abundance estimate is enhanced by 151 
using spatially-explicit modeling methods compared to design-based methods. To reach these goals, 152 
we address three objectives: 1) use a spatially-explicit model to derive an unbiased and precise 153 
population abundance estimate for Western Arctic bowhead whales; 2) expand the capabilities of R 154 
packages mrds (Laake et al. 2021) and dsm (Miller et al. 2021) for analyzing line-transect data and 155 
creating density surface models, respectively; and 3) compare the precision of the model-based 156 
abundance estimate to a design-based abundance estimate (Ferguson et al. 2021) to evaluate whether 157 
the additional analytical steps were worthwhile.  158 

METHODS 159 

We begin with a brief summary of the field methods, followed by detailed analytical methods for the 160 
availability bias, DSM, and uncertainty estimation components of the analysis. Additional methods 161 
and results are provided in appendices. In the discussion, we examine the results from our DSM in 162 
light of existing information about Western Arctic bowhead whale ecology in the study area, address 163 
our ability to account for all known sources of bias, and compare our abundance estimate to those 164 
from the ice-based survey and photo-ID data.  165 

Field Methods 166 
Aerial line-transect surveys 167 
Comprehensive descriptions of the aerial line-transect survey field methods are available in Clarke et 168 
al. (2020) and Ferguson et al. (2021). We provide a short summary here.  169 

The Western Arctic bowhead whale abundance aerial line-transect surveys were conducted from 5 to 170 
27 August 2019, covering most of the population’s summer range, encompassing the Beaufort Sea 171 
continental shelf and a portion of Amundsen Gulf (Figure 1; total area 203,885 km2). The surveys 172 
were conducted by the Aerial Surveys of Arctic Marine Mammals (ASAMM) project, which 173 
collected a long time series (1979-2019) of data on the distribution, density, habitat use, and 174 
behavior of marine mammals, primarily bowhead whales and other cetaceans, in the western 175 
Beaufort and eastern Chukchi seas during the open water season, July through October. The Bureau 176 
of Ocean Energy Management funded and co-managed ASAMM; the Marine Mammal Laboratory 177 
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at NOAA’s Alaska Fisheries Science Center conducted and co-managed surveys from 2007-2019, 178 
and contributed funding to the August 2019 surveys.  179 

The survey design comprised systematic transects placed 19 km apart, based on a grid with a 180 
randomly selected start point (Figure 1). Transects were oriented perpendicular to the coastline, 181 
from shore to the 200-m isobath. The survey design incorporated a few transects in the western 182 
Beaufort Sea that extended to the 2000-m isobath to determine whether the bowhead whale 183 
distribution extended beyond the continental shelf break (Clarke et al. 2020).  184 

One Turbo Commander aircraft based in Deadhorse, Alaska, USA, surveyed the western Beaufort 185 
Sea. One Turbo Commander based in Inuvik, Northwest Territories, Canada, surveyed the eastern 186 
Beaufort Sea and Amundsen Gulf. The two Turbo Commanders had identical configurations, with 187 
the exception that the aircraft based in Inuvik had a belly port with a mounted camera. One De 188 
Havilland Twin Otter aircraft based in Ulukhaktok, Northwest Territories, Canada, from 5 to 15 189 
August and Inuvik from 16 to 27 August surveyed the eastern Beaufort Sea and Amundsen Gulf. 190 
Surveys were flown 305-460 m above ground level at a survey speed of 213 km/hr. All three aircraft 191 
had bubble windows for the left- and right-side primary observers. Bubble windows in the Twin 192 
Otter were smaller than those in the Turbo Commanders.  193 

Each survey team comprised two primary observers and one dedicated data recorder. The data 194 
recorder used custom-built, menu-driven software to enter sighting data into a laptop computer 195 
interfaced with a global positioning system. Time and position data (latitude, longitude, altitude) 196 
were automatically recorded every 30 seconds (in time) and whenever a manual data entry was 197 
recorded. At every 5-minute time interval or whenever conditions changed, environmental and 198 
viewing conditions were recorded, including integer-valued Beaufort Sea State (wind force scale 0-6), 199 
visibility range perpendicular to the aircraft on each side of the plane (<1 km, 1-2 km, 2-3 km, 3-5 200 
km, 5-10 km, or unlimited), sky conditions (clear, partly cloudy, overcast), integer-valued sea ice 201 
percent on each side of the plane, and impediments to visibility (glare, fog, haze, precipitation, ice on 202 
the window, low ceiling) on each side of the plane. Primary observers scanned with naked eye, using 203 
binoculars only to check potential targets or get a magnified view on a confirmed target. Declination 204 
angles from the horizon to each sighting were measured using handheld Suunto clinometers when 205 
the sighting was abeam. One “sighting” or “group” was defined as all animals of the same species 206 
within 5 body lengths of each other; therefore, a group could comprise one or more animals. Once 207 
the clinometer angle was recorded, most sightings of large cetaceans (i.e., anything larger than a 208 
beluga, Delphinapterus leucas) were circled to confirm species identification, obtain a final group size 209 
estimate, look for calves, and determine behavior. Sightings that could not be positively identified to 210 
species were recorded at the taxonomic level to which they could be identified (e.g., unidentified 211 
cetacean). Both initial and final group size estimates were recorded in the database; if group size 212 
could not be determined with certainty, high or low estimates were recorded. Circling did not 213 
commence in special circumstances, such as restrictions due to weather, fuel, time of day, or duty 214 
hours, or in the vicinity of subsistence hunting activities or sensitive wildlife.  215 

Data from six survey modes (Clarke et al. 2020) were used to estimate perception bias and build the 216 
DSM: transect, circling from transect, cetacean aggregation protocols (hereafter simplified to 217 
“aggregation protocols”), circling aggregation protocols, search, and circling from search. During all 218 
six of these survey modes, observers were actively surveying and all sightings and effort data were 219 
recorded. Transect effort refers to systematic survey effort along a prescribed transect line. Search 220 
refers to non-systematic survey effort during transit or between transects. Circling from search or 221 
transect occurred when the aircraft diverted from flat and level flight to investigate a sighting or 222 
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potential sightings in a localized area. Standard line-transect survey protocols (Buckland et al. 2001) 223 
were followed until bowhead whale encounter rates exceeded the observers’ ability to accurately 224 
record location and clinometer angle to each sighting. In areas with extremely high densities of 225 
bowhead whales, aggregation protocols were used, wherein the survey team flew through the high-226 
density patch in passing mode to collect accurate encounter rate data, then flew back through the 227 
patch in closing (circling aggregation protocols) mode to collect information on group size, number 228 
of calves, and behavior (Clarke et al. 2020). Only data from transect and aggregation protocols 229 
(without circling) were used to estimate encounter rate for the DSM. Data from transect, 230 
aggregation protocols (without circling), and search were used to estimate perception bias. Data 231 
from the three circling modes were used only to confirm species identification, estimate group size, 232 
and examine behavior.  233 

Belly Port Imagery 234 
To estimate transect detection probability for the ASAMM observers, a downward-pointing digital 235 
single lens reflex camera with a 20- or 21-mm lens mounted to the belly of a Turbo Commander 236 
aircraft during ASAMM’s 2018 and 2019 field seasons collected true color (red, green, and blue 237 
[RGB]) imagery. The imagery served as an independent observer. Willoughby et al. (2021) provide 238 
detailed imagery collection and analysis methods and results. At 400 m survey altitude, a single image 239 
taken with the 21-mm lens captured a parcel of water measuring approximately 684 m perpendicular 240 
to the transect (342 m on each side of the transect) and 457 m along the transect. One image was 241 
collected every 2 to 3 seconds, resulting in each parcel of water being visible in three to four images. 242 
Metadata automatically written to each image included latitude, longitude, date, and time. Every third 243 
image collected was manually reviewed post-flight for marine mammal sightings by trained photo 244 
analysts (Willoughby et al. 2021). Any sightings detected in the imagery were manually compared to 245 
the visual survey database to determine matches based on date, time, and location (side of plane and 246 
distance from transect). 247 

Field-of-view (FOV) Trials 248 
To estimate the amount of time observers had to view a bowhead whale as a function of 249 
perpendicular distance to the transect, in 2018 and 2019 field-of-view (FOV) trials were flown by 250 
each aircraft type over land using a fixed structure (a Conex box for the Turbo Commander and a 251 
cabin for the Twin Otter) as a target. See Clarke et al. (2020) for additional details about the FOV 252 
field methods. These time-in-view estimates were incorporated into the availability bias correction 253 
factors explained below.  254 

Analytical Methods 255 
We used a combination of distance sampling, mark-recapture, and spatially explicit modeling 256 
techniques to create spatial surfaces of Western Arctic bowhead whale density across the Beaufort 257 
Sea and Amundsen Gulf. These density surfaces represented the estimated number of bowhead 258 
whales in each cell of a hexagonal lattice (10-km spatial resolution between cell midpoints) during 259 
the August 2019 survey period. To estimate total population abundance, we integrated across the 260 
density surfaces, multiplying the density estimates by geographic area. The data sources and subsets 261 
used in the analysis are shown in Figure 2, and a glossary of notations and abbreviations is provided 262 
in Appendix A. All analyses were conducted in R (R Core Team 2021), using packages mrds (Laake 263 
et al. 2021), dsm (Miller et al. 2021), mgcv (Wood 2017), sp (Pebesma and Bivand 2005; Bivand et al. 264 
2013), maptools (Bivand and Lewin-Koh 2019), raster (Hijmans 2020), rgeos (Bivand and Rundel 265 
2019), and rgdal (Bivand et al. 2019). 266 
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Because the resulting population abundance estimate is a function of geographic area, the 267 
geographic boundary for the analysis is important. For this analysis, the geographic boundary 268 
extended across the full longitude of the August 2019 study area (119o to 157o W; Figure 1). The 269 
coastlines of mainland Alaska and Canada, and Banks Island, defined the nearshore boundary for 270 
the analytical area. The offshore boundary reflected the expected and observed distributions of 271 
bowhead whales (Figure 1): in the western Beaufort Sea (141o to 157o W), the 2000-m isobath 272 
defined the offshore boundary; in the eastern Beaufort Sea and Amundsen Gulf (119o to 141o W), 273 
the offshore boundary was fixed at the 400-m isobath. The offshore boundary was placed 3 km 274 
outside of the closest transect to ensure that all valid bowhead whale sightings and survey effort 275 
were included in the analysis. 276 

The basic line-transect estimator of animal density is (Buckland et al. 2001; Burt et al. 2014): 277 

 
𝐷𝐷� =

1
𝑎𝑎

�
𝑆𝑆𝑗𝑗

�̂�𝑝�𝜃𝜃�; 𝒛𝒛𝑗𝑗�

𝑛𝑛𝑔𝑔

𝑗𝑗=1

 
[1] 

where 278 

𝑛𝑛𝑔𝑔 = total number of groups detected; 279 

𝑆𝑆𝑗𝑗 = size of group indexed by j; 280 

𝑎𝑎 = area searched, which is equal to 2𝑤𝑤𝑤𝑤; 281 

𝑤𝑤 = total length of transects surveyed; 282 

𝑤𝑤 = width of the strip searched on one side of the aircraft; 283 

�̂�𝑝�𝜃𝜃�; 𝒛𝒛𝑗𝑗� = estimate of the overall probability that an observer detects group j, given 284 
covariates 𝒛𝒛𝑗𝑗 that affect detectability; this term incorporates estimates of availability 285 
probability 𝑝𝑝𝑎𝑎, transect detection probability 𝑝𝑝1(0, 𝒛𝒛), and 𝑝𝑝∗(𝒛𝒛); 286 

�̂�𝑝1�0, 𝒛𝒛𝒋𝒋� = estimated probability that an observer detects a group located on the 287 
transect, given covariates 𝒛𝒛𝒋𝒋 relating to characteristics of the sighting or environmental 288 
conditions that affect detectability; 289 

𝑝𝑝∗��𝒛𝒛𝒋𝒋� = estimated probability that an ASAMM observer detects an group that is 290 
available to be seen, given covariates 𝒛𝒛𝒋𝒋 that affect detectability, assuming transect 291 

detection probability is 1.0; 𝑝𝑝∗��𝒛𝒛𝑗𝑗� = ∫ 𝑔𝑔�𝑤𝑤
0 �𝑦𝑦,𝒛𝒛𝑗𝑗�𝑑𝑑𝑦𝑦

𝑤𝑤
; 292 

𝑔𝑔�(𝑦𝑦, 𝒛𝒛) = multiple covariates distance sampling detection function, which specifies the 293 
shape and scale of the observation model and assumes detection probability on the 294 
transect equals 1.0 (Appendix B); 295 
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�̂�𝑝𝑎𝑎 = estimated probability that a group is at the surface and within an observer’s field 296 
of view; a measure of availability bias. 297 

We define a “group” as one or more bowhead whales located within 5 body lengths of each other 298 
and recorded as a single sighting in the ASAMM database. We decomposed the problem into the 299 
following components, which are addressed sequentially below and in appendices: detection 300 
functions; availability bias correction factors, which include a state model for availability that 301 
requires information on bowhead whale surface and dive behavior, and on the aircraft field of view; 302 
DSM; and uncertainty estimation.  303 

Detection Functions 304 
The probability that an ASAMM observer (“observer 1”) detects a group of whales located on the 305 
transect and the effects of distance (𝑦𝑦) from the transect (and possibly other covariates z) on 306 
detection probability were estimated using an observation model, 𝑝𝑝1(𝑦𝑦, 𝒛𝒛), for each aircraft. These 307 
concepts relate to perception bias. The observation models were formulated as mark-recapture 308 
multiple covariates distance sampling detection functions (Marques and Buckland 2003; Laake and 309 
Borchers 2004; Burt et al. 2014). Complete details about the detection function methods and results 310 
are provided in Appendix B. 311 

Availability Probability, 𝑝𝑝𝑎𝑎� 312 
The probability that an aerial observer will detect a cetacean during a line-transect survey is a 313 
function of the duration of time the observer has to detect the animal. Failing to account for the 314 
animal’s surface and dive durations or the observer's field of view leads to availability bias in 315 
estimated density or abundance (Laake and Borchers 2004).  316 

The state model for availability can be represented as the probability that an animal will surface 317 
within detectable range (Laake et al. 1997): 318 

 𝑝𝑝𝑎𝑎(𝑦𝑦) = 𝑃𝑃{𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑦𝑦 𝑎𝑎𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠} [2] 

 
=

𝜆𝜆
𝜆𝜆 + 𝜇𝜇

+
𝜇𝜇[1 − 𝑠𝑠𝑒𝑒𝑝𝑝{−𝜆𝜆𝜆𝜆(𝑦𝑦)}]

𝜆𝜆 + 𝜇𝜇
 

[3] 

 
= 1 −

𝜇𝜇𝑠𝑠𝑒𝑒𝑝𝑝{−𝜆𝜆𝜆𝜆(𝑦𝑦)}
𝜆𝜆 + 𝜇𝜇

 
[4] 

where 319 

𝑦𝑦 = perpendicular distance to the aircraft; 320 

𝜆𝜆 = rate parameter of the dive process; 321 

𝜇𝜇 = rate parameter of the surfacing process; 322 

𝜆𝜆(𝑦𝑦) = duration of time in which the ocean at perpendicular distance 𝑦𝑦 is in the observer’s view; 323 
this parameter is a function of the observer’s field of view; see Appendix C for details on how this 324 
parameter was estimated. 325 
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Letting the average dive duration be 𝔼𝔼(𝑑𝑑) = 1
𝜆𝜆
 and the average surface duration be 𝔼𝔼(𝑖𝑖) = 1

𝜇𝜇
, we 326 

get:  327 

 
�̂�𝑝𝑎𝑎(𝑦𝑦) =

 𝔼𝔼(𝑖𝑖)
 𝔼𝔼(𝑖𝑖) +  𝔼𝔼(𝑑𝑑) +

 𝔼𝔼(𝑑𝑑) �1 − 𝑠𝑠𝑒𝑒𝑝𝑝 �− 𝜆𝜆(𝑦𝑦)
𝐸𝐸(𝑑𝑑)��

 𝔼𝔼(𝑖𝑖) +  𝔼𝔼(𝑑𝑑)  

[5] 

For 𝔼𝔼(𝑖𝑖) and 𝔼𝔼(𝑑𝑑), we used the corresponding mean surface and mean dive duration estimates for 328 
undisturbed bowhead whales engaged in different activity states (A) in the southern Beaufort Sea 329 
from Robertson et al. (2013). Robertson et al. (2015) provides slightly different estimates of 𝔼𝔼(𝑖𝑖) 330 
and 𝔼𝔼(𝑑𝑑) for equivalent activity states. We chose to use the values from Robertson et al. (2013) in 331 
our analysis because we needed associated estimates of 𝜎𝜎𝑠𝑠 and 𝜎𝜎𝑑𝑑 , the standard errors of 𝔼𝔼(𝑖𝑖) and 332 
𝔼𝔼(𝑑𝑑), to estimate uncertainty in the availability probabilities.  333 

The categories and activity states that we considered in our analysis were travel, calf, social, and 334 
feeding in deep water (“deep.feed”) (Table 1). There was only a single bowhead whale sighting 335 
designated as social in the ASAMM August 2019 survey data. Socializing bowhead whales and calves 336 
tend to remain at the surface for relatively long periods. Therefore, we pooled sightings in which at 337 
least one calf was present with the sighting designated as social into a single activity state that we 338 
called “cow-calf or social” (cc.soc). To estimate availability bias for this activity state, we used 𝔼𝔼(𝑖𝑖) 339 
and 𝔼𝔼(𝑑𝑑) from Robertson et al.’s (2013) undisturbed calf category. In total, we computed six 340 
availability bias correction factors, one for each combination of aircraft (Turbo Commander, Twin 341 
Otter) and activity state (travel, cc.soc, deep.feed). 342 

Density Surface Model (DSM) 343 
Abundance was estimated using a density surface model. The basic DSM structure may be 344 
represented as (Bravington et al. 2021): 345 
 

𝔼𝔼�W𝑖𝑖|𝜷𝜷𝑑𝑑𝑠𝑠𝑑𝑑,𝝍𝝍,𝑝𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖�� = 𝑎𝑎𝑖𝑖𝑝𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖�𝑠𝑠𝑒𝑒𝑝𝑝�𝛽𝛽0,𝑑𝑑𝑠𝑠𝑑𝑑 + �𝑠𝑠𝑞𝑞�𝑠𝑠𝑖𝑖𝑞𝑞�
𝑞𝑞

� 
[6] 

where 346 

i = segment index; 347 

W𝑖𝑖 = random variable for the number of whales on segment i in the density surface model, and 𝜔𝜔𝑖𝑖 is 348 
the corresponding observed number; 349 

𝑠𝑠𝑖𝑖𝑞𝑞 = covariates that influence density (in this case, projected latitude and longitude); 350 

𝑎𝑎𝑖𝑖 = segment area, computed as 2wLi, where w is the difference between the right-truncation 351 
distance and left-truncation distance (Appendix B); 352 

Li  = length of transect surveyed in segment i; 353 
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𝑝𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖� = overall probability that an observer detects a group in segment i, given covariates 𝒛𝒛𝑖𝑖 that 354 
affect detectability; this term incorporates availability probability 𝑝𝑝𝑎𝑎, transect detection 355 
probability 𝑝𝑝1(0, 𝒛𝒛), and 𝑝𝑝∗(𝒛𝒛); 356 

fq = smooth function for the qth covariate; 357 

𝝍𝝍 = vector of smoothing parameters; 358 

𝜷𝜷𝑑𝑑𝑠𝑠𝑑𝑑 = vector of coefficients in the smooth functions, including β0,dsm, the intercept. 359 

The spatial resolution of the DSM was 10 km. This analytical resolution is approximately one-half 360 
the distance between adjacent transects, which were spaced 19 km apart. The DSM was constructed 361 
using sighting and effort summaries for 10-km segments of transect and aggregation protocols effort 362 
with width w as defined above and in (Appendix B). Residual segments that were <10 km entered 363 
the model as separate analytical units (i.e., they were not merged with an adjacent 10-km segment). 364 
Predictions from the DSM were based on a hexagonal lattice with cell midpoints located 10 km 365 
apart. All geospatial data were projected into an Equidistant Conic projection (false easting: 0.0; false 366 
northing: 0.0; central meridian: -138.2°; latitude of origin: 71.4°; standard parallels: 69.5°, 72.3°; 367 
WGS84 datum; linear unit: meter [1.0]). 368 

We evaluated DSMs formulated as single-level and hierarchical generalized additive models (Hastie 369 
and Tibshirani 1990; Wood 2017 Pedersen et al. 2019) with logarithmic link functions (Table 2). The 370 
hierarchical model is discussed further below. The basic equation for the single-level model is:  371 

 𝑎𝑎𝑙𝑙𝑔𝑔�𝔼𝔼�𝑊𝑊𝑖𝑖|𝜷𝜷𝑑𝑑𝑠𝑠𝑑𝑑,𝝍𝝍,𝑝𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖��� = 𝛽𝛽0,𝑑𝑑𝑠𝑠𝑑𝑑 + �𝑠𝑠𝑞𝑞�𝑠𝑠𝑖𝑖𝑞𝑞�
𝑞𝑞

+ 𝑎𝑎𝑙𝑙𝑔𝑔�𝑎𝑎𝑖𝑖𝑝𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖�� [7] 

Due to the complex coastline in the study area, which includes multiple peninsulas and estuaries 372 
(Figure 1), we evaluated candidate models that used soap film smoothers (Wood et al. 2008) and 373 
tensor products of thin plate regression splines (Wood 2017).  374 

Because there was a high proportion of transect segments with zero bowhead whale sightings, we 375 
evaluated candidate DSMs built using negative binomial and Tweedie (Jørgensen 1987; Dunn and 376 
Smyth 2005) distributions. The negative binomial distribution is a discrete probability distribution 377 
that is commonly used to model count data that are overdispersed relative to a Poisson distribution 378 
(e.g., McCullagh and Nelder 1999). The Tweedie family comprises exponential dispersion models in 379 
which the variance is proportional to the mean (𝜉𝜉) raised to a power (𝜋𝜋) (Jørgensen 1987). If we 380 
define 𝜂𝜂𝑖𝑖 = 𝑎𝑎𝑙𝑙𝑔𝑔(𝜔𝜔𝑖𝑖) and let Ω𝑖𝑖 be the random variable associated with observation 𝜂𝜂𝑖𝑖 , then 381 
Ω𝑖𝑖~𝜆𝜆𝑤𝑤𝑠𝑠𝑠𝑠𝑑𝑑𝑎𝑎𝑠𝑠(𝜉𝜉,𝜑𝜑,𝜋𝜋), where 𝜑𝜑 is the scale or dispersion parameter, and 𝑣𝑣𝑎𝑎𝑠𝑠(Ω𝑎𝑎) = 𝜑𝜑𝜉𝜉𝜋𝜋. The 382 
mgcv package restricts 𝜋𝜋 to be between 1 and 2. The class of Tweedie distributions includes a few 383 
special cases, including the normal (𝜋𝜋 = 0), Poisson (𝜋𝜋 = 1), and gamma (𝜋𝜋 = 2) (Dunn and Smyth 384 
2005). The Tweedie distribution offers a flexible alternative to the negative binomial distribution for 385 
modeling count data when there are a high proportion of zeros; unlike the zero-inflated negative 386 
binomial distribution, the Tweedie avoids multiple-stage modeling of zero-inflated data (e.g., Candy 387 
2004; Miller et al. 2013). 388 
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To accommodate activity state-specific values of 𝑝𝑝𝑎𝑎�(0), we created and estimated parameters for a 389 
hierarchical model that allowed for factor-smooth interactions. Specifically, we used the “GS” model 390 
from Pedersen et al. (2019), which creates a global smooth, plus group-level smoothers (with the 391 
same wiggliness) corresponding to travel, cc.soc, and deep.feed. We defined an ordered factor for 392 
activity state, with travel serving as the reference level smooth because we had considerably more 393 
bowhead sightings/whales/segments classified as travel (134/157/110) compared to cc.soc 394 
(45/95/44) or deep.feed (6/23/6).  395 

The DSMs required segment-specific estimates of detection probability, �̂�𝑝�𝜃𝜃�; 𝒛𝒛𝑖𝑖�. Because the 396 
detection functions for the Turbo Commander included covariates for integer-valued Beaufort Sea 397 
State and sky condition (Appendix B), effort data for these variables were summarized by segment 398 
as follows to build the DSMs. The segment-specific Sea State variable was calculated as the average 399 
value of integer-valued Beaufort Sea State for all records in the ASAMM database that were located 400 
on the segment; all records were weighted equally. The segment-specific sky condition variable was 401 
calculated by assigning each sky condition category an integer value (clear = 1; partly cloudy = 2; 402 
overcast=3), computing the average of the integer-valued sky condition variables for all records 403 
located on the segment, rounding the result, and back-transforming to the categorical sky condition 404 
variable. For example, if segment i comprised three data records with sky conditions clear, clear, and 405 
overcast, the average of their integer-valued analogs would be 1 + 1 + 3 = 1.67, which rounds to 2, 406 
so the segment would be designated “partly cloudy”. 407 

In total, five candidate DSMs were constructed and examined (Table 2). Model selection was heavily 408 
guided by expert knowledge of the system. Based on model diagnostic plots examining the 409 
relationship between the mean and variance in the residuals compared to the theoretical distribution 410 
(Ver Hoef and Boveng 2007), we selected a Tweedie distribution for the final DSM. Because of the 411 
complex coastlines, with starkly different bowhead whale habitat on opposite sides of peninsulas and 412 
capes (Figure 1), we selected soap film smoothers for the final DSM. Lastly, due to differences in 413 
bowhead whale surface and dive behavior by activity state, which ultimately affect 𝑝𝑝𝑎𝑎�(0), we 414 
selected the hierarchical structure for the final DSM. The default basis dimensions were used to 415 
initially parameterize the smoothing splines for all models. The mgcv function gam.check() was used 416 
to evaluate whether the basis dimensions were large enough; because the effective degrees of 417 
freedom were all much lower than the associated maximum basis complexity, there was no concern 418 
about the basis dimensions used to build the models. The full specifications for the hierarchical 419 
model used to estimate Western Arctic bowhead whale density is presented in Appendix D. 420 

Estimation of Uncertainty and Bias 421 
To propagate uncertainty from the detection function models for each aircraft into the DSM, we 422 
implemented Bravington et al.’s (2021) variance propagation methods using the dsm_varprop() 423 
function from the dsm package.  424 

To estimate uncertainty in 𝑝𝑝𝑎𝑎�(0) for each activity state, we used the delta method approximation for 425 
multivariate data, described further below. We assumed independence between the uncertainty 426 
estimated using dsm_varprop() (for the detection function models and DSM) and the availability 427 
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probabilities, allowing estimation of the overall 𝐶𝐶𝐶𝐶��𝑁𝑁�� by summing the squared coefficients of 428 
variation: 429 

 𝐶𝐶𝐶𝐶2� �𝑁𝑁�� = 𝐶𝐶𝐶𝐶2� (𝑣𝑣𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑙𝑙𝑝𝑝) + �𝐶𝐶𝐶𝐶2� �𝑝𝑝𝑎𝑎�(0)�
𝐴𝐴

 [8] 

For consistency with Givens et al. (2016; 2021a, b), we estimated an approximate 95% confidence 430 
interval for our abundance estimate as �𝑁𝑁�𝑠𝑠𝑒𝑒𝑝𝑝�−1.96𝐶𝐶𝐶𝐶��,𝑁𝑁�𝑠𝑠𝑒𝑒𝑝𝑝�1.96𝐶𝐶𝐶𝐶�� �. 431 

In [8], 𝐶𝐶𝐶𝐶2� (𝑣𝑣𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑙𝑙𝑝𝑝) was computed as the standard deviation of the abundance estimate 432 
calculated over all of the data used to build the DSM, divided by 𝑁𝑁�. 𝑁𝑁� is the estimated abundance 433 
from the DSM. 𝑁𝑁� was computed by applying the predict() function to a hexagonal lattice of cells 434 
covering the study area (Figure 3), using the actual cell area as the offset, and summing predictions 435 
across all cells. 436 

The second term in the right-hand side of [8] sums squared 𝐶𝐶𝐶𝐶�  for all relevant activity states used in 437 
the availability probabilities. For the hierarchical model, this is a sum of three terms, corresponding 438 
to activity states travel, cc.soc, and deep.feed. Because 𝜆𝜆(0) for the Turbo Commander was 439 
assumed to be known, and to avoid incorporating the uncertainty in �̅�𝑖 and �̅�𝑑 into 𝐶𝐶𝐶𝐶��𝑁𝑁�� multiple 440 
times, the summation term on the right-hand side of [8] was only for the Twin Otter. 441 

The multivariate delta method approximates the sampling variance for a parameter that is composed 442 
of a function of random variables. In our case, 𝑝𝑝𝑎𝑎�(0) for the Twin Otter is a function of �̅�𝑖, �̅�𝑑, and 443 

𝜆𝜆(0)� . In general, the multivariate delta method can be represented as: 444 

 
𝐶𝐶𝑎𝑎𝑠𝑠� �Υ�� = �

𝜕𝜕Υ�

𝜕𝜕𝜃𝜃𝚤𝚤�
�𝐶𝐶𝜃𝜃� �

𝜕𝜕Υ�

𝜕𝜕𝜃𝜃𝚤𝚤�
�
𝑇𝑇

 
[9] 

For us, �𝜕𝜕Υ
�

𝜕𝜕𝜃𝜃𝚤𝚤�
� is a row vector with partial derivatives of 𝑝𝑝𝑎𝑎�(0) with respect to �̅�𝑖, �̅�𝑑, and 𝜆𝜆(0)� , and 445 

�𝜕𝜕Υ
�

𝜕𝜕𝜃𝜃𝚤𝚤�
�
𝑇𝑇
is its transpose (a column vector). The elements of �𝜕𝜕Υ

�

𝜕𝜕𝜃𝜃𝚤𝚤�
� may be represented as follows: 446 

 
𝜕𝜕𝑃𝑃𝑎𝑎� (0)
𝜕𝜕�̅�𝑖

=
�̅�𝑑𝑠𝑠𝑒𝑒𝑝𝑝 �−𝜆𝜆(0)�

�̅�𝑑 �

��̅�𝑖 + �̅�𝑑�2
 

[10] 

 
𝜕𝜕𝑃𝑃𝑎𝑎� (0)
𝜕𝜕�̅�𝑑

=
−�̅�𝑖

��̅�𝑖 + �̅�𝑑�2
+

1 − 𝑠𝑠𝑒𝑒𝑝𝑝 �−𝜆𝜆(0)�
�̅�𝑑

�

�̅�𝑖 + �̅�𝑑
−
𝜆𝜆(0)�𝑠𝑠𝑒𝑒𝑝𝑝�−𝜆𝜆(0)�

�̅�𝑑
�

�̅�𝑑��̅�𝑖 + �̅�𝑑�
−
�̅�𝑑 �1 − 𝑠𝑠𝑒𝑒𝑝𝑝 �−𝜆𝜆(0)�

�̅�𝑑
��

��̅�𝑖 + �̅�𝑑�2
 

[11] 

 
𝜕𝜕𝑃𝑃𝑎𝑎� (0)
𝜕𝜕𝜆𝜆(0)� =

𝑠𝑠𝑒𝑒𝑝𝑝 �−𝜆𝜆(0)�
�̅�𝑑 �

�̅�𝑖 + �̅�𝑑
 

[12] 
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These expressions [10, 11, 12] correct typographical errors in Robertson et al. (2015). The term 𝐶𝐶𝜃𝜃�  in 447 

[9] is a diagonal matrix with 𝐶𝐶𝑎𝑎𝑠𝑠� (�̅�𝑖), 𝐶𝐶𝑎𝑎𝑠𝑠� ��̅�𝑑�, and 𝐶𝐶𝑎𝑎𝑠𝑠� �𝜆𝜆(0)��. We computed 𝐶𝐶𝑎𝑎𝑠𝑠� (�̅�𝑖) and 𝐶𝐶𝑎𝑎𝑠𝑠� ��̅�𝑑� 448 
using the standard error of �̅�𝑖 and �̅�𝑑: we divided the relevant standard deviation values by the 449 

associated √𝑛𝑛 from Table 4 of Robertson et al. (2013). The term 𝐶𝐶𝑎𝑎𝑠𝑠� �𝜆𝜆(0)�� corresponds to the 450 
estimated variance in time-in-view at the left-truncation distance for the Twin Otter (Appendix C). 451 

To evaluate bias, although the true abundance of the Western Arctic bowhead whale population is 452 
unknown, we compared our estimate to the ice-based survey estimates (the gold standard) and 453 
photo-ID estimates. The IWC and NMFS consider abundance estimates with a CV ≤ 0.3 to be 454 
acceptable for management advice (NMFS 2016; IWC 2003b). 455 

RESULTS 456 

August 2019 Bowhead Whale Abundance Aerial Line-Transect Surveys 457 
During the August 2019 bowhead whale abundance survey, survey coverage was nearly complete 458 
(Figure 1), with the exception of portions of Amundsen Gulf that could not be surveyed due to 459 
weather and logistical issues (Clarke et al. 2020). Bowhead whale distribution and density largely 460 
matched expectations based on all available information, including Indigenous knowledge, historical 461 
whaling records, previous aerial surveys, and telemetry studies. However, there were some notable 462 
exceptions, represented by the sightings offshore of the light orange “Expected Occurrence” 463 
polygon in the Beaufort Sea in Figure 1. In the data subset used to estimate abundance, the Turbo 464 
Commander aircraft flew over twice as much survey effort (9,605 km) as the Twin Otter (4,096 km); 465 
however, the number of bowhead whales sighted from each type of aircraft were similar (102 466 
sightings totaling 146 whales from the Turbo Commander; 83 sightings totaling 129 whales from the 467 
Twin Otter) (Table 3). The highest bowhead whale densities were observed in the eastern Beaufort 468 
Sea, where all three aggregation protocols sessions of the survey period occurred (Clarke et al. 2020; 469 
Ferguson et al. 2021). Amundsen Gulf had the lowest observed bowhead whale densities. Most 470 
bowhead whale sightings were well within the survey area boundaries (Figure 1).  471 

A total of five sightings of single large cetaceans could not be identified to species, four in the 472 
eastern Beaufort Sea and one in the western Beaufort Sea. 473 

Gray whales were the only other large cetacean identified to species during the August 2019 474 
bowhead whale abundance survey period. No other species of large cetacean was expected to be 475 
encountered. The gray whales were observed during only one flight, on the Twin Otter, on 21 476 
August. There were 8 gray whale sightings, totaling 15 whales, including 1 calf. The gray whales were 477 
observed feeding north of the Tuktoyaktuk Peninsula in 30-55 m deep water. 478 

Availability Probability, 𝒑𝒑𝒂𝒂�  479 
The proportions of ASAMM bowhead whale sightings and individuals in each of the three activity 480 
states differed considerably from the proportions of samples in the corresponding activity states in 481 
Robertson et al. (2013) (Table 1). This justifies the use of activity state-specific availability bias 482 
correction factors instead of a single correction factor based on Robertson et al.’s (2013) “summer” 483 
statistics. The latter implicitly represent weighted averages of the observed surface and dive interval 484 
data for all activity states during summer that were included in the behavioral studies from 485 
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Robertson et al. (2013), where the weights corresponded to the number of summer samples for each 486 
activity state . In the ASAMM August 2019 data, 72.4% of the total sightings (134/185) and 57.1% 487 
of the total number of whales (157/275) were traveling. In contrast, in Robertson et al’s (2013) data, 488 
13.9% of the total surface interval samples (120/866) and 23.5% of the total dive interval samples 489 
(77/328) were from traveling whales. The proportions for the remaining activity states used in this 490 
analysis are provided in Table 1. 491 

Bowhead whale availability probabilities (𝑝𝑝𝑎𝑎�) were higher for the Turbo Commander than the Twin 492 
Otter (Table 1). This difference was entirely due to the Turbo Commander’s larger FOV and 493 

correspondingly higher time-in-view (𝜆𝜆(𝑦𝑦)� ) compared to the Twin Otter (Appendix C). Cow-calf 494 
pairs (used in our cc.soc activity state) were the most likely to be available (𝑝𝑝𝑎𝑎� = 0.36 for the Turbo 495 
Commander and 0.31 for the Twin Otter) and traveling whales were the least likely to be available 496 
(𝑝𝑝𝑎𝑎� = 0.17 for the Turbo Commander and 0.16 for the Twin Otter) (Table 1). The standard errors 497 
of 𝑝𝑝𝑎𝑎� for the Twin Otter ranged from 0.014 for traveling to 0.033 for cow-calf pairs (Table 1). 498 

Density Surface Model 499 
There was good concurrence between the data and the hierarchical model predictions for all activity 500 
states. Maps of predicted bowhead whale counts from the model show that it successfully identified 501 
regions of high sighting density shared by all three activity states and regions where sighting density 502 
differed (Figures 3A, B, C). The fidelity between the model predictions and data is particularly 503 
noteworthy for the deep.feed activity state, which comprised only six sightings totaling 23 whales 504 
located on six 10-km segments (Figure 3C). This result exemplifies the power of the “GS” model 505 
formulation, in which information about the general spatial distribution of whale density contained 506 
in the global smooth is shared across activity states. For the population as a whole, bowhead whale 507 
density increased from west to east, with highest densities in the eastern Beaufort Sea. Two areas of 508 
high density common to all activity states include the offshore waters between Kaktovik, Alaska, 509 
USA, and Hershel Island; and offshore waters northwest of the Tuktoyaktuk Peninsula. 510 
Additionally, traveling whales and whales feeding in deep water were concentrated in waters in and 511 
due north of Franklin Bay, east of Cape Bathurst (Figures 3A,C). The only whales sighted in the 512 
western Beaufort Sea were traveling (Figure 3A).  513 

Abundance and Uncertainty Estimates 514 

We estimated the abundance of the Western Arctic bowhead whale population during summer 2019 515 
to be 17,175 whales, with 𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.237 and an approximate 95% confidence interval for 𝑁𝑁� of 516 

(10,793, 27,330). The uncertainty in availability probability contributed 0.173 to 𝐶𝐶𝐶𝐶��𝑁𝑁��: 517 

𝐶𝐶𝐶𝐶��𝑝𝑝𝑎𝑎�(0)� = �𝐶𝐶𝐶𝐶2� �𝑝𝑝𝑎𝑎,𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡� (0)� + 𝐶𝐶𝐶𝐶2� �𝑝𝑝𝑎𝑎,𝑐𝑐𝑐𝑐.𝑠𝑠𝑠𝑠𝑐𝑐� (0)� + 𝐶𝐶𝐶𝐶2� �𝑝𝑝𝑎𝑎,𝑓𝑓𝑡𝑡𝑡𝑡𝑑𝑑.𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑� (0)��
0.5

 = 0.173. The remaining 518 

uncertainty in 𝐶𝐶𝐶𝐶��𝑁𝑁�� was due to uncertainty in the detection functions (Appendix B) and spatial 519 
model parameter estimates. 520 

  521 
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DISCUSSION 522 

We estimated the Western Arctic bowhead whale population in 2019 to be 17,175 whales (𝐶𝐶𝐶𝐶��𝑁𝑁�� = 523 
0.237; 95% confidence interval = [10,793, 27,330]). A spatially-explicit hierarchical generalized 524 
additive model formed the foundation of our analysis. The analytical techniques accounted for the 525 
largest known sources of bias (availability and perception bias), and seamlessly propagated 526 
uncertainty through all modeling stages to the final abundance estimate. To propagate the variance 527 
from the trial configuration mrds model, we extended the analytical capabilities of functions in the R 528 
packages mrds and dsm, which are widely used across the globe for these types of analyses. 529 

Our two-stage density surface model comprised two detection functions in the first stage, which 530 
informed the hierarchical model in the second stage. The detection functions included a mark-531 
recapture distance sampling model based on trial configuration with the assumption of point 532 
independence for the Turbo Commander, which incorporated data from ASAMM observers and 533 
imagery collected concurrently with the aerial surveys; and a multiple covariates distance sampling 534 
model for the Twin Otter. The variance propagation methods allowed the information about the 535 
uncertainty in detection probabilities from the detection functions to inform estimation of the 536 
density surface model paramters; analogously, the information about the spatial uncertainty in 537 
bowhead whale density was used to fine-tune the detection function parameter estimates 538 
(Bravington et al. 2021). 539 

The abundance estimate is based on aerial line-transect surveys conducted during August 2019 540 
across the population’s primary summer range over the Beaufort Sea continental shelf and in 541 
Amundsen Gulf. Bowhead whale distribution and density in the study area during the survey period 542 
was similar to previous years based on all available information from Indigenous knowledge, 543 
historical whaling records, previous aerial surveys, and telemetry studies, although there were two 544 
notable exceptions. First, Clarke et al. (2020) found that the bowhead whale distribution in the 545 
western Beaufort sea was farther from shore during summer (July and August combined) 2019 546 
compared to summer 2012-2018. Second, Clarke et al. (2020) also reported that the areas of highest 547 
relative density near the Tuktoyaktuk Peninsula in 2019 were farther from shore and in deeper water 548 
(51-2000 m depth) compared to 2007-2009, when Harwood et al. (2010) found greatest densities in 549 
waters 20-50 m deep. 550 

The spatially-explicit hierarchical model structure was well suited for the Western Arctic bowhead 551 
whale case study. To minimize bias in the abundance estimate, we wanted to estimate availability 552 
probability and density surfaces separately for each activity state (travel, cc.soc, and deep.feed) to 553 
account for known differences among activity states in surface and dive behavior and suspected 554 
differences in spatial distribution. Sufficient behavioral data existed from independent studies to 555 
derive activity state-specific estimates of availability probability. However, the line-transect data for 556 
the deep.feed activity state comprised only six sightings totaling 23 whales located on six 10-km 557 
segments (Figure 3C), and that sample size was not sufficient to build a single-level DSM. To meet 558 
the analytical objectives within the constraints of the line-transect sample sizes, we constructed a 559 
hierarchical model that contained a global smooth representing the general spatial distribution of 560 
whales, plus factor-smooth interactions that faithfully represented deviations from the global pattern 561 
by whales classified into the three activity states. The agreement between the hierarchical model 562 
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predictions and the sightings in the deep.feed activity state was particularly noteworthy, given the 563 
limited sample size (Figure 3C). 564 

An estimate of absolute population abundance for Western Arctic bowhead whales from aerial line-565 
transect survey data analyzed in a DSM framework may be affected by five fundamental sources of 566 

bias: 1) geographic extent of the population’s distribution; 2) transect detection probability, 𝑝𝑝1(0, 𝒛𝒛)� ; 567 
3) availability bias, which is related to 𝑝𝑝𝑎𝑎�; 4) species mis-identification; and 5) back-transformation 568 
bias. Below, we discuss the influence of each of these factors on the abundance estimate. 569 

The first caveat with the present abundance estimate is that the entire summer range of Western 570 
Arctic bowhead whales was not included within the August 2019 survey area. The population’s 571 
summer range stretches from Chukotka, Russia, across the Beaufort Sea to Amundsen Gulf and 572 
possibly north to Viscount Melville Sound. A small number of bowhead whales have been known to 573 
occur off Chukotka, Russia, during August (Citta et al. 2021); however, due to logistical and financial 574 
constraints, the survey area excluded waters off Chukotka. The inability to base a survey team out of 575 
Ulukhaktok, Canada, for the duration of the survey period due to lack of aviation fuel in the village 576 
resulted in limited survey coverage in Amundsen Gulf and off the west coast of Banks Island. This 577 
issue also precluded our ability to conduct a scouting flight to Viscount Melville Sound. However, 578 
the surveys that were conducted in Amundsen Gulf and all available knowledge on bowhead whale 579 
distribution in the region suggests that Amundsen Gulf is not a high-density area for bowhead 580 
whales. Similarly, all available knowledge suggests that the waters off the west coast of Banks Island 581 
and in Viscount Melville Sound do not typically have high densities of Western Arctic bowhead 582 
whales. If significant numbers of Western Arctic bowhead whales were distributed in areas outside 583 
the analysis area during August 2019, the present abundance estimate would be biased low. 584 

No cetacean detection method is infallible and cetaceans cannot always be seen or heard. The need 585 
to estimate correction factors for perception bias and availability bias is a complication that is 586 
common to all analyses used to estimate cetacean abundance from strip- or line-transect survey data, 587 
regardless of survey platform (vessel or aircraft) and observer type (e.g., human, imagery, or 588 
acoustic). Perception and availability bias also need to be addressed in abundance estimates derived 589 
from ice-based bowhead whale surveys (e.g., Givens et al. 2016, 2021a). For the present analysis, the 590 

transect detection probability estimate, 𝑝𝑝1(0, 𝒛𝒛)� , for the Turbo Commander was applied to the data 591 
from both aircraft types, and the total sample size of bowhead whale detections in the imagery was 592 
relatively small. These issues resulted from logistical constraints and the considerable amount of 593 
time required to manually process imagery from the belly port camera. The bubble windows in the 594 
Twin Otter were smaller than in the Turbo Commander and the former had a larger left-truncation 595 

distance. It is possible that the true 𝑝𝑝1(0, 𝒛𝒛)�  for the Twin Otter could have been less than the value 596 
used in this analysis. If that were the case, the present abundance estimate would be biased low. For 597 

example, if 𝑝𝑝1(0, 𝒛𝒛)�  for the Twin Otter were 0.55 instead of the assumed value 0.65, the total 598 
abundance estimate would have been 18,406 whales instead of 17,175 whales. Using aircraft that 599 
were all identically configured would simplify analyses and would likely improve accuracy and 600 
precision of abundance estimates derived from aerial line-transect surveys because the sample sizes 601 
used to estimate transect detection probability and to construct the distance-sampling component of 602 
the detection function model would increase. Additionally, collection of additional imagery 603 
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concurrent with future line-transect surveys and development of reliable algorithms to automatically 604 
detect bowhead whale sightings in imagery would undoubtedly expedite the imagery review process, 605 
ultimately resulting in more precise estimates of transect detection probability and abundance as 606 
sample size increases. 607 

Bowhead whale surface intervals and dive intervals (key components to the availability bias 608 
estimator) are known to vary widely depending on activity state, group size and composition, and 609 
habitat (e.g., Dorsey et al. 1989; Würsig and Clark 1993; Robertson et al. 2013; Würsig and Koski 610 
2021). We accounted for the effects of activity state and partially accounted for group composition 611 
in our corrections for availability bias by computing separate estimates of 𝑝𝑝𝑎𝑎� for whales that were 612 
traveling, feeding in deep water, and found with a calf or socializing. The hierarchical model 613 
generated a density surface for each activity state by modeling them as departures from an 614 
underlying smooth surface, sharing information by using the same level of wiggliness (smoothing 615 
penalty) in the smooths for all activity states. However, the bowhead whale surface interval and dive 616 
interval data we used to estimate the 𝑝𝑝𝑎𝑎� were for individual whales (Robertson et al. 2013), not 617 
groups of whales. The direction and magnitude of bias resulting from this application of the 618 
behavioral data depend on whether animals in groups dive synchronously or asynchronously 619 
(Hodgson et al. 2017). Additional information on bowhead whale surface and dive durations, and 620 
associated variability, would benefit any analysis that requires estimates of availability to surface (e.g., 621 
humans or imagery) or underwater (e.g., passive acoustic monitoring) “observers”. Lastly, the 622 
ASAMM sighting data do not include information to estimate forward detection distance or time, 623 
and our estimates of 𝑝𝑝𝑎𝑎� do not account for forward detection distance. However, Borchers et al. 624 
(2013) note that failing to account for forward detection distance in estimates typically results in a 625 
lower bias for aerial surveys than shipboard surveys because animals are within viewing range for 626 
shorter periods during the former.  627 

Due to the very small number of large whale sightings that could not be positively identified to 628 
species (n = 5 during August 2019) and the limited diversity of large whale species in the study area 629 
(Clarke et al. 2020), we did not incorporate a species-identification bias correction factor into the 630 
present analysis. It is highly likely that those five whales were bowhead whales because other large 631 
cetaceans rarely venture into the survey area during summer and autumn. However, ASAMM’s 632 
sightings of gray whales off the Tuktoyaktuk Peninsula in August 2019 reinforce the idea that not all 633 
large cetaceans read the rule book. If those five “unidentified large cetacean” sightings were 634 
bowhead whales, the present abundance estimate would be biased slightly low.  635 

Although the true abundance of the Western Arctic bowhead whale population is unknown, we can 636 
compare our estimate to the ice-based survey estimates (the gold standard) and photo-ID estimates, 637 
focusing on the recent period from 2011 to 2019 (Table 4). (See Muto et al. [2021] for a concise 638 
summary of Western Arctic bowhead whale abundance estimates and CVs during the periods prior 639 
to commercial whaling, at the end of commercial whaling, and from 1978 to 2011.) Our point 640 
estimate (17,175) is within the 95% confidence intervals for all abundance estimates except the 2011 641 
photo-ID estimate (Givens et al. 2018). Givens et al. (2018) note that it is “reasonable to expect that 642 
the ice-based estimate is a little low and the photo-id estimate may be a little high” because bowhead 643 
whales that did not travel through the ice-based study area during the survey period were not 644 
incorporated into the former, and missed matches in the photo-id data would result in an 645 
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overestimate of abundance. As noted above, the present abundance estimate is likely also biased low 646 
due to bowhead whales located outside the aerial survey study area during the August 2019 survey 647 
period.  648 

Because this is the first time that aerial line-transect surveys were used to estimate abundance for 649 
this population, we cannot definitely estimate the recent trend in abundance. However, the 650 
magnitude of the present abundance estimate and overlapping confidence intervals compared to 651 
other recent estimates are consistent with the hypothesis that the population is relatively stable. 652 
Conducting similar aerial line-transect surveys in the future would allow estimation of trend. 653 

The estimated CV in the abundance estimate for the present analysis (𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.237; Table 4) is 654 
within the parameter space tested in the IWC’s Bowhead Strike Limit Algorithm, which ranged from 655 
0.10 to 0.34, with 0.25 for the base case (IWC 2003b). The 𝐶𝐶𝐶𝐶�  of our abundance estimate (𝐶𝐶𝐶𝐶��𝑁𝑁�� 656 

= 0.237) is similar to that from the 2011 photo-ID estimate (𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.217) and both estimates 657 

from the 2019 ice-based survey ( 𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.228); however, our  𝐶𝐶𝐶𝐶��𝑁𝑁�� is larger than that from the 658 

2011 ice-based survey (𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.052). It is noteworthy that the 𝐶𝐶𝐶𝐶�  of our abundance estimate 659 

(𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.237) is considerably lower than that from Ferguson et al.’s (2021) design-based analysis 660 

(𝐶𝐶𝐶𝐶��𝑁𝑁�� = 0.540) of the same survey data, even though the latter assumed that the estimates of 661 
bowhead whale surface interval and dive interval duration (needed for the availability bias correction 662 
factor) were known constants. The spatially-explicit density surface model was able to explain small-663 
scale variability in bowhead whale encounter rate, which was a dominant source of uncertainty in the 664 
design-based abundance estimate (Ferguson et al. 2021).  665 

Back-transformation bias (e.g., Finney 1941; Beauchamp and Olson 1973; Smith 1993; Rothery 666 
1988; Thorson and Kristensen 2016) is the last known source of bias that remains in our abundance 667 
estimate. Here, we explain the source of back-transformation bias, the likely effect on the abundance 668 
estimate, and potential solutions. We predicted bowhead whale density over a hexagonal lattice using 669 
a DSM relating the natural logarithm of bowhead whale counts (defined above as random variable 670 
Ω) on segments of survey effort with known length to a sum of smoothing splines. However, we 671 
were ultimately interested in an estimate of population abundance. Therefore, we applied a nonlinear 672 
function (exponentiation) to the DSM predictions of log-counts to derive predictions of whale 673 
density that we could then integrate over the study area to compute an abundance estimate. Thorson 674 
and Kristensen (2016) succinctly state the statistical issue: “Whenever a random variable is 675 
transformed by a nonlinear function, the mean and variance of the variable are also transformed.” 676 
Not correcting for back-transformation bias in our estimate of Western Arctic bowhead whale 677 
population abundance likely results in a negative bias. Specifically, if the random effect distribution is 678 
symmetric in log space, then simple back-transformation results in an underestimate. Alternatively, if 679 
the random effect distribution is highly left-skewed, this could result in a positive bias. Back-680 
transformation bias is a pervasive issue in many ecological models, yet it is often overlooked in 681 
analyses of cetacean abundance. Investigating reliable solutions to correct for back-transformation 682 
bias in DSMs and making software widely available is our next focus. Simulating from the posterior 683 
of the hierarchical model or applying the methods of Thorson and Kristensen (2016) are potential 684 
solutions.  685 
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Overall, we believe that our abundance estimate and 𝐶𝐶𝐶𝐶��𝑁𝑁�� are the best estimates for the Western 686 
Arctic bowhead whale population in 2019. We accounted for the dominant sources of bias in aerial 687 
line-transect survey data and propagated uncertainty from all parameter estimates to 𝐶𝐶𝐶𝐶��𝑁𝑁��. Givens 688 
et al. (2021a, 2021b) clearly and comprehensively detail potential sources of bias and the likely 689 
magnitude and direction of each type of bias on the resulting abundance estimates derived from the 690 
2019 ice-based survey. Even with the correction for boat disturbance, several sources of potential 691 
bias that would result in an underestimate of true abundance remain in the 2019 ice-based survey 692 
estimate (Givens et al. 2021b): “highly unusual” ice conditions; an unusual bowhead whale migration 693 
route that was sometimes too distant from observers to detect whales; application of an availability 694 
correction factor derived from passive acoustic data collected only during previous years; failure to 695 
conduct survey effort because of closed leads in the sea ice during the early weeks of the migration 696 
when numerous whales likely passed; and an unusually short observation platform height (Givens et 697 
al. (2021a). 698 

CONCLUSIONS 699 

The primary contributions of this study are threefold. First, we demonstrated that abundance and 700 
uncertainty estimates for the Western Arctic bowhead whale population that meet the standards for 701 
precision and bias required for making management decisions (IWC 2003b; NMFS 2016) can be 702 
derived from aerial line-transect surveys. Second, we showed that the analytical methodology used 703 
here considerably reduced the uncertainty in the population abundance estimate compared to the 704 
design-based estimate derived using the same data (Ferguson et al. 2021). This result occurred 705 
because the DSM explicitly modeled the patterns and correlations in the bowhead whale data; in 706 
design-based models, this spatial variability typically manifests as encounter rate variance and is 707 
often a dominant contributor to the total uncertainty in the abundance estimate (e.g., Ferguson et al. 708 
2021). Lastly, the bowhead whale case study was sufficiently complex to require enhancements to 709 
the existing R packages dsm and mrds, and this increased functionality is now freely available to the 710 
distance-sampling and density surface modeling communities. 711 
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Table 1. Summary of bowhead whale sightings, by activity state, in the ASAMM August 2019 data compared to those in Robertson et al. 931 
(2013). n = number of groups detected during the ASAMM surveys or number of observations in the Robertson et al. (2013) 932 
analysis. ind = number of bowhead whales. 𝑃𝑃𝑎𝑎 = probability that a group is at the surface within an observer’s field of view. 933 

  ASAMM August 2019 Robertson et al. 2013 

          Twin Otter 
Turbo 

Commander Surface Intervals Dive Intervals 

  n 
% total 

n ind 
% total 

ind 𝑃𝑃𝑎𝑎 SE(𝑃𝑃𝑎𝑎) 𝑃𝑃𝑎𝑎 n 
% total 

n 
Mean 
(min) SD n 

% total 
n 

Mean 
(min) SD 

Travel 134 0.72 157 0.57 0.16 0.01 0.17 120 0.14 1.51 0.92 77 0.23 11.76 8.2 
Cow & 
Calf 44 0.24 92 0.33 0.31 0.03 0.36 164 0.19 0.93 1.09 138 0.42 3.75 4.9 
Deep 
Feed 6 0.03 23 0.08 0.17 0.02 0.19 213 0.25 1.11 0.71 47 0.14 8.74 6.31 
Social 1 0.01 3 0.01 0.26 0.02 0.30 369 0.43 1.23 0.76 66 0.20 5.44 4.47 
Total 185 1 275 1    866 1   328 1   

 934 

  935 
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Table 2. Summary of generalized additive models and hierarchical generalized additive models considered candidates for the density 936 
surface model. 937 

Model Formula Smoothing Spline 
Sampling 

Distribution 

% 
Explained 
Deviance 

Effective 
Degrees 

of 
Freedom 

te(x, y, k=15, bs="ts") 

Tensor product of thin 
plate regression splines 
with shrinkage 

Negative Binomial, 
nb() 57.8 41.9 

te(x, y, k=15, bs="ts") 

Tensor product of thin 
plate regression splines 
with shrinkage Tweedie, tw() 48.1 39.3 

s(x, y, k=30, bs="so", 
xt=list(bnd=list(bnd.list))) Soap film 

Negative Binomial, 
nb() 59.3 43.3 

s(x, y, k=30, bs="so", 
xt=list(bnd=list(bnd.list))) Soap film Tweedie, tw() 48.8 40.6 
s(x, y, k=15, bs="sf", 
xt=list(bnd=list(bnd.list))) +  s(x, y, k=15, 
bs="sw", xt=list(bnd=list(bnd.list))) + ti(x, y, 
A.fact, k=c(15,4), bs=c("sf", "re"), d=c(2,1), 
xt=list(list(bnd=list(bnd.list)), NULL)) + ti(x, 
y, A.fact, k=c(15,4), bs=c("sw", "re"), 
d=c(2,1), xt=list(list(bnd=list(bnd.list)), 
NULL)) 

Hierarchical soap film: 
single common smoother 
+ group-level smoothers 
with same wiggliness Tweedie, tw() 51.6 67.6 

 938 

  939 



28 
 

Table 3. Summary statistics from August 2019 aerial line-transect survey data used to 
estimate Western Arctic bowhead whale abundance.  

  
Turbo 

Commander 
Twin 
Otter Total 

number of bowhead whale sightings 102 83 185 
number of bowhead whales 146 129 275 
number of aggregation protocols sessions 3 0 3 
number of bowhead whale sightings during 
aggregation protocols 20 0 20 
transect and aggregation protocols effort (km) 9,605 4,096 13,701 

 940 

  941 
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Table 4. Summary of recent abundance estimates for the Western Arctic bowhead whale population. 942 

Year Data Collection Method 𝑁𝑁� 𝐶𝐶𝐶𝐶��𝑁𝑁�� 

95% Confidence 
Interval 

Citation 
Lower 
Bound 

Upper 
Bound 

2011 photo-ID 27,133 0.217 17,809 41,337 Givens et al. (2018) 
2011 ice-based survey 16,820 0.052 15,176 18,643 Givens et al. (2016) 

2019 
ice-based survey - abundance estimate 
uncorrected for boat disturbance 12,505 0.228 7,994 19,560 Givens et al. (2021a) 

2019 
ice-based survey - abundance estimate 
corrected for boat disturbance 14,025 0.228 8,971 21,927 Givens et al. (2021b) 

2019 
aerial line-transect survey - design-based 
analysis 14,531 0.540 5,042 41,875 Ferguson et al. (2021) 

2019 
aerial line-transect survey - density surface 
model 17,175 0.237 10,793 27,330 present analysis 

 943 

  944 



30 
 

 945 
Figure 1. Study area for the Aerial Surveys of Arctic Marine Mammals (ASAMM) bowhead whale abundance survey in 2019. The 946 
expected distribution of bowhead whales in the study area during August was determined based on all available information, 947 
including Indigenous knowledge, historical whaling records, previous aerial surveys, and telemetry studies. Survey effort and 948 
bowhead whale sightings from the August 2019 survey period that were included in the abundance estimate are also shown. The 949 
primary bases of operations were Inuvik and Ulukhaktok, Northwest Territories, Canada, and Deadhorse, Alaska, USA. 950 

  951 
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 952 
Figure 2. Data sources and subsets used to estimate parameters for the Western Arctic bowhead whale abundance estimate. cmdr = 953 
Turbo Commander. ott = Twin Otter. See text and Appendix A for definitions of other variables and parameters. 954 

  955 



32 
 

 956 
Figure 3A. Bowhead whale sightings during the August 2019 aerial line-transect survey and predicted number of bowhead whales 957 
from the density surface model, by activity state: A) travel; B) cow with calf or social; C) whales feeding in deep water. 958 

  959 
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 960 
Figure 3B. Bowhead whale sightings during the August 2019 aerial line-transect survey and predicted number of bowhead whales 961 
from the density surface model, by activity state: A) travel; B) cow with calf or social; C) whales feeding in deep water. 962 

  963 
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 964 
Figure 3C. Bowhead whale sightings during the August 2019 aerial line-transect survey and predicted number of bowhead whales 965 
from the density surface model, by activity state: A) travel; B) cow with calf or social; C) whales feeding in deep water. 966 
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Appendix A 967 

Glossary of Notations and Abbreviations 968 

𝑎𝑎 = area searched during line-transect survey 969 

𝑎𝑎𝑖𝑖 = segment area, computed as 2wLi 970 

A = activity state 971 

ASAMM = Aerial Surveys of Arctic Marine Mammals project 972 

b = a parameter in the hazard-rate detection function 973 

BCB = Bering-Chukchi-Beaufort Seas stock of bowhead whales; also known as Western Arctic bowhead 974 
whales 975 

cc.soc = cow-calf or social activity state, used in the availability bias correction factors 976 

cmdr = Turbo Commander 977 

CV = coefficient of variation 978 

𝐶𝐶𝐶𝐶�  = estimated coefficient of variation 979 

d = duration of a dive 980 

𝑑𝑑 � =  𝔼𝔼(𝑑𝑑)= average duration of a dive 981 

𝐷𝐷� = estimated density of whales  982 

DSM = density surface model 983 

fq = smooth function for the qth covariate in the density surface model 984 

FOV = field of view 985 

𝑔𝑔(𝑦𝑦, 𝒛𝒛) = multiple covariates distance sampling detection function, which specifies the shape and scale of the 986 
observation model; assumes detection probability on the transect equals 1.0 987 

h = waypoint index for the field-of-view model 988 

i = segment index for the density surface model 989 

j = group index in basic line-transect estimator of animal density  990 

k = replicate index for the field-of-view model 991 

L = total length of transects surveyed 992 

Li  = length of transect surveyed in segment i 993 

mcds = multiple covariates distance sampling 994 

mrds = mark-recapture distance sampling 995 

N = Normal (Gaussian) probability density function 996 

𝑁𝑁� = estimated abundance of whales 997 
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𝑛𝑛𝑔𝑔 = number of groups detected 998 

𝑛𝑛1 = number of groups detected by the ASAMM observers (“observer 1”) 999 

𝑛𝑛ℎ = number of waypoints used in the field-of-view model 1000 

ott = Twin Otter 1001 

𝑝𝑝∗(𝒛𝒛) = average probability that an ASAMM observer detects an object that is available to be seen, given 1002 
covariates z that affect detectability, assuming transect detection probability is 1.0; 𝑝𝑝∗(𝒛𝒛) =1003 
∫ 𝑔𝑔𝑤𝑤
0 (𝑦𝑦,𝒛𝒛)𝑑𝑑𝑦𝑦

𝑤𝑤
 1004 

𝑝𝑝𝑎𝑎 = probability that a group is at the surface within an observer’s field of view, also referred to as availability 1005 
probability 1006 

𝑝𝑝�𝜃𝜃�; 𝒛𝒛� = overall probability that an observer detects an object, given covariates z that affect detectability; 1007 
this term incorporates availability probability 𝑝𝑝𝑎𝑎, transect detection probability 𝑝𝑝1(0, 𝒛𝒛), and 𝑝𝑝∗(𝒛𝒛) 1008 

𝑝𝑝1(0, 𝒛𝒛) = probability that an ASAMM observer (“observer 1”) detects an object located directly on the 1009 
transect (𝑦𝑦 = 0) and available to be seen, given covariates z that affect detectability; determines the 1010 
location of the intercept in the observation model 1011 

𝑝𝑝1(𝑦𝑦, 𝒛𝒛) = probability that an ASAMM observer (“observer 1”) detects an object located at perpendicular 1012 
distance y, given covariates z that affect detectability; also referred to as the observation model 1013 

𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛) = probability that an ASAMM observer (“observer 1”) detected an object that the photo analyst 1014 
(“observer 2”) also detected; derived using a mark-recapture distance sampling detection function 1015 

𝑝𝑝𝑑𝑑𝑝𝑝𝑖𝑖𝑎𝑎������� = 1
𝑛𝑛ℎ
∑ 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎ℎℎ  = average perpendicular distance to the transect 1016 

pdist.scl = scaled perpendicular distance to the transect 1017 

q = smoothing term index for the density surface model 1018 

s = duration of a surfacing 1019 

𝑖𝑖 � =  𝔼𝔼(𝑖𝑖)= average duration of a surfacing 1020 

𝑆𝑆𝑗𝑗 = size of group j 1021 

T = matrix transpose operator 1022 

𝜆𝜆(0) = duration in which the ocean at perpendicular distance 𝑦𝑦 = 0 is in the observer’s view; this parameter 1023 
is a function of the observer’s field of view 1024 

𝜆𝜆(𝑦𝑦) = duration in which the ocean at perpendicular distance 𝑦𝑦 is in the observer’s view; this parameter is a 1025 
function of the observer’s field of view 1026 

𝑠𝑠𝑖𝑖𝑞𝑞 = covariate q on segment i in the density surface model 1027 

Var = variance 1028 

𝑤𝑤 = width used to build the multiple covariates distance sampling model, computed as the right-truncation 1029 
distance minus the left-truncation distance 1030 
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𝑊𝑊𝑖𝑖 = random variable for the number of whales on segment i in the density surface model 1031 

x = viewing distance (in meters) along the transect 1032 

y = perpendicular distance from the transect to the sighting 1033 

Υ = generic variable used in the definition of the multivariate delta method 1034 

z = covariates that affect detectability of a sighting 1035 

𝛽𝛽0 = a parameter in the mark-recapture detection function 1036 

𝜷𝜷𝑑𝑑𝑖𝑖𝑎𝑎 = vector of coefficients in the smooth functions for the density surface model 1037 

𝛽𝛽𝑗𝑗 = a coefficient parameter in the mark-recapture detection function 1038 

𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡.𝑠𝑠𝑐𝑐𝑡𝑡 = fixed effect of pdist.scl on slope in the field-of-view model 1039 

𝛽𝛽𝑦𝑦 = the coefficient associated with perpendicular distance, y, in the mark-recapture detection function 1040 

𝛾𝛾 = intercept in the field-of-view model 1041 

𝜀𝜀𝑘𝑘 = residual error associated with the kth replicate in the field-of-view model 1042 

𝜂𝜂𝑖𝑖 = 𝑎𝑎𝑙𝑙𝑔𝑔(𝜔𝜔𝑖𝑖) = natural logarithm of the number of whales sighted on segment i in the density surface model 1043 

𝜃𝜃0 = a parameter in the scale of the multiple covariates distance sampling detection function 1044 

𝜃𝜃𝑗𝑗 = a coefficient parameter in the scale of the multiple covariates distance sampling detection function 1045 

𝜆𝜆 = rate parameter of the dive process 1046 

𝜇𝜇 = rate parameter of the surfacing process 1047 

𝜉𝜉 = mean of a Tweedie distribution 1048 

𝜋𝜋 = power parameter for a Tweedie distribution 1049 

𝜎𝜎𝑑𝑑 = standard error of dive duration data 1050 

𝜎𝜎𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 = standard deviation of perpendicular distances in the field-of-view model 1051 

𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑑𝑑2  = variance of the residual error in the field-of-view model 1052 

𝜎𝜎𝑠𝑠 = standard error of surface duration data 1053 

𝜑𝜑 = dispersion or scale parameter for a Tweedie distribution 1054 

𝝍𝝍 = vector of smoothing parameters for the density surface model 1055 

𝜔𝜔𝑖𝑖 = number of whales sighted on segment i in the density surface model 1056 

Ω𝑖𝑖 = random variable for the natural logarithm of the number of whales on segment i in the density surface 1057 
model 1058 
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Appendix B 1059 

Detection Functions 1060 

Methods 1061 

The probability that an ASAMM observer (“observer 1”) detects a group of whales located on the 1062 
transect and the effects of distance (𝑦𝑦) from the transect (and possibly other covariates z) on 1063 
detection probability were estimated using an observation model, 𝑝𝑝1(𝑦𝑦, 𝒛𝒛), for each aircraft. 1064 
Separate observation models were built for the Twin Otter and the Turbo Commander aircraft due 1065 
to differences in window design and aircraft configuration that likely affected detectability. This 1066 
decision was based on expert judgment rather than a formal statistical test because the latter likely 1067 
would be unreliable due to the extremely unbalanced sample sizes for the two types of aircraft.  1068 

Observation models were formulated as mark-recapture multiple covariates distance sampling 1069 
(mcds) detection functions (Marques and Buckland 2003, Laake and Borchers 2004). However, 1070 
because belly port imagery were collected only on the Turbo Commander, the estimate of transect 1071 
detection probability, 𝑝𝑝1(0, 𝒛𝒛), for the Turbo Commander was incorporated into to the observation 1072 
model for the Twin Otter.  1073 

The underlying observation model was a scaled version of an mcds detection function, 𝑔𝑔(𝑦𝑦, 𝒛𝒛), 1074 
(Laake and Borchers 2004): 1075 

 𝑝𝑝1(𝑦𝑦, 𝒛𝒛) = 𝑝𝑝1(0, 𝒛𝒛)𝑔𝑔(𝑦𝑦, 𝒛𝒛) [B1] 

The mcds detection function assumes the probability of detecting an object on the transect equals 1076 
1.0; it specifies the functional form (shape and scale) of the observation model. The mcds model can 1077 
take various forms, specified by its key function, such as the half-normal key function or hazard-rate 1078 
key function. A half-normal model in which the standard deviation (scale parameter) is a linear 1079 
function of covariates affecting detection probability may be represented as: 1080 

 
𝑔𝑔(𝑦𝑦, 𝒛𝒛) = 𝑠𝑠𝑒𝑒𝑝𝑝 �

−𝑦𝑦2

2�𝑠𝑠𝑒𝑒𝑝𝑝�𝜃𝜃0 + ∑ 𝜃𝜃𝑗𝑗𝑧𝑧𝑗𝑗𝑗𝑗 ��2
� 

[B2] 

An analogous hazard-rate model may be represented as: 1081 

 
𝑔𝑔(𝑦𝑦, 𝒛𝒛) = 1 − 𝑠𝑠𝑒𝑒𝑝𝑝 �−�

𝑦𝑦
𝑠𝑠𝑒𝑒𝑝𝑝�𝜃𝜃0 + ∑ 𝜃𝜃𝑗𝑗𝑧𝑧𝑗𝑗𝑗𝑗 �

�
−𝑏𝑏

� 
[B3] 

The average probability that an ASAMM observer detects an object that is available to be seen, given 1082 
covariates z that affect detectability, assuming transect detection probability is 1.0, is: 1083 

 
𝑝𝑝∗(𝒛𝒛) =

∫ 𝑔𝑔𝑤𝑤
0 (𝑦𝑦, 𝒛𝒛)𝑑𝑑𝑦𝑦

𝑤𝑤
 

[B4] 

where w is the width of the strip searched, defined in detail below. 1084 



39 
 

Detection function models with half-normal and hazard-rate key functions, each with second-order 1085 
cosine series adjustments, were considered. The null hazard-rate models had considerably lower AIC 1086 
values and exhibited better fit than the half-normal models or models with cosine series adjustments, 1087 
so forward stepwise selection of covariates, using AIC as the model selection criterion, proceeded 1088 
with only the hazard-rate key function. 1089 

ASAMM line-transect data were filtered prior to building the detection functions. Only bowhead 1090 
whale sightings made by primary observers during transect, aggregation protocols, and search effort 1091 
(Clarke et al. 2020) with recorded declination angles were used in the detection function analyses. All 1092 
analyses were limited to data collected during conditions of Beaufort Sea State 5 or less. The 1093 
detection function for the Twin Otter was based on data from only 2019, the single year in which 1094 
this specific type of aircraft was used to fly ASAMM surveys. The exact same configuration of 1095 
Turbo Commander flew ASAMM surveys in 2018 and 2019, and belly port imagery were collected 1096 
during both years. Therefore, the Turbo Commander detection functions incorporated data from all 1097 
surveys in 2018 and 2019 during which imagery were concurrently collected, and from all Western 1098 
Arctic bowhead whale abundance surveys, which were conducted from 5 to 27 August 2019.  1099 

Sighting data were truncated very close to and far from the transect. Data were left-truncated to 1100 
account for lower sighting probabilities very close to the aircraft (Hain et al. 1999). Based on visual 1101 
inspection of histograms of perpendicular sighting distances for bowhead whales, the Twin Otter 1102 
data were left-truncated at 100 m (Figure B1) and the Turbo Commander data were left-truncated at 1103 
75 m (Figure B2). Based on preliminary analyses and to be consistent with ASAMM’s cetacean 1104 
aggregation protocols, sightings farther than 3 km from the original transect (prior to left-truncation) 1105 
were omitted from the detection function analyses to minimize the effects of outliers. The strip 1106 
width, w, used in the analysis was 2497 m for the Twin Otter and 2916 m for the Turbo 1107 
Commander. 1108 

Belly port imagery data were also filtered prior to building the Turbo Commander detection 1109 
function. Imagery sightings located on either side of the transect within the left-truncation distance 1110 
for the Turbo Commander (75 m) were excluded from the mark-recapture model. Also omitted 1111 
were imagery sightings collected when the ASAMM data indicated that Beaufort Sea State was > 5. 1112 
For one bowhead whale detected in imagery, photo analysts could not conclusively determine 1113 
whether there was a match in the ASAMM dataset; this imagery sighting was omitted from the 1114 
analysis.  1115 

Covariates evaluated for inclusion in the detection function models are defined in Table B1. 1116 
Detectability might depend on group size, so several group size covariates were considered. Beaufort 1117 
Sea State affects an observer’s ability to detect objects against the noise of whitecaps and waves, so 1118 
two sea state variables were considered. Surveys were infrequently conducted when sea ice cover was 1119 
greater than 10%; therefore, to provide balanced sample sizes, a categorical variable indicating only 1120 
whether sea ice cover was < 10 % or ≥ 10 % was considered. Survey altitude ranged from 305-460 1121 
m above ground level, so this was included as a potential explanatory covariate. Lastly, a categorical 1122 
covariate for sky condition was also considered. For instances in which there were multiple potential 1123 
covariates for the same characteristic (e.g., group size), the covariate included in the univariate model 1124 
with the lowest AIC value was carried through to the next round of variable selection and all of the 1125 
related covariates were omitted from the rest of the analysis. 1126 

The model for 𝑔𝑔(𝑦𝑦, 𝒛𝒛) can estimate how detection probabilities vary with distance and other 1127 
covariates; however, without the mark-recapture component 𝑝𝑝1(0, 𝒛𝒛), the intercept of the mcds 1128 
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detection function cannot be estimated (Laake and Borchers 2004). Hence, 𝑝𝑝1(0, 𝒛𝒛) determines the 1129 
location of the intercept in the observation model and represents the probability that an ASAMM 1130 
observer detects an object located on the transect, at 𝑦𝑦 = 0 (the left-truncation point). 1131 

To derive 𝑝𝑝1(0, 𝒛𝒛), a mark-recapture detection function was used to find the probability that an 1132 
ASAMM observer detected an object that the photo analyst (“observer 2”) detected, 𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛). The 1133 
model for 𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛) was based on trial configuration of observers, with the assumption of point 1134 
independence (Laake and Borchers 2004). Trial configuration is appropriate here because imagery 1135 
were used to estimate transect detection probability for the ASAMM observers; there was no need 1136 
to derive a detection function for the photo analysts. Point independence requires that detections of 1137 
objects located on the transect are independent between the ASAMM observers and photo analysts, 1138 
but not necessarily elsewhere. Due to the assumption of point independence, 𝑝𝑝1(0, 𝒛𝒛) = 𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛).  1139 

Mark-recapture estimators are inherently plagued by bias due to unmodeled heterogeneity in 1140 
detection probability, and distance is one of the largest sources of detection probability 1141 
heterogeneity in distance-sampling data (Laake and Borchers 2004). The model for 𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛) allows 1142 
detection probability to depend on perpendicular distance from the aircraft and other covariates. 1143 
The additional covariates considered for inclusion in the mark-recapture model related to Beaufort 1144 
Sea State and survey altitude (Table B1). The logistic model was used for the mark-recapture 1145 
detection function:  1146 

 
𝑝𝑝1|2(𝑦𝑦, 𝒛𝒛) =
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 1147 

Transect detection probability for the ASAMM observers, averaged over all z, was estimated by: 1148 
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 1149 

where 𝑛𝑛1 = number of groups detected by the ASAMM observers.  1150 

For each aircraft type, a single best observation model was selected based on AIC. For the Twin 1151 
Otter, this involved selecting only an mcds model and incorporating the results from the mark-1152 
recapture detection function for the Turbo Commander. For the Turbo Commander, the mcds and 1153 
mark-recapture models were selected by minimizing their respective AIC values. If a model with 1154 
fewer covariates was within 2 AIC units of the model with the lowest AIC, the simpler model was 1155 
chosen as the final model. 1156 

To evaluate model fit, for the mcds models we examined histograms of perpendicular sighting 1157 
distances overlaid with model fit (Figures B3, B4) and conducted Cramer von Mises goodness-of-fit 1158 
tests (Twin Otter test statistic = 0.0552879, p = 0.84; Turbo Commander test statistic = 0.0477863, 1159 
p = 0.89). For the Turbo Commander’s mrds model, we conducted a chi-square goodness-of-fit test 1160 
(chi-square = 2.7436e-27, p = 1 with 4 degrees of freedom). 1161 
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Results 1162 

For the Twin Otter, the mcds detection function was based on 85 bowhead whale sightings. The 1163 
final model was the null hazard-rate model (Table B2), relying on perpendicular distance alone to 1164 
estimate detection probabilities. For the Twin Otter, 𝐶𝐶𝐶𝐶��𝑝𝑝∗�(𝒛𝒛)�  = 0.122. 1165 

For the Turbo Commander, the mcds detection function was based on 297 bowhead whale sightings 1166 
and the final model incorporated sky conditions and perpendicular distance (Table B2). Detection 1167 
probabilities were highest under clear skies and lowest under overcast skies. The mark-recapture 1168 
detection function for the Turbo Commander was based on a total of 305 unique observations, 297 1169 
of which were detected by the ASAMM observers, 53 were detected in the imagery, and 45 were 1170 
detected by both. The final mark-recapture model incorporated distance and integer-valued Beaufort 1171 
Sea State (Table B2). In this model, detection probability near the transect increased with increasing 1172 
Sea States, which could indicate that observers focused their scans closer to the aircraft when surface 1173 
waters were rough. The overall transect detection probability, 𝑝𝑝1(0, 𝒛𝒛), was estimated to be 0.65. 1174 
For the Turbo Commander, 𝐶𝐶𝐶𝐶��𝑝𝑝∗�(𝒛𝒛)�  = 0.076 and 𝐶𝐶𝐶𝐶���̂�𝑝(0, 𝒛𝒛)� = 0.005. 1175 
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Table B1. Definitions of covariates considered for inclusion in the multiple covariates distance sampling detection function models for the Twin Otter 
(Ott) and Turbo Commander (Cmdr) aircraft. *Also considered in the mark-recapture distance sampling detection function model for the Turbo 
Commander. Perpendicular distance to sighting was included in all models.  

Covariate 
Name Definition Categories Aircraft 

size observed group size of the sighting   
Ott, 
Cmdr 

loggs log10(size)   
Ott, 
Cmdr 

catsize categorical group size {1, >1} 
Ott, 
Cmdr 

catsizeGT2 categorical group size {1, 2, >2} 
Ott, 
Cmdr 

catsize10 categorical group size {1, 2, >2 & ≤10, >10} Cmdr 

iBeauf* Beaufort sea state, as an integer-valued numeric variable ranging from 1 to 5   
Ott, 
Cmdr 

f5Beauf* Beaufort sea state, as a categorical variable {0 to 2, 3 to 5} 
Ott, 
Cmdr 

best.Alt* aircraft altitude from the GPS, if available; otherwise, barometric altitude; scaled by 1/1000   
Ott, 
Cmdr 

SkyCon sky condition 
clear, partly cloudy, 
overcast 

Ott, 
Cmdr 

catIcePct percent sea ice cover {<10%, ≥10%}  Cmdr 
Observer Observer Initials {LB, RH}  Ott 

  1190 



43 
 

Table B2. Detection function parameter 
estimates for the Twin Otter and Turbo 
Commander aircraft. MCDS = multiple 
covariates distance sampling. MRDS = mark-
recapture distance sampling. 

Twin Otter MCDS Model 

 Estimate SE 
Scale Coefficients   

Intercept -0.424 0.174 
Shape Coefficients   

Intercept 0.953 0.182 

   
Turbo Commander MCDS Model 

 Estimate SE 
Scale Coefficients   

Intercept 0.436 0.197 
SkyCon overcast -0.742 0.252 

SkyCon partly cloudy -0.640 0.226 
Shape Coefficients   

Intercept 0.722 0.134 

   
Turbo Commander MRDS Model 

 Estimate SE 
Intercept -2.190 1.502 
distance 12.367 6.245 
iBeauf 1.138 0.508 

 1191 
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 1192 

Figure B1. Histogram of perpendicular distance to bowhead whale sightings by primary observers 1193 
on the Twin Otter aircraft during the August 2019 line-transect surveys. 1194 

  1195 
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 1196 

Figure B2. Histogram of perpendicular distance to bowhead whale sightings by primary observers 1197 
on the Turbo Commander aircraft during the August 2019 line-transect surveys and other surveys 1198 
conducted in 2018 and 2019 during which belly port imagery were collected. 1199 

  1200 
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 1201 

Figure B3. Histogram of perpendicular sighting distances to bowhead whale sightings from the Twin 1202 
Otter, overlaid with the best detection model fit. 1203 

  1204 
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 1205 

Figure B4. Histogram of perpendicular sighting distances to bowhead whale sightings made by 1206 
marine mammal observers on the Turbo Commander, overlaid with the best detection model fit. 1207 

 1208 
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Appendix C 1209 

Field of View 1210 

Methods 1211 

Time-in-view estimates were incorporated into availability bias correction factors for the Western 1212 
Arctic bowhead whale abundance estimate. To estimate the amount of time observers had to view a 1213 
bowhead whale as a function of perpendicular distance to the transect (𝜆𝜆(𝑦𝑦)), in 2018 and 2019 the 1214 
survey aircraft flew field-of-view (FOV) trials over land using fixed structures (a Conex box for the 1215 
Turbo Commander and a cabin for the Twin Otter) as targets. See Clarke et al. (2020) for details 1216 
about the FOV field methods.  1217 

Time-in-view at perpendicular distance (pdist) 𝑦𝑦, 𝜆𝜆(𝑦𝑦), increases linearly with viewing distance 1218 
along the transect (x) as a function of aircraft speed (Robertson et al. 2015; Figure C1). The FOV 1219 
model was defined using viewing distance rather than time as the response variable so that the 1220 
results would be applicable at any aircraft speed. The forward time-in-view is the relevant parameter 1221 
for deriving an availability bias correction factor for ASAMM data because sightings initially detected 1222 
in the aft field of view are considered to have been “missed” by the ASAMM primary observers and 1223 
were excluded from the abundance estimate analysis.  1224 

Because the field of view from the windows in the Turbo Commander was unobstructed ahead of 1225 
the plane at the left-truncation distance (Ferguson et al. 2021), 𝜆𝜆(0) was assumed to be a function 1226 
of the distance at which a bowhead whale can be detected. Therefore, 𝜆𝜆(0) for the Commander was 1227 
computed by dividing the right-truncation distance (2.92 km) used to build the multiple covariates 1228 
distance sampling detection function model (Appendix B) by the survey speed (213 km/h). The 1229 
resulting estimate of time-in-view for the Turbo Commander was 49.3 sec. 1230 

For the Twin Otter, due to the relatively short viewing distance near the aircraft and the 1231 
considerable variability in the FOV data, viewing distance was estimated from a linear model. Only 1232 
two primary observers flew in the Twin Otter and sample sizes from the FOV trials were limited 1233 
due to logistical constraints; therefore, data from both observers on the Twin Otter were pooled in 1234 
the FOV model for this aircraft. Furthermore, the left and right bubble windows in the Twin Otter 1235 
were identical in size and placement, so data from both sides of the aircraft were pooled. 1236 

The FOV model for the Twin Otter was based on scaled perpendicular distance to the transect, 1237 
pdist.scl: 1238 

 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎. 𝑖𝑖𝑠𝑠𝑎𝑎ℎ = (𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡ℎ−𝑑𝑑𝑑𝑑𝚤𝚤𝑠𝑠𝑡𝑡��������)
𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , [C1] 

where  1239 

h = waypoint index; 1240 

𝑝𝑝𝑑𝑑𝑝𝑝𝑖𝑖𝑎𝑎������� = 1
𝑛𝑛ℎ
∑ 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎ℎℎ ; 1241 

𝑛𝑛ℎ = number of waypoints; and 1242 
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𝜎𝜎𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 = standard deviation among pdist. 1243 

The linear model for the FOV of the Twin Otter was defined as: 1244 

 𝑒𝑒𝑘𝑘 = 𝛾𝛾 + 𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡.𝑠𝑠𝑐𝑐𝑡𝑡 ∗ 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎. 𝑖𝑖𝑠𝑠𝑎𝑎𝑘𝑘 + 𝜀𝜀𝑘𝑘 , [C2] 

where 1245 

x = viewing distance (in meters) along the transect; 1246 

k = replicate index; 1247 

𝛾𝛾 = intercept; 1248 

𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡.𝑠𝑠𝑐𝑐𝑡𝑡 = fixed effect of pdist.scl on slope; and  1249 

𝜀𝜀𝑘𝑘~N(0,𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑑𝑑2 ). 1250 

Diagnostic tests run on the final Twin Otter FOV model exhibited no concerns about the data 1251 
meeting the required assumptions of normally and independently distributed data for a linear model. 1252 
The Shapiro-Wilk normality test was not statistically significant (W = 0.95888; p = 0.6416). There 1253 
were no points with large leverages. A test of the Studentized residuals failed to identify outliers 1254 
(Bonferroni-corrected p = 0.38563). Lastly, the half-normal plot of Cook’s Distance failed to 1255 
identify outliers. 1256 

The estimate of 𝜆𝜆(0)�  for the Twin Otter used in the Western Arctic bowhead whale abundance 1257 
analysis corresponds to the median from 10,000 parametric bootstrap samples from the Twin Otter 1258 
FOV linear model (Ferguson 2020). The corresponding standard deviation was computed from the 1259 
same set of bootstrap samples.  1260 

Results 1261 

The Twin Otter FOV data and the resulting model of forward viewing distance suggested that the 1262 
target remained in view longer from the farthest (2000 m perpendicular distance) transect compared 1263 
to the closest (500 m perpendicular distance) transect. The estimated intercept of the FOV model 1264 
was 2180.5 (SE = 169.9), and the estimated slope was 131.7 (SE = 175.5). The corresponding values 1265 
of the estimated intercept and slope for unscaled perpendicular distance, pdist, were 1975.1 and 1266 
0.17, respectively. The model estimated that a target located at the left-truncation distance (100 m) 1267 
was visible to an observer on the Twin Otter for approximately 33.6 seconds (SD = 5.1 sec). 1268 
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 1284 

Figure C1. Schematic representation of the simple linear model for estimating parameters defining the 1285 
forward (fwd) field of view for a primary observer on the right side of the aircraft. x is the viewing distance. γ 1286 
is the intercept. 𝑝𝑝𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎. 𝑖𝑖𝑠𝑠𝑎𝑎 is scaled perpendicular distance .𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡.𝑠𝑠𝑐𝑐𝑡𝑡 is the slope. y is the perpendicular 1287 
distance to the transect. k indexes the field-of-view trial number. 1288 
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Appendix D 

Hierarchical Generalized Additive Model Specification 
In the language of the dsm() and gam() functions from the dsm (Miller et al. 2021) and mgcv 
packages (Wood 2017) in R, the full hierarchical generalized additive model used to estimate 
Western Arctic bowhead whale density can be represented as: 

modl <- dsm(formula = count ~  

                                    s(x.coord, y.coord, k=15, bs="sf",xt=list(bnd=list(bnd.list))) + 

                                    s(x.coord, y.coord, k=15, bs="sw", xt=list(bnd=list(bnd.list))) + 

                                    ti(x.coord, y.coord, A.fact, k=c(15,4), bs=c("sf", "re"), d=c(2,1), 

                                             xt=list(list(bnd=list(bnd.list)), NULL)) + 

                                    ti(x.coord, y.coord, A.fact, k=c(15,4), bs=c("sw", "re"), d=c(2,1), 

                                             xt=list(list(bnd=list(bnd.list)), NULL)) + 

                                    offset(log(ap)), 

                                    knots = soap.knots,  

                                    family = tw(),  

                                    method = "REML", 

                                    ddf.obj = list(cmdr.ddf, ott.ddf), 

                                    observation.data = obs.dat, 

                                    segment.data = seg.dat) 

See the dsm and mgcv package helpfiles for additional information about each of the arguments. 
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