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Abstract 

The 2019 ice-based survey of Bering-Chukchi-Beaufort Seas bowhead whales was challenged by 

missed survey effort, unusual ice conditions, and frequent use of motor-powered skiffs by hunters. 

All three of these likely led to downward bias in the abundance estimate of Givens et al. (2020). 

Data were collected about boat excursions during the survey period. Indices of short-term whale 

abundance at the survey perch and short-term boat noise disturbance were computed from the 

available data, where ‘short term’ refers to a few hours. A generalized additive model (GAM) was 

fit to the results, predicting short-term whale abundance as a smooth function of the boat noise 

disturbance index, after controlling for long-term variation in the whale passage rate over the 

course of the season. The fitted GAM was then used to predict passage with and without the 

presence of boat noise. The ratio of the integrals of these two predicted passage curves provided a 

correction factor which can be applied post hoc to the abundance estimate of Givens et al. (2020). 

Variance of this correction factor was estimated using two approaches, and found to be small. A 

wide array of sensitivity analyses was conducted to examine the robustness of the result to 

potential changes in methodology, and the correction factor was found to be quite stable. The 

estimated correction factor would inflate the original abundance estimate by about 12%, yielding a 

corrected abundance of 14,025 (CV=0.228). We recommend that this replace the original 

abundance estimate. 
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INTRODUCTION 

In spring 2019, an ice-based survey of bowhead whale (Balaena mysticetus) abundance was conducted near 

Utqiaġvik, Alaska. A survey platform (hereafter, ‘perch’) was built on the edge of the shore-fast ice to observe the 

open lead system as whales migrated northeast past the site. Bowheads that passed within 4 km of the perch were 

observed, with detection probabilities modeled to depend on pod size, sighting distance, and amount of ice in the 

lead. A correction factor for availability was applied to account for the proportion of the population that passes 

beyond 4 km visual range. 

Givens et al. (2020) describe the statistical analysis of the resulting data, and provide an abundance estimate of 

12,505 (CV=0.228). The confidence interval for this 2019 estimate fully contains the confidence interval for the 

2011 estimate produced by Givens et al. (2016) using nearly the same methods. However, the point estimate for 

2019 is notably lower than the 2011 point estimate of 16,820. Givens et al. (2020) listed several reasons why the 

2019 estimate was likely biased downward, including missed survey effort at the start of the season and highly 

unusual ice conditions leading the whales to be unusually far offshore. 

Givens et al. (2020) suggested that another major reason for the bias was the unprecedented frequent use of motor-

powered skiffs by subsistence hunters during the survey period. They wrote:  
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In most previous survey years, hunters quietly paddle traditional umiaqs (i.e., seal skin covered 

boats) for much of spring whaling. However, in 2019, hunters consistently used power boats 

during the spring whaling season, in all regions of the coast near Utqiaġvik including a camp just 

200 meters north from the perch. The disturbance to the survey was especially severe starting 7 

May to the end of the season. when the entire coast was opened to powered skiffs. The increased 

use of power boats was necessary for the community to land whales because of the unusual 

distribution of bowheads.  The whales were inaccessible to skin boat hunters at the shorefast lead 

edge, and much longer distances needed to be covered to hunt bowheads (and tow them back to 

the shore-fast ice). Bowheads avoid power boats by diverting further offshore and/or reducing 

surface times (Richardson and Malme, 1993). This behavior persists for a period of time after the 

disturbance. Perch observers reported a downturn in the whale count in the hours after power boats 

launched. 

Indigenous hunters have known for centuries that noise disturbs migrating bowhead whales. Ethnographic studies at 

Utqiaġvik in 1881 described local practices to reduce noise disturbance during bowhead hunting: “During this 

period, and while the whaling is going on, no pounding must be done in the village [several miles away], and it is 

not allowed even to rap with the knuckles on wood for fear of frightening away the whales” (Murdoch, 1892, p. 

274). 

Numerous studies have shown strong reactions of bowheads to seismic surveys and large commercial vessels 

(National Research Council 2003; Richardson and Malme, 1993). Robertson et al. (2013) found surface-respiration-

dive (SRD) behaviors changed when exposed to noise from seismic operations. Specifically, the number of blows 

per surfacing and surface time were significantly lower when seismic operations were on-going. Robertson et al. 

(2015) further determined that changes in SRD affected visual detection probabilities of bowheads, including those 

exposed to seismic operations. Density and localized abundance estimates of disturbed whales increased from 3% to 

63% when corrected for changes in SRD behavior data.  

Reactions to seismic noise tend to be more overt and at a greater distance because of the extremely high sound 

source level. However, bowheads also react to commercial vessels and may show similar behaviors but at shorter 

distances (Richardson and Malme, 1993; McDonald et al. 2012; Würsig and Koski, 2021).  Whale hunters describe 

similar reactions of bowheads to perceived threats, whereby the whales surface less and become skittish when 

powerboats are in the leads.  While deploying satellite tags on bowhead whales, it has been noted that bowheads 

avoided skiffs when approached, particularly if they were not feeding. Carroll and Smithhisler (1980, p. 83) 

described bowhead reactions to whale boats on the migration at Utqiaġvik: “When bowheads are pursued by Eskimo 

whalers their usual reaction is docile escape. When they perceive something as threatening, bowheads quickly dive 

and do not resurface in the immediate area,” and outboard motors are therefore seldom used by hunters in spring 

because it “cause[s] whales to avoid the area.” 

Currently, bowhead hunters at Utqiaġvik try to minimize noise along the lead edge during the migration by limiting 

snow machines and refraining from hunting belugas or waterfowl as well as restricting large vessel traffic (ice-

breakers) in leads per the Conflict Avoidance Agreement (Lefevre, J.S. 2013). In the Barrow Whaling Captains 

Association (BWCA) guidelines, powerboats are typically not allowed in the leads until late in the season. Also, it 

was previously common to request that the BWCA crews reduce or suspend the use of powered skiffs for the entire 

season when an ice-based bowhead survey was conducted, particularly in the 1980s and 1990s. 

In this paper, we attempt to correct the 2019 abundance estimate for bias caused by power boat disturbances. We 

seek a bias factor that can be estimated without modifying the analysis of Givens et al. (2020), so that it can be 

applied post hoc to their result. To the best of our knowledge, there is no standard way to make such a correction, so 

we spend considerable effort exploring the sensitivity and robustness of our approach (see Discussion).  

DATA 

The new data used in our analysis are records of powered skiff use by subsistence whalers during the survey season. 

No other power boats or commercial vessels were in the northeast Chukchi Sea near Utqiaġvik during the 2019 
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survey period. These data were obtained from the Barrow Volunteer Search and Rescue group who keep detailed 

records on hunting activities including the locations of whaling crew camps, access trails, and boating activities for 

each crew (Druckenmiller et al. 2013). Each entry in the dataset includes the date and time the boat departed from 

the ice edge, the date and time it returned to the ice edge (at the same location as departure), and the distance of the 

launch/return site from the survey perch where observers were counting whales. There are no data available on 

where the boats traveled during their time at sea. In total, there were 199 boat excursions in the database, although 

several of these occurred after the survey had finished. 

The other data used here are what Givens et al. (2020) call the Horvitz-Thompson contributions, denoted as wi here. 

Each wi corresponds to a single sighting of ci whales at time ti. The raw ci counts are scaled by dividing by the 

estimated detection probability for that sighting, which was estimated from two-perch independent observer data 

(Givens et al. 2015). They are also multiplied by a factor of 0.5 if the sighting is ‘Conditional’ rather than ‘New’. 

According to survey protocols, sightings are deemed Conditional if there is a 50% chance that the whale(s) was 

previously sighted. Aside from various technicalities, the total abundance estimated by Givens et al. (2020) is 

essentially the sum of the Horvitz-Thompson contributions divided by a factor accounting for availability (namely, 

the proportion of whales that swim within visual sighting distance of the perch). Since this availability factor is 

applied globally to the sum of the wi, we may view wi as proportional to sighted abundance at time ti. Thus, actual 

whale abundance passing the perch at a particular time may be high if a single large wi was recorded then, or if a 

large number of smaller values of wi were recorded all around the same time. By limiting our analysis to use the boat 

data and the Horvitz-Thompson contributions, we can estimate a boat disturbance correction factor without 

modifying the analysis of Givens et al. (2020). 

Figure 1 shows the available data. The passage rate curve (right vertical axis, uncorrected for availability) is 

calculated by Givens et al. (2020) by binning the Horvitz-Thompson contributions in 12-hour bins, summing each 

bin, weighting each bin by the amount of qualifying survey effort during the period, and then smoothing the bin 

totals. The smooth was estimated from a shifted gamma generalized additive model (GAM) with log link, fit using 

the mgcv package in the R computing language (Wood 2004, 2011, 2017; R Core Team, 2020), with 20k =  knots 

and the default generalized cross-validation approach to choose the smoothness penalty; see Givens et al. (2016, 

2020) for details. The boat data are also shown in Figure 1. Each launch (L) and return (R) event is plotted, with the 

vertical axis corresponding to distance of the launch/return site from the survey perch. 

STATISTICAL METHODS 

Overview 

Our analysis begins by recognizing that the passage rate curve (Figure 1) describes the long-term variation in the 

passage of bowheads during the season. The value of the passage rate curve at any point in time reflects a smoothing 

over many 12-hour bins, so the curve reflects a time scale of several days at any point. If there are short-term 

disturbances due to boat noise, these should be partly or mostly washed out from the passage rate curve due to its 

long-term focus. 

Indeed, observers with decades of experience on the perch, and hunters with lifetimes of experience on the ocean, 

report that boat disturbances occur on a much shorter time scale. Perch observers believe that a boat noise event (or 

the striking of a whale by a hunter using an explosive weapon) results in a reduction of whales sighted from the 

perch for about 4-6 hours before returning to normal. 

Thus, to estimate a boat effect, we first generate short-term indices of boat noise and whale passage over time. Our 

methods are described below. We then fit a generalized additive model (GAM) predicting the short-term whale 

passage. The predictors in this model are the long-term passage curve (to reflect long-term variation in sighted 

abundance, not impacted by boat noise) and the short-term boat noise index (to capture any short-term variation in 

sighted abundance attributable to boat noise). The fitted model tells us about the extent and nature of any boat noise 

effect, and from this we can estimate a correction factor using methods described later. 

 



4 
 

The season 

Figure 1 shows that the use of power boats during the survey season was not homogeneous. During approximately 

the first half of the season (roughly, 14 April to 4 May), essentially all the boats operated (i.e., launched and 

returned) at a location only 200 m from the survey perch. Also, the total number of boat excursions during this 

period was relatively low compared to later. During the second half of the season (roughly, 5-20 May), boat 

excursions were much more numerous, and they operated exclusively from sites many kilometers southwest of the 

perch. The actual long-term passage of whales followed the normal spring pattern, with most whales passing during 

the first half of the season, and fewer sighted later. This is consistent with the normal migratory pattern at Utqiaġvik 

and not attributable to boats or other disturbance. Bowheads migrate in pulses of large numbers of subadult animals 

in the first half of the migration followed by lower numbers of reproductive animals passing later in the season 

(Koski et al. 2006).   

Because the two halves of the season were so different, we analyzed them separately (splitting at hour 2986.67). The 

results are combined at the end of the analysis to compute the final correction factor. There were a couple of distant 

boat excursions during the first part of the season which we ignored. Any effect of these is likely dominated by the 

effect of the more numerous and more disturbing near-perch boats, and eliminating these allows the GAM to 

accurately focus on the near-perch effect. Indeed, by splitting the season this way, we can have a single ‘near-perch 

model’ for the first half and a separate ‘distant-perch model’ for the second half. This makes GAM modeling 

simpler and more reliable. 

Short-term whale abundance index 

We use kernel methods to compute short-term indices of whale abundance and boat noise disturbance. In our usage, 

kernels are nonnegative functions that assign weight to a portion of the timeline. To generate the short-term whale 

abundance index, we used a normal distribution with a standard deviation of 180 minutes as the kernel. This means 

that we place this normal distribution shape centered over each ti (and there are 2,008 Horvitz-Thompson 

contributions in total). Furthermore, each kernel is weighted by wi, which is proportional to the number of whales it 

represents. Mathematically, the value of the short-term whale abundance index at any time t is: 

 ( ; ,18 )) 0( /
i i i

i

t tW t w h=  

where ( ; ,180)
i

t t is the Gaussian density function with mean ti (in minutes) and standard deviation 180, evaluated at 

t, and hi is the proportion of the hour surrounding ti during which qualifying survey effort occurred. (For example, if 

1 New whale was seen with a detection probability of 1.0 but the perch was only operational for 40% of the hour, 

then that counts as 2.5 whales since 1
i

w =  and 0.4
i

h = .) The sum is taken over all Horvitz-Thompson 

contributions in the relevant half of the season, since W(t) is computed separately for each half. 

The standard deviation of 180 was chosen for three reasons. First, experimentation with a wide variety of choices 

from 30 to 480 found that our choice yielded slightly stronger correlations with the boat noise index than did 

narrower or wider bandwidths. Second, we wanted a sufficiently small value so that the computed whale index could 

reasonably be considered short-term; our choice ensures that the kernel weight essentially vanishes six hours 

before/after the sighting. Third, our short-term boat noise index (below) is based on a six-hour washout period, and 

we believed it was sensible for both short-term indices to have equivalent bandwidths. The standard deviation of 

180, the decision to correct for missed effort (via the hi), and the time window for the effort correction were all 

choices explored with sensitivity analyses described in the Discussion. 

All the analyses in this paper (except for the very final correction factor) are computed on relative scales. For 

example, the passage rate curve in Figure 1 does not scale for availability. Similarly, W(t) is only defined up to a 

proportionality constant, and thus serves as an index of relative abundance over time. 

 



5 
 

Short-term boat noise disturbance index 

For brevity, we refer to this as the boat noise index, but it is important to stress that we are not computing an index 

of how much noise is in the water; instead we are computing an index of how much the whales are disturbed while 

boats are operating. The boat disturbance can be manifested by the whales changing path, delaying passage, 

speeding past, and/or surfacing less, although survey observers believe the dominant disturbed behavior is to change 

path to a more offshore route beyond visual sighting range and to make briefer, and possibly fewer, surfacing 

periods. Direct observations from boats, radio tagging, and boat disturbance experiments confirm such responses 

(Richardson and Malme, 1993; National Research Council, 2003). 

Figure 2 shows the kernels used to compute the boat noise index. The remainder of this section explains the 

approaches in detail. 

For the first half of the season, all boat excursions started and ended at a site roughly 200 m from the survey perch, 

so we assume that the disturbance effect, if any, was immediate. The ith boat excursion has a launch time of Li and 

return time of Ri. We again use a kernel approach to compute the index. The trapezoidal kernel shape is very simple: 

zero before Li, a flat top from Li to Ri, and then diminishing linearly to zero from Ri to Ri+6. To express this 

mathematically, begin by defining the symmetric triangle density, evaluated at t, to equal 
2

( ; , ) ( ) /tt m r r m r − −=  for t rm−   and zero elsewhere. This is a triangle shape, centered with a peak at m 

and diminishing linearly to zero at m−r and m+r. Then the trapezoid kernel for the ith boat excursion has the 

following form: 
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Then the short-term boat noise disturbance index for the first half of the season is the sum of these kernels for the 26 

excursions during the period:  

 
26

1

( ; , )( )
i

i i
B t t L Rb

=

=  

This is a relative index, so scaling does not matter. 

The choice of this kernel shape is driven by the experience of the survey observers. We have no data on where the 

boat goes during its excursion, and observers felt that the most sensible model was constant disturbance during the 

excursion. As noted earlier, observers believe that conditions gradually return to normal about 4-6 hours after a 

disturbance, so the linear washout with r=6 seemed to be the simplest model to reflect this experience. Sensitivity to 

the choice of the boat noise kernel is addressed in the Discussion. 

The approach for the second half of the season is more complex. The sites where boats launched and returned were 

15 to 28.5 km southwest of the perch.  A whale present at the boat launch site at the time of launch may be disturbed 

and divert to a more offshore migration route, which it maintains thereafter, roughly parallel to the undisturbed route 

but too far offshore to be seen by the observers when it passes the perch. This behavior was deemed most plausible 

by experienced survey observers. Our kernel accommodates this perception, but also reflects other possibilities. 

Since this hypothetical whale must first swim from the boat site to the perch before its unavailability to the visual 

observers occurs, we define the swim delay (Di) to equal the distance (m) between the boat site and the perch, 

divided by 4000. Zeh et al. (1993) report average bowhead swim speeds during the northbound migration, and 4 

km/h is a reasonable average value. Thus the period of maximal disturbance is from Li+ Di to Ri+ Di. As previously, 

our kernel provides a 6-hour linear washout period from Ri+ Di to Ri+ Di+6. However, there can also be disturbance 

from Li to Li+ Di. For example, boat noise travels well through water, so a whale at the perch at moment Li may be 



6 
 

disturbed then. Also, a whale somewhere between the boat launch site and the perch may also be disturbed at 

moment Li, but then requires a swim delay of less than Di to reach the perch (because the whale is closer). The 

disturbance in these types of cases may be less severe, or less frequent, because such whales are farther from the 

noise source. Therefore, we adopt the same linear tail leftward of Li+ Di that is used rightward of Ri+ Di. Of course, 

this tail is truncated at Li because no disturbance of any sort occurs before the boat has launched, regardless of the 

location of the whale. The result of this model is the trapezoid shape shown in the right panel of Figure 2.  

Mathematically, the trapezoidal kernel for the ith boat excursion during the second half of the season is: 
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The short-term boat noise disturbance index for the second half of the season is the sum of these kernels for the 152 

excursions during the period:  

 
152

1

( ; , )( )
i

i i
B t t L Rb

=

=  

Again, this is a relative index, so scaling does not matter. The B(t) indices are defined only during the survey period. 

Boats occurring before or after the survey are ignored. 

Generalized additive model 

We analyzed the two halves of the season separately. Define P(t) to be the long-term passage rate curve shown in 

Figure 1. We generated data for modeling by computing P(t), W(t), and B(t) at 10-minute intervals over the entire 

analysis period. Then the approach was to predict short-term whale passage using the long-term passage rate and 

boat noise index as explanatory variables. Specifically, we fit a quasipoisson GAM with log link: 

 
0 1

log ( ) ( ) ( ( ))t P t s B t  = + +  

where ( )t denotes the theoretical mean of W(t), and s( ) is a smooth function (spline). The model was fit using the 

mgcv package in the R computing language (Wood 2004, 2011, 2017; R Core Team, 2020). We used 5k =  knots 

for s( ), which proved suitably flexible without excessive variability. The default generalized cross-validation 

method was used to choose the smoothness penalty. Note that the model compensates for the unspecified scale 

parameters in the relative indices W(t) and B(t). Furthermore, s( ) is only determined up to a proportionality constant 

due to the presence of 
0

  in the model. We use the default constraint on s( ) to ensure identifiability: the function 

sums to zero over observed covariate values. 

Correction factor 

In the GAM, s( ) represents any change in short-term whale sighted abundance that can be attributed to noise, after 

controlling for long-term passage rate variation. The fitted GAM can be used to make predictions under different 

scenarios. First, we can simply compute predictions using the observed data, P(t) and B(t). Denote these predictions 

as ˆ ( )W t . Alternatively, we can make predictions using P(t) but setting B(t)=0 always. This second set of predictions 

represents whale passage under the assumption of no boat noise disturbance, and by the design of the GAM above, it 

is log-linearly related to P(t). Denote the no-boat-noise predictions as 
0

ˆ ( )W t .   
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Total abundance during the survey period is proportional to the integral of ˆ ( )W t . Total abundance that would have 

been observed without boat noise is proportional to the integral of 
0

ˆ ( )W t . Let 

 
0

ˆ ˆ( ) / ( )W t dt W t dt =    

Then α is a correction factor that can be used to scale observed abundance to correct for the impact of boat noise 

disturbance. Note that there is no guarantee that 1   since the value of α depends on the shape of s( ), which is 

entirely unconstrained in the GAM. Furthermore, since α is a ratio, the undetermined scale factor in the predicted 

relative indices of short-term sighted abundance cancels out. 

Integrating P(t) over the two portions of the season reveals that 78.55% of whales passed during the first half of the 

season. Now we introduce superscripts on α to denote the first and second halves of the season since these were 

analyzed separately. Then the corrected total abundance is: 

 
(1) ( 2)

0 7 ˆ ˆ0. 1. 8 25 455 N N +  

where N̂  denotes the abundance estimate of Givens et al. (2020). Note that this can be expressed as ( )N̂p  where 

(1) ( 2)
( ) (1 )p p p  = + −  and p=0.7855. Thus (0.7855)  is the total boat noise disturbance correction factor. We 

write the correction factor as a function of p, namely ( )p , because our variance estimation approach accounts for 

uncertainty about p. 

Variance estimation 

We applied two variance estimation methods. Consideration of the merits of these and other options is given in the 

Discussion.  

Two important issues must be emphasized. First, we sought methods that did not require changing or recomputing 

N̂  from Givens et al. (2020). That way, our analysis here can provide a standalone, post hoc correction. Second, it 

was possible that ( )p  and N̂  are correlated. Estimating the variance of their product must account for this. 

Our first variance estimate applies an approach to GAM uncertainty recommended by Wood (2017), and assumes 

that the correlation is zero. We applied the mgcv package to obtain the linear predictor matrix for the GAM, and 

then generated a posterior sample of predictions by sampling from the posterior multivariate normal distribution of 

the parameter vector, pre-multiplying by the linear predictor matrix, and applying the inverse link function. This 

posterior sample of predictions can be computed in both cases: with and without boat noise disturbance. Thus a 

posterior sample of α can be obtained from these predictions, and hence a posterior for ( )p . Finally, assuming 

independence,  

 2 2ˆ ˆ ˆ ˆ{ ( ) } var{ ( )}var{ } ( ) var{ } var{ ( )}var p N p N p N N p   = + +  

where var ˆ{ }N  is taken from Givens et al. (2020) and }v r{a ( )p  is the variance of the posterior sample described 

above. 

The second approach is a conditional parametric bootstrap that accounts for potential correlation. We adopted the 

approach of simulating new response values (short-term sighted whale abundance) for given values of the predictor 

(short-term boat noise disturbance). We condition on whether a whale was seen at time t, in the sense that we 

generate new bootstrap nonzero weighted Horvitz-Thompson contributions at each ti where a sighting was originally 

made, and do not generate any such contributions at other times. The generating distribution at time ti is truncated 

Poisson(wi), where the wi are the weighted Horvitz-Thompson contributions, and the truncation prevents draws of 0. 

Thus each bootstrap sampling iteration provides a new set of weighted Horvitz-Thompson contributions, and from 
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this we can compute a bootstrap long-term passage rate curve ( )P t


 and a bootstrap short-term passage curve 

( )W t


. Each bootstrap iteration then fits the GAM using the bootstrap data, producing a bootstrap correction factor 

( )p
 

. Note that the proportion of the population passing during the first half of the season varies with each 

bootstrap iteration; the bootstrap proportion is p

, and the bootstrap correction factor depends on this. We used 

10,000 bootstrap iterations. This bootstrap required formidable computing time, which we managed using the 

parallel computing capabilities of the doParallel and foreach packages in R (Wallig et al., 2020a, 2020b). 

To obtain a bootstrap estimate of the correlation, we note that the N̂ of Givens et al. (2020) is approximately 

proportional to the sum of the weighted Horvitz-Thompson contributions. Therefore, without replicating the entire 

analysis of Givens et al. (2020) within the bootstrap, we can obtain bootstrap samples of a quantity that is 

proportional to abundance by summing the bootstrapped weighted Horvitz-Thompson contributions. The correlation 

between these bootstrap sums and the ( )p
 

 can then be estimated and serves as an estimate of }c )or ˆ{ ( ,p N . 

Finally, having bootstrap estimates for }v r{a ( )p  and }c )or ˆ{ ( ,p N , we can apply a standard, complex formula to 

compute the variance of the product ( )N̂p . We will report below that the bootstrap estimate of correlation was 

essentially zero, in which case the complex formula simplifies to the ordinary one used earlier.  

RESULTS 

Figures 3 and 4 show the short-term whale abundance and boat noise indices, W(t) and B(t), plotted against time and 

against each other, for each half of the season. The right panels of these figures suggest that the correlation between 

W(t) and B(t) is negative; indeed the correlation is -0.193 for the first half of the season and -0.075 for the second. 

This suggests that the impact of boat noise disturbance is to reduce whale sightings. 

Figure 5 shows the estimates of s(B(t)) for each half of the season, using the mgcViz package (Fasiolo et al., 2018) 

for visualization of GAMs. For the first half of the season, low to moderate B(t) is associated with minor up-and-

down fluctuations in s( ), which we interpret as sampling variability. For large B(t), the effect of noise is strong 

downward impact on sightings. For the second half of the season, the results suggest an even more consistent 

downward effect as B(t) increases. Recall that the smooths s( ) include an arbitrary identifiability constraint so what 

matters is the shape of the curves, not whether values are positive or negative. These results clearly show that the 

effect of increasing boat noise disturbance is reduced short-term whale sighted abundance. The amount of 

uncertainty in these estimates, represented by the posterior samples shown in Figure 5, is quite modest. 

Figure 6 shows the estimates ˆ ( )W t  and 
0

ˆ ( )W t  for the two halves of the season. Basically, the results show that boat 

noise had a small net impact on short-term abundance during the first half of the season when most of the whales 

(78.55%) passed, and a large impact during the second half of the season when fewer whales passed. Indeed, 

numerically integrating the estimated curves as described in the Methods yields correction factors 
(1)ˆ 1.0230 =  and 

( 2)ˆ 1.4821 = . Thus, the overall correction factor is (0.7855) 1.1215 = . In other words, correcting for boat 

disturbances inflates the abundance estimate by about 12%. The corrected abundance is 14,025. 

The variance of this estimated correction factor is quite small. Using the posterior variance method, the standard 

error of the correction factor is 0.0073. Applying the formula for the variance of a product of independent quantities, 

we obtain 
2ˆvar{ (0.7855) } 3202.731N = .  Table 1 compares the original and corrected abundance results. The 

bootstrap standard error of the correction factor is 0.0086, quite similar to the result of the first approach. The 

bootstrap estimate of correlation is 2c }or ˆ{ ( ), 0.006p N = − . This correlation is so tiny that we deemed it 

unnecessary to treat ( )p  and N̂  as dependent. Therefore, since the standard errors from the two approaches are 

similar and we prefer the first method (see Discussion), there was no need to pursue the bootstrap further. 
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DISCUSSION 

Due to the nature of the problem and the limitations of the available data, our analysis is necessarily heuristic. 

Therefore, we devoted an unusually large amount of effort to studying the sensitivity of the results to various 

choices made during the analysis.  

We mentioned above three reasons why we chose a kernel standard deviation of 180 minutes for the short-term 

whale abundance index: strength of signal, consistency with the boat noise index, and survey observers’ sense of 

what constitutes ‘short-term’ variation in whale passage. As a sensitivity analysis, we also completed the analysis 

with kernel standard deviations ranging from 30 to 480 minutes in 30 minute increments. The high end of this range 

is surely too large, since a standard deviation of 480 minutes means that ‘short-term’ corresponds to a kernel 

spanning +/−16 hours. Figure 7 shows the estimated smooth noise effects, s( ), obtained after computing W(t) with 

various choices for the kernel standard deviation. Clearly, this choice is a source of greater uncertainty than the 

posterior distributions shown in Figure 5. However, the curves are all broadly similar: downward effects on 

abundance for large values of B(t). Moreover, the actual impact on the estimated correction factor is relatively small; 

see Table 2. Even for extremely (and, in our view, unreasonably) narrow or wide kernel spans, the final correction 

factor only ranges from 1.15 to 1.09; our estimate is 1.12. 

We did not repeat an analogous experiment for the width of the boat noise index kernel, because the washout period 

(6 hours) was chosen on a firm scientific basis: the most experienced survey observers report that it takes about 4-6 

hours for whale distribution and sightings to get back to normal after a noise disturbance from a boat or hunting 

weapon discharge. Therefore, allowing the left and right tails of this kernel to extend up to 6 hours is sensible. 

However, the shape of the kernel itself could be questioned. We experimented with two other approaches (Figure 2). 

The first alternative kernel had a flat top from L to R, and Gaussian tails to the left and right, extending up to 6 

hours, and truncated to zero beyond that. These are the blue examples in Figure 2. The second alternative was based 

on the hypothesis that the actual events of launching and returning are the most disturbing, since they occur right at 

the edge of the open lead. The kernel was the sum of two sub-kernels: a Gaussian kernel centered at L, and another 

centered at R. The tails of each sub-kernel were truncated at 6 hours. The example resulting kernels are red in Figure 

2. Both of the alternatives assigned no kernel weight before L and applied the swim delay approach discussed 

previously. 

We combined the sensitivity analysis about kernel shape for B(t) with another issue: the correction for missed survey 

effort when calculating W(t). Recall that our analysis weights W(t) kernels by the inverse of hi, the proportion of the 

hour surrounding ti during which qualifying survey effort occurred. As a sensitivity analysis, we re-analyzed using a 

2 hour interval centered at ti, and again using no missed effort correction whatsoever. Table 3 shows the results of 

this combined sensitivity analysis. All these trials used 180 minutes as the bandwidth for the W(t) kernels. The 

results show that these variations have almost no effect on the estimated correction factors. It is well known in that 

for density estimation and similar applications, kernel shape usually has only minor impact (Givens and Hoeting, 

2013). The correction for missed effort has little effect because there is not much missed effort surrounding any 

sighting. 

We carried out two variance estimation approaches. The first, based on the posterior from the GAM, has several 

advantages. It is easy to compute, with well tested software, and has a firm basis in statistical theory (Wood 2004, 

2011, 2017). This is the standard approach most applied statisticians would employ, except that it does not account 

for potential correlation between ( )p  and N̂ . To address that, we conducted the conditional parametric bootstrap 

approach. The disadvantage of the particular bootstrap that we employed is that it is rather ad hoc; our sampling 

strategy was the best that could be done in the circumstances, but less sophisticated than what we would do for a 

simpler problem. The variance results were very similar for the two approaches: the CV( ( ))p  was 0.007 and 0.008 

for the posterior and bootstrap methods, respectively. Furthermore, the correlation between ( )p  and N̂  was 

estimated to be negligible. Therefore, the absence of a correlation term in the posterior approach is unproblematic. 

Considering all the factors mentioned here, we believe the posterior approach is superior. 
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One might ask why a dependent data bootstrap approach like the block bootstrap was not applied (Givens and 

Hoeting, 2013). Among the complexities that prevent this approach is the nature of the boat excursion data. Those 

data, in the second half of the season, are extremely clustered. Blocks would either be empty or full of boat 

excursions. Moreover, it is not clear how to compute B(t) from bootstrap data if a boat excursion has L in one 

bootstrap block and R in another. There would be many such problems. 

A potential concern about our approach is that the boat disturbance effect is also incorporated into the long-term 

passage rate, P(t), rather than being isolated in W(t). This is, in principle, a valid concern. However, P(t) describes 

variation in whale sighted abundance at a time resolution of several days or more, due to the binning and smoothing 

used. In contrast, W(t) captures short-term variation on the order of hours. There is considerable independence 

between these, and the GAM estimate of s(B(t)) controls for P(t). Moreover, if part of the disturbance effect on 

sighted abundance is captured in P(t) rather than W(t), the effect would likely be to underestimate the correction 

factors, leading to a smaller increase in corrected abundance.  

Survey observers have reported for decades that the noise from boats and hunters disturbs the passage of bowheads 

past the perch, however this effect was not accounted for in past abundance estimates. In past surveys (1980-2011), 

analysts were aware that the use of powered skiffs caused reductions in whale sightings. However, the use of skiffs 

in those years was relatively infrequent, and while it imposed a negative bias on the abundance estimates, that bias 

was considered acceptable as it was limited and conservative in nature (i.e., resulted in a lower abundance estimate). 

Traditional indigenous knowledge also stresses the need for quiet when hunting. Despite understanding that noise 

disturbs the whales, we were frankly surprised that such a clear, robust signal could be obtained from our analysis of 

the limited available data. The finding is quite insensitive to the major methodological choices we made. We 

recommend that the Scientific Committee adopt our corrected abundance estimate of 14,025 (CV=0.228) to replace 

the original estimate of Givens et al. (2020). Also, if another ice-based bowhead survey near Utqiaġvik is conducted 

in the future, we recommend that contemporaneous boat excursion data be collected so a similar correction can be 

made. It would be even better if that boat data included information on where the boats traveled during their 

excursions, but this would present substantial practical, logistical and analytical challenges. 
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Table 1: Comparison of original and boat disturbance corrected abundance estimates. The CVs are virtually equal 

because the standard error of the correction factor is so small. 

 Givens et al. (2020) Corrected for boats 

Abundance 12,505 14,025 

Standard error 2,854 3,203 

CV 0.228 0.228 

95% confidence interval 7,994 to 19,560 8,964 to 21,942 

 

 

Table 2: Correction factors obtained if the kernel standard deviation for computing W(t) is changed. Our main 

analysis uses a kernel standard deviation of 180. 

Kernel SD 30 60 90 120 150 180 210 240 270 300 330 360 
(1)

̂  1.05 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 

( 2)
̂  1.55 1.54 1.53 1.52 1.50 1.48 1.47 1.45 1.44 1.42 1.41 1.40 

(0.7855)  1.15 1.15 1.14 1.14 1.13 1.12 1.11 1.11 1.10 1.10 1.09 1.09 

 

 

Table 3: Sensitivity analysis regarding boat noise kernel and effort correction for short-term whale abundance 

index. Three kernels were tried for computing B(t): the sum of normal sub-kernels (red in Figure 2), the flat top with 

normal tails (blue in Figure 2), and the trapezoid shape used in our main analysis (black in Figure 2). Our main 

analysis scales the kernels using the hi to correct for missed effort when computing W(t), using a 1 hour time 

window. Sensitivity analyses tabled here change that to a 2 hour window, or eliminate that aspect of the analysis. 

The asterisked row corresponds to our main analysis. 

Kernel for B(t) 

Correction for 

Missed Effort 
(1)

̂  
( 2)

̂  (0.7855)  

sum of normals none 1.0192 1.5062 1.1237 

sum of normals 1 hour window 1.0214 1.5245 1.1293 

sum of normals 2 hour window 1.0232 1.5533 1.1369 

flat top normal none 1.0247 1.4535 1.1159 

flat top normal 1 hour window 1.0257 1.4649 1.1199 

flat top normal 2 hour window 1.0273 1.4896 1.1265 

trapezoid none 1.0210 1.4707 1.1175 

trapezoid* 1 hour window 1.0230 1.4821 1.1215 

trapezoid 2 hour window 1.0247 1.5070 1.1282 
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Figure 1: Data used in analysis. Left axis and red data show the distance from the survey perch for each boat launch 

(L) and return (R) during the season. Right axis and black curve show the long-term passage rate curve, estimated by 

Givens et al. (2020). The circles represent individual sightings. The height of each circle, in reference to the right 

axis, is the Horvitz-Thompson contribution for that sighting, which is proportional to the number of whales 

represented by that sighting. The duration of the survey coincides with the extent of the passage rate curve. 

‘Uncorrected for availability’ refers to the fact that the weighted Horvitz-Thompson contributions are scaled by 

Givens et al. (2020) to account for the average proportion of whales that swam within 4 km of the survey perch. 
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Figure 2: Kernels used for the short-term boat noise disturbance index. The heavy black lines illustrate the kernels 

used for the main analysis for the first half of the season (left panel) and the second half of the season (right panel). 

The red and blue curves, which are partially superimposed in the right portion of each graph, correspond to 

sensitivity analyses mentioned in the Discussion. These kernels correspond to a hypothetical boat excursion lasting 4 

hours from launch (L) to return (R). In the right panel, there is a 3-hour swim delay (i.e., 12 km from boat site to 

perch site). 

 

Figure 3: Short term boat noise disturbance index B(t) and short-term whale abundance index W(t), for the first half 

of the season. These indices are plotted against t in the left panel, with black for W(t) and red for B(t), and against 

each other in the right panel. Since these indices are relative, not absolute, we have normalized each for plotting by 

dividing by the maximums so the ranges are 0 to 1. 
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Figure 4: Short term boat noise disturbance index B(t) and short-term whale abundance index W(t), for the second 

half of the season. These indices are plotted against t in the left panel, with black for W(t) and red for B(t), and 

against each other in the right panel. Since these indices are relative, not absolute, we have normalized each for 

plotting by dividing by the maximums so the ranges are 0 to 1. 

 

 

Figure 5: Estimated smooth effects, s(B(t)), from the GAM, for the first (left panel) and second (right panel) half of 

the season. The black curve is the estimate. Also shown (red) are ten draws from the posterior distributions of the 

estimates. 
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Figure 6: GAM predictions of short-term whale abundance with boat noise ( ˆ ( )W t , red) and without (
0

ˆ ( )W t , black). 

Red and black are superimposed whenever ( ) 0B t = . The left panel corresponds to the first half of the season, and 

the right panel to the second half. Along the bottom of each plot, L and R denote boat launch and return events. The 

vertical scales are arbitrary; we have set the axes so the two panels together resemble Figure 1. ‘Uncorrected for 

availability’ refers to the fact that the weighted Horvitz-Thompson contributions are scaled by Givens et al. (2020) 

to account for the average proportion of whales that swam within 4 km of the survey perch, but this is unnecessary 

here. 

 

Figure 7: Estimated smooth effects, s(B(t)), from the GAM, for the first (left panel) and second (right panel) half of 

the season. The red curves correspond to what would have been obtained if we had used kernel standard deviations 

for W(t) ranging from 30 to 360 minutes; black is our chosen estimate (180 minutes). 


