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ABSTRACT 

Information on the spatiotemporal distribution of marine species is essential for developing proactive management 
strategies. However, sufficient information is seldom available at large spatial scales, particularly in polar areas. The 
Southern Ocean (SO) represents a critical habitat for various species, particularly migratory baleen whales. Still, the 
SO’s remoteness and sea ice coverage disallow obtaining sufficient information on baleen whale distribution and 
niche preference. Here, we used presence-only species distribution models to predict the circumantarctic habitat 
suitability of baleen whales and identify important predictors affecting their distribution. We used Maxent to model 
habitat suitability for Antarctic minke, Antarctic blue, fin, and humpback whales. Our models employ extensive 
circumantarctic data and carefully prepared predictors describing the SO’s environment and two spatial sampling 
bias correction options. Species-specific spatial-block cross-validation was used to optimise model complexity and 
for spatially-independent model evaluation. Model performance was high on cross-validation, with generally little 
predicted uncertainty. The most important predictors were derived from sea ice, particularly seasonal mean and 
variability of sea ice concentration and distance to the sea ice edge. Our models support the usefulness of presence-
only models as a cost-effective tool in the marine realm, particularly for studying the migratory whales’ distribution. 
However, we found discrepancies between our results and (within) results of similar studies, mainly due to using 
different species data quality and quantity, different study area extent, and methodological reasons. We further 
highlight the limitations of implementing static distribution models in the highly dynamic marine realm. Dynamic 
models, which relate species information to environmental conditions contemporaneous to species occurrences, can 
predict near-real-time habitat suitability, necessary for dynamic management. Nevertheless, obtaining sufficient 
species and environmental predictors at high spatiotemporal resolution, necessary for dynamic models, can be 
challenging from polar regions. 
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INTRODUCTION 

Information on marine species’ spatiotemporal distribution and their relationship to the environment is pivotal for well-
informed, proactive management strategies and conservation actions (Becker et al., 2016; Guisan et al., 2013). However, 
obtaining sufficient data on marine mammal distribution across large spatial scales is challenging due to financial and 
logistic constraints, particularly in remote oceans (Kaschner et al., 2012; Robinson et al., 2011). Marine mammal 
occurrence data are frequently biased towards coastal areas and shallow waters (Robinson et al., 2011) or, for polar 
regions, to easy-to-access regions during summer months. 

Species distribution models (SDMs) are empirical methods that relate information on species occurrence to environmental 
variables to predict potential species distribution and identify potential ecological factors governing their distribution 
(Phillips et al., 2006). SDMs are promising to further our limited knowledge of marine mammals’ distribution and support 
marine conservation prioritisation, e.g., identify biologically important areas (Guisan et al., 2013; Redfern et al., 2006; 
Smith et al., 2020). Although SDMs in marine environments are relatively less common compared to their application in 
the terrestrial realm, recent years showed a significant increase in SDM usage for marine habitats (Marshall et al., 2014; 
Melo-Merino et al., 2020; Redfern et al., 2006; Robinson et al., 2011). The main challenge to model the distribution of 
marine species is the availability of sufficient reliable species data (Dambach & Rödder, 2011; Robinson et al., 2011). 

Two species information types are commonly used in SDMs: presence-absence and presence-only data. Presence-absence 
models (e.g., generalised additive models – GAMs) require carefully-designed surveys and thus are more common in 
small-scale SDM studies (e.g., de Stephanis et al., 2008; Esteban et al., 2013). Absence data is hard to estimate correctly 
(Lobo et al., 2010), especially for highly mobile and species and from remote areas (Smith et al., 2020). Marine mammals 
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spend a vast amount of time submerged and can be visually detected only when on or near the water surface. Their 
detection is sensitive to species behaviour and oceanographic and meteorological conditions (Barlow et al., 2001). This 
imperfect detection can lead to false absences, which affect SDMs evaluation and bias species distribution inferences 
(Guillera-Arroita, 2017; Lobo et al., 2010). This is even more serious as the detectability of marine mammals varies in 
time and space (Guillera-Arroita, 2017). Furthermore, even dedicated surveys typically provide only a snapshot of species 
distribution and represent only a limited time and space range (Kaschner et al., 2006). Hence, not surprisingly, most 
SDMs use presence-only data. Presence-only models contrast species occurrences to a large sample of background 
locations to characterize the environment throughout the study area. Recent literature demonstrates the statistical validity 
of only a few presence-only SDM algorithms, including point process models and Maxent (Renner et al., 2015). The 
implementation of robust presence-only SDMs is particularly advantageous in the marine realm due to the difficulty of 
efficiently obtaining systematic presence-absence data (Smith et al., 2020).  

The Southern Ocean (SO) is a biodiversity hotspot area, showing distinctive biogeographic features and high 
environmental variability (Convey et al., 2014; De Broyer et al., 2014; Fabri-Ruiz et al., 2019; Guillaumot et al., 2020). 
The SO’s sea-ice environment represents a critical habitat for many threatened migratory and resident species, particularly 
for baleen whales (Filun et al., 2020; Thomisch et al., 2016; Van Opzeeland et al., 2013). Nevertheless, research efforts 
in the SO were limited because of its remoteness, vastness, and sea ice coverage, posing considerable financial and 
logistical constraints (Bombosch et al., 2014; Scheidat et al., 2011). Our knowledge of the biodiversity in most SO areas 
seems to reflect sampling effort rather than the actual biodiversity status (Convey et al., 2014), and thus improving 
sampling effort deserves a high priority for Antarctic science (Guillaumot et al., 2018).  

Spatiotemporal information on species distributions from the SO, necessary for conservation planning and management, 
is particularly patchy. Research efforts are generally biased towards relatively small areas of the SO (e.g., the West 
Antarctic Peninsula), repetitive ship tracks (e.g., to and from Antarctic stations), and mainly limited to summer months. 
Simultaneously, deep-sea and remote regions (e.g., the Bellingshausen and Amundsen Seas) remain largely 
underinvestigated (De Broyer et al., 2014). Most research vessels that operate in the SO are biased towards the 
operationally safe ice-free water and do not engage in the risk and costs of going deep into the sea ice (Herr et al., 2019; 
Williams et al., 2014), rendering modelling species distribution in the SO challenging (Guillaumot et al., 2018; Guillaumot 
et al., 2020). Nevertheless, carefully implemented and evaluated presence-only SDMs can be a cost-effective tool to study 
species potential distribution and habitat and planning for future surveys in the SO. 

In the SO, several baleen whale species have been extensively hunted to near extension levels during the 20th-century 
commercial whaling, particularly Antarctic blue and fin whales (Kennicutt et al., 2016; Tulloch et al., 2018). Populations 
recovery is generally incomplete and shows variant recovery rates between species and SO regions, with some species 
exhibiting high recovery rates (e.g., humpback whales, Megaptera novaeangliae; Friedlaender et al., 2011; Tulloch et al., 
2018) while others remain highly threatened (e.g., Antarctic blue whales, Balaenoptera musculus intermedia; Branch et 
al., 2004; Tulloch et al., 2018). Information on the ecology and distribution of baleen whales in the SO is pivotal for the 
International Whaling Commission’s conservation efforts and measures addressing potential climate change impacts in 
polar ecosystems (Williams et al., 2014). However, such information is limited (Leaper & Miller, 2011); and thus, 
relatively few studies have modelled the distribution of baleen whales in the SO. Some species receive more attention, 
e.g., humpback whales, while others, e.g., fin and Antarctic blue whales, receive less attention (Širović & Hildebrand, 
2011).  

The focus of this paper is to model the circumantarctic distribution of four baleen whale species that feature sufficient 
sighting data: Antarctic minke whale (AMW, Balaenoptera bonaerensis); Antarctic blue whale (ABW); fin whale (FW, 
B. physalus); and humpback whale (HW). We performed a rigorous screening of baleen whale circumpolar distribution 
data in the SO. We used Maxent (Phillips et al., 2006) as it is appropriate for the available presence-only data, with two 
ways of handling spatial sampling bias (no correction versus rarefication). We used spatial-block cross-validation for 
independent model evaluation and optimising model complexity to improve predictions. For each species, we predicted 
its circumantarctic habitat suitability and identified the most important predictors affecting their distribution and species 
suitability response to environmental changes. We compared our results with previous studies on these species in the SO 
and discuss reasons for observed differences. Finally, we evaluate the potential limitations of implementing static SDMs 
in the highly dynamic SDMs. 

 

METHODS 

Species data 

Cetacean sightings south of 45°S were compiled from different sources. Only sightings after 1980 were considered to 
maintain a reasonable temporal match between environmental predictors and sightings. Data from three biodiversity 
repositories were quality controlled: the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/), the 
Ocean Biodiversity Information System (OBIS, 2018), and OBIS-SEAMAP (Halpin et al., 2009). Other data sources 
include SO GLOBEC (2001-2002; http://www.ccpo.odu.edu/Research/globec_menu.html), SOWER cruises 
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(https://iwc.int/sower; 2009-2010), RV Polarstern expeditions (https://awi.de/en/expedition/ships/polarstern.html), and 
data published in PANGAEA (https://www.pangaea.de/; details in Appendix 1-5). 

Data on baleen whales with sufficient sightings (AMW, ABW, FW, and HW) were subjected to further quality control. 
We excluded erroneous occurrences or those with high uncertainty, e.g., GBIF occurrences flagged with ‘known 
geospatial issues’ and ‘possible’ certainty level for Polarstern data. As biodiversity data repositories compile data from 
various sources, the same sighting can be duplicated within or between repositories. We excluded occurrences explicitly 
duplicated within and between data sources to avoid spurious high relative occurrence rates: only one instance of sightings 
with identical coordinates and date was retained. We excluded telemetry and catch data to avoid highly correlated 
occurrences, spatially or temporally. The final dataset consists of ~32 thousand sightings. The temporal distribution of 
species-specific sightings is shown in Figures S2, S7, S12, and S17. Note that figures in the Supporting Information are 
grouped by species (Figures S1-20). 

Environmental predictors 

Potential predictors were obtained at the highest available spatial and temporal resolution (Table S1). We prepared 
ecologically-relevant predictors summarising environmental conditions in the SO and act as a proxy for prey availability 
(Redfern et al., 2006). We calculated monthly and seasonal mean and standard deviation of each dynamic predictor to 
explore temporal trends and intra-seasonal variability, respectively. Seasons were determined as three-month intervals 
from January, except for metrics representing sea ice (see below). 

Bathymetry data were downloaded from GEBCO (Weatherall et al., 2015). From bathymetry, we derived slope, aspect, 
and closest distances to coast, 500m, and 1000m isobaths. The Antarctic coast was defined as the ice shelf edge, i.e., 
excluding any cavities under the ice shelves. The 1000m isobath was used to represent the location of the continental 
shelf break. 

Chlorophyll-a concentrations (Chl-a) were downloaded as 8-day composites from OCCCI (2002-2017; Sathyendranath 
et al., 2018). We only considered Chl-a mean and standard deviation in summer, as the spatial coverage in other seasons 
was rather poor, prohibiting the calculation of meaningful circumpolar averages. 

Daily absolute dynamic topography (sea surface height, SSH) was obtained from Copernicus (https://copernicus.eu/; 
1993-2017), following Bombosch et al. (2014), from which daily (current) speed was estimated. We found only little 
inter-annual variability of SSH and speed, persuading us to use the annual mean and standard deviation of the whole 
period. 

Temperature and salinity data at five standard depths (surface, 100m, 200m, 500m, and 1000m) were obtained from the 
World Ocean Atlas (1981-2010; Locarnini et al., 2018; Zweng et al., 2018). 

Daily sea ice concentration (SIC) was obtained from Spreen et al. (2008). We used SIC data for complete years (2003-
2010 and 2013-2017), with seasons customised according to the major phases of annual sea ice extent (https://seaice.uni-
bremen.de/sea-ice-concentration/time-series/): season 1 (January-March, summer, lowest extent); season 2 (April, sea ice 
formation start); season 3 (May-November, high extent); and season 4 (December, high sea ice melting). We determined 
the closest distance to seasonally averaged sea ice edge (SIE), where SIE was identified as the largest polygon with mean 
SIC >15% (Parkinson, 2002). We assigned a value of zero to cells intersecting with SIE, positive values north of SIE 
(open water; SIC <15%), and negative values south of SIE (SIC >15%) (following Ainley et al., 2004).  

All predictors were projected into equal-area projection at 10×10 km resolution. All analyses were restricted to south of 
the climatological location of the Polar Front as defined by Orsi et al. (1995), which was chosen as a natural boundary of 
the SO with rather homogeneous hydrographic conditions south of it. Spatial gaps were interpolated using ordinary 
Kriging (Wackernagel, 1995) when necessary. After the rejection of less-informative predictors, as based on their 
temporal trends and personal experience, the initial list of predictors included 32 predictors (Table S1b). 

We implemented predictor transformation when necessary (e.g., square root) to avoid the effect of few extreme values on 
model stability (Dormann & Kaschner, 2010). We excluded highly correlated predictors by maintaining a moderate 
maximum variance inflation factor of 4.5 (Zuur et al., 2010). This approach resulted in a total of 15 predictors used in the 
models (Figures S21-22 and Table 1). Figure S23 shows environmental conditions at species-specific sightings against 
their full range in the study area. 

Species distribution models 

We used Maxent v3.4.1 (Phillips et al., 2017) to train two model sets: 1) using all occurrences to estimate habitat suitability 
under the point-process modelling framework (following: Renner et al., 2015; ModelAll); and 2) using only one occurrence 
per cell (ModelUnique). The latter is a special case of rarefaction, a commonly used method to correct for sampling bias 
and diminish the effect of spatial autocorrelation (Aiello-Lammens et al., 2015). It is expected that bias correction can 
lead to broader areas of suitable habitats (El-Gabbas & Dormann, 2018a; Phillips et al., 2009). Here, we used both models 
not to quantify the effect of sampling bias corrections, but to investigate if and how they would affect our conclusions, 
under the assumption that differences in results reflect on model stability.  
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We used a 5-fold spatial-block cross-validation to evaluate model performance by maintaining spatial independence 
between training and testing dataset and to reduce the effect of spatial autocorrelation (Roberts et al., 2017). We 
determined block size and how to distribute blocks into cross-validation folds using blockCV R-package (Valavi et al., 
2019): size was determined as median spatial autocorrelation range of environmental conditions at sighting locations; 
blocks were distributed into folds balancing the number of occurrences (Figure S24). 

To improve model performance, we tuned Maxent’s parameters using cross-validation (Merow et al., 2013). We used 
ENMeval R-package (Muscarella et al., 2014) to estimate the best combination of feature classes (transformation of 
predictors) and regularization multiplier (model complexity). For each model type and species, we used 40 combinations: 
five feature classes (L/LQ/H/LQH/LQHP; where ‘L’ linear, ‘Q’ quadratic, ‘H’ hinge, and ‘P’ product transformation) and 
eight regularization multiplier values (0.5 to 4, with 0.5 increment). The combination with highest testing AUC (area 
under the ROC curve) using cross-validation was used in the final models (Table S2). We present the mean habitat 
suitability along with the coefficient of variation (ratio between standard deviation and mean prediction) as a measure of 
predictive uncertainty. In addition to cross-validation, we ran full models that used all occurrences. In each model, we 
estimated predictor importance using permutation importance and jackknifing. We show the results of the full models in 
the main text and cross-validated models in the Supporting Information.  

 

RESULTS 

In general, both model types (ModelAll and ModelUnique) give similar results, with ModelUnique resulted in a broader range 
of suitable habitats and slightly lower testing AUC, as expected after bias correction (Figure 1 and Table S2). Generally, 
the most important predictors were sea ice related (Figure 2). The uncertainty of cross-validated predictions was generally 
low and did not show a pronounced spatial pattern, reflecting the stability of these sub-models. 

Antarctic minke whale 

Models predicted a circumantarctic habitat of AMW, with a general preference closer to the Antarctic coast except for a 
small patch southwest of the Balleny Islands and the Amundsen Sea coast towards the Ross Sea. Most of the southern 
part of the Weddell Sea was predicted less suitable (Figures 1 and S1). The most important predictors were distance to 
summer SIE, mean summer SIC, and SIC variability (Figures 2 and S3). AMW was shown to prefer locations close to 
SIE and moderate SIC (<50%; Figures S4-5). 

Antarctic blue whale  

Suitable areas for ABW were near the Antarctic coast (yet 50-300km offshore), ranging from 30°W eastwards to 170°W 
(Figures 1 and S6), i.e., along the East Antarctic coast and notably rather sparsely off West Antarctica. Other suitable 
areas include small patches in the Bellingshausen and Amundsen Seas and between Elephant and the South Sandwich 
Islands. The most important predictors were SIC variability, mean summer SIC, and distance to 1000m isobath (Figures 
2 and S8). Other relatively important predictors were bathymetry, temperature at 200m, and distance to summer SIE. 
Suitable habitats were predicted in areas with high SIC variability in December (c.a. 35-45%) and low mean summer SIC 
(<40%) or low to moderate distance to 1000m isobath (<250km; Figure S9-10). ABW habitat is more suitable close to 
SIE (with lower suitability south of it), at high temperature at 200m (3-5 °C), and locations with moderate depths (3500-
4500m; Figure S9). 

Fin whale 

The most suitable areas for FW extend eastwards from Elephant Island to South Georgia Island, near Bouvet Islands, 
small patches close to the Antarctic coast from 30°E eastwards to 180°E, and offshore of the Ross Sea (Figures 1 and 
S11). Important predictors were distance to summer SIE, mean summer SIC, SIC variability, distance to coast, and SSH 
variability (Figures 2 and S13). Highest suitability was shown north of the SIE (<200km and at ~1500km from it, only 
<100km from the coast) or locations with low SIC (<50%), low temperature at 200m (<–1.5 °C), or low SSH variability 
(Figure S14-15). 

Humpback whale 

The effect of sampling bias correction on predicted distribution was most evident for HW, due to intensive sampling west 
of the Antarctic Peninsula and in East Antarctica. Generally, suitable areas are the Western Antarctic Peninsula eastwards 
to the South Orkney Islands, around the South Sandwich and Bouvet Islands, and a strip close to the coast from 15°W 
eastwards to 170°W (Figures 1 and S16). The most important predictors were distance to summer SIE, SIC variability 
from April to November, and summer SIC. Other important predictors include distance to coast, distance to 1000m 
isobath, and SSH variability (Figures 2 and S18). HW suitability was higher at locations close to SIE at summer SIC 
<60%. On the open water side of SIE, high suitability was found only at locations with high SIC variability (Figures S19-
20). Moderate suitability is predicted <300km from 1000m isobath and locations close (<100km) or far (>1000km) from 
the coast (Figure S19). 
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DISCUSSION 

Baleen whale habitats in the Southern Ocean 

Overall, the most important predictors affecting baleen whales’ habitat suitability in the SO are those derived from SIC. 
Sea ice cover varies within and between years, and this variability plays an integral role in whale distribution (Thiele et 
al., 2004). Our use of seasonal variability of SIC can be considered as a proxy for site accessibility for whales; the higher 
the SIC standard deviation, the more accessible for whales (Wege et al., 2020). SIC variability affects prey (krill) survival, 
population dynamics, and abundance (Fraser & Hofmann, 2003; Thiele et al., 2004), with highest observed abundances 
close to the SIE (Brierley et al., 2002; Murase et al., 2002; Thiele et al., 2004). Obtaining reliable data on the distribution 
and abundance of prey, particularly krill, is currently not possible at the circumantarctic scale (Robinson et al., 2011), 
rendering most studies dependent on remotely-sensed predictors as a proxy for prey availability (Herr et al., 2019).  

Transition zones, e.g., SIE and continental shelf break, are known high-productivity areas (Beekmans et al., 2010). The 
use of predictors describing distance to them can serve as a proxy for prey availability. The majority of visual observation 
data available to us were recorded using vessels unsuited for penetrating the ice, except a few sightings obtained from 
icebreaker vessels (e.g., Polarstern) and icebreaker-supported helicopter surveys (e.g., Herr et al., 2019). This explains 
why only little sightings came from the south of the SIE. Nevertheless, distance to SIE was one of the most important 
predictors for the models of the four study species. In the following, we briefly compare our species-specific results with 
results of other studies (summarised in Tables 2 and S3) to evaluate the models’ reliabilities in general. 

- Antarctic minke whale: Although AMWs are thought to be the most abundant cetacean species in the SO (Williams et 
al., 2014), they are among the least studied marine mammal populations (Risch et al., 2019). AMWs have a 
circumantarctic distribution and are considered the major consumer of Antarctic krill in the SO (Beekmans et al., 2010; 
Kasamatsu et al., 2000b; Williams et al., 2014). Highest AMW density was estimated in the Western Antarctic Peninsula 
and the Weddell and Ross Seas (Dominello & Širović, 2016; Risch et al., 2019). The AMW is a year-round resident in 
the SO and occurs throughout a wide range of SIC (Filun et al., 2020; Friedlaender et al., 2011; Herr et al., 2019; Thiele 
et al., 2004), preferring the SIE area (Dominello & Širović, 2016; Herr et al., 2019; Kasamatsu et al., 2000a; Scheidat et 
al., 2011; Williams et al., 2014). It has been observed both within the pack ice region and in open water (although in 
lower numbers) (Beekmans et al., 2010; Ensor, 1989; Friedlaender et al., 2006; Herr et al., 2019; Thiele & Gill, 2004; 
Williams et al., 2014). They can exploit pack ice and forage krill through sea ice, which is mostly unavailable to other 
baleen whales, due to their compact small-sized body, hard and pointed nostrum, and high maneuverability (Ainley et al., 
2012; Friedlaender et al., 2014). 

Accordingly, we found high importance of SIC-derived predictors, particularly distance to summer SIE and summer SIC. 
Sea ice is an essential habitat for AMW and affects their distribution and foraging behaviour in the SO (Friedlaender et 
al., 2014; Herr et al., 2019; Kasamatsu et al., 2000a; Risch et al., 2019). Thus, with potential future climate change being 
expected to affect Antarctic krill population dynamics, the AMW’s suitable habitats will shrink throughout the SO (Ainley 
et al., 2012; Herr et al., 2019; Risch et al., 2019; Williams et al., 2014). Our models show high predicted habitat suitability 
at SIC up to 50% and low at higher SIC values. Bombosch et al. (2014) showed that AMW habitat suitability was 
consistently predicted in sea ice-covered areas in the SO. Ainley et al. (2012) showed a consistent positive effect of sea 
ice cover on AMW suitability, and similarly, Filun et al. (2020) found a strong positive correlation between SIC and 
AMW acoustic presence in the Weddell Sea, with the highest acoustic activity occurring at SIC >75%. Distance to SIE 
was also important in other SDM studies with highest suitability close to it (Beekmans et al., 2010; Bombosch et al., 
2014; Friedlaender et al., 2011; Herr et al., 2019; Kasamatsu et al., 2000a; Murase et al., 2013; Williams et al., 2014). In 
contrast, Filun et al. (2020) reported very little acoustic activity near the SIE area in the Weddell Sea during December 
and January. Some studies discussed the important role of the Antarctic ice shelf break: higher suitability closer to it with 
a strong decline with increasing distance (Ainley et al., 2012; Beekmans et al., 2010; Herr et al., 2019; Murase et al., 
2013). In our model, distance to 1000m isobath had very low importance, although with a similar (albeit weak) 
relationship pattern. We found low importance of bathymetry (negative relationship), distance to coast, slope, Chl-a 
(negative relationship), and positive relationship for salinity and water temperature at 200m, but see Kasamatsu et al. 
(2000a), Friedlaender et al. (2011), Ainley et al. (2012), and Murase (2014) for contradicting results. 

- Antarctic blue whale: ABW was once an abundant species in the SO, but is currently extremely rare after its intensive 
exploitation during the whaling industry era from 1904 until 1978 (Branch et al., 2007; Double et al., 2015; Kasamatsu, 
1988; Miller et al., 2015). After the ceasing of the whaling industry, the circumpolar ABW abundance was reported to be 
depleted to only less than 1% of its original abundance before whaling (Branch et al., 2004; Branch et al., 2007), making 
the ABW one of the most endangered baleen whale species in the SO (Leaper & Miller, 2011). Little is known on the 
distribution and migration patterns of ABW in the SO and its relationship with krill (Branch et al., 2007; Double et al., 
2015; Thomisch et al., 2016). ABWs were visually sampled relatively infrequently in the SO in comparison with other 
baleen whales (Murase, 2014; Širović & Hildebrand, 2011), but their calls can be accurately detected (Thomisch et al., 
2016). This allowed some studies to model ABW distribution using passive acoustic data (e.g., Shabangu et al., 2017; 
Širović & Hildebrand, 2011).  

We found the most important predictors are SIC-derived and distance to 1000m isobath. Other SDM studies provide 
limited information on the effect of sea ice on ABW’s suitability. High ABW habitat suitability was predicted at low SIC 
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(<40%) and close to summer SIE (Figure S9). Similarly, Širović et al. (2004) and Thomisch et al. (2016) reported a 
negative correlation between sea ice coverage and the number of detected ABW calls in the Western Antarctic Peninsula 
and the Weddell Sea, respectively. Nevertheless, ABW was also acoustically present in areas with high winter SIC (90%) 
in the Weddell Sea (Thomisch et al., 2016) and under non-navigable ice conditions in the Ross Sea (Double et al., 2015) 
This suggests the overwintering of ABW in highly ice-covered areas, potentially in local recurring polynyas (Thomisch 
et al., 2016). A high encounter rate of ABW near the SIE was also reported by other studies (Branch et al., 2007; 
Kasamatsu, 1988; Kasamatsu et al., 2000b; Rankin et al., 2005; Širović et al., 2004). 

We found moderate importance for bathymetry and temperature at 200m. Highest suitability was found at around 5000m 
and lower elsewhere. Širović and Hildebrand (2011) found that in the Pacific along the Western Antarctic Peninsula 
acoustic presence is more suitable at greater depths. Similarly, Murase (2014) found a high abundance peak at depth 
~4000m, but with an additional peak near 0m, i.e., close to the coast. In contrast, Shabangu et al. (2017) found the least 
suitability at around 5000m. We found a positive relationship with temperature at 200m, which coincides with results for 
calling presences by Širović and Hildebrand (2011). In contrast, Kasamatsu et al. (2000b) reported a high encounter rate 
at lower temperatures, and Shabangu et al. (2017) showed high suitability of calling whales at ~0°C sea surface 
temperature (SST). We found moderately low importance of distance to coast, SSH (positive relationship), and Chl-a 
(positive relationship). Similarly, Širović and Hildebrand (2011) found a non-significant relationship between Chl-a and 
calling ABW off the Western Antarctic Peninsula. In contrast, Shabangu et al. (2017) showed that these predictors were 
among the most important predictors for call detections: peak suitability close to coast, then sharply declined until 
~1000km; low suitability at SSH around –1.5m and high elsewhere, and high suitability at low Chl-a. 

- Fin whale: Although FW was the most caught species in the SO during the 20th-century commercial whaling (>718K 
whales taken), there is limited information on its distribution, abundance, demographics, and environmental variables 
affecting its ecology (Herr et al., 2016; Santora et al., 2014). A relatively recent estimation of FW population in the SO 
has shown that it is currently at only 2% of the presumed pre-whaling estimated abundance (Leaper & Miller, 2011). We 
found that the most important predictors are SIC-derived predictors, distance to coast, SSH variability, and temperature 
at 200m. We found highest (although moderate) suitability close and far (~1500km) from the coast. In contrast, Williams 
et al. (2006) found that abundance increases with the distance from coast, with the lowest intensity close to it off the 
northern Antarctic Peninsula. Santora et al. (2014) reported FW preference for more complex bathymetry off the northern 
Antarctic Peninsula. Murase (2014) found three abundance peaks at depths of 4500m, 2200m, and 0m, while Williams et 
al. (2006) reported a low intensity in depths <1000m. However, we found low importance of bathymetry, with two low 
suitability peaks at around 4500m and near 0m. We found highest suitability at cold water (<–1.5°C). In contrast, Santora 
et al. (2014) found a positive correlation between SST and FW abundance off the Western Antarctic Peninsula, and 
similarly, Kasamatsu (1988) and Kasamatsu et al. (2000b) reported a higher encounter rate at warmer temperatures 
(>1°C). We found low importance of Chl-a with no clear relationship, which conforms with Murase (2014) except at high 
Chl-a at which high FW abundance was predicted. We found two moderate suitability peaks in open water, either close 
or far from (~1500km) SIE. In contrast, other studies noted that FWs are rarely reported near the SIE (Širović et al., 2004): 
Kasamatsu et al. (2000b) found a high encounter rate far from SIE, and, similarly, Scheidat et al. (2011) reported that the 
FW majority was observed >140km from SIE.  

- Humpback whale: Although HWs were highly exploited during the 20th-century whaling industry, with >150,000 
caught whales between 1904 and 1966 (Nowacek et al., 2011), the population has been increasing since the cessation of 
the whaling industry (Friedlaender et al., 2011). HWs are the most common whale species in the Western Antarctic 
Peninsula area in summer (Scheidat et al., 2011) and seem to be absent from the Ross Sea (Branch, 2011; Leaper & 
Miller, 2011). This conforms with the areas predicted as suitable habitats by our models (Figures 1 and S16). Important 
predictors were SIC-derived, distance to coast and 1000m isobath, as well as SSH variability. Highest suitability is 
predicted at locations with low SIC or locations either close to SIE or far from it on the sea ice-free side (higher). Schall 
et al. (2020) found a weak correlation between SIC and HW acoustic presence in the Atlantic sector of the SO, while Van 
Opzeeland et al. (2013) reported HW acoustic presences at high SIC values (>90%) at an Antarctic coastal recording site 
during winter. Friedlaender et al. (2011) and Thiele et al. (2004) found highest suitability close to SIE in the Western 
Antarctic Peninsula. Bombosch et al. (2014) found that HW suitable habitats are primarily in ice-free areas and follow 
the sea ice retreat. There is apparently a lagged effect of sea ice dynamics on the habitat suitability of HW, suggesting 
that HWs do not actively track the location of SIE recent retreat, but instead the high productivity that occurs up to two 
months after sea ice melting (Riekkola et al., 2019). Andrews-Goff et al. (2018) found that predictors associated with the 
marginal ice zone as the main predictors for HW foraging habitat in the Pacific sector of the SO, particularly mean SIC 
one month prior to HW arrival to the SO, SIC variability two months prior to arrival, and the distance to SIE (highest at 
~65 km), while Riekkola et al. (2019) similarly found that distance to SIE two months prior to arrival as an important 
driver for HW behaviour in the SO. 

High HW suitability was predicted at areas very close to the coast, which conforms with the frequent sightings of HWs 
in coastal areas of the Antarctic Peninsula (Dalla Rosa et al., 2008; Nowacek et al., 2004; Thiele et al., 2004) and near 
the Greenwich Meridian (Van Opzeeland et al., 2013). We found low importance of bathymetry and slope, with moderate 
suitability in shallow areas (<1000m) and low elsewhere. Similar results were also shown by Murase (2014), while 
Friedlaender et al. (2011) reported that HW occupies rugged topography around Marguerite Bay, Western Antarctic 
Peninsula, with bathymetry and slope among the most important predictors. Murase (2014) found highest abundance at 
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low salinity, two peaks at moderate and high SSH, and high Chl-a. Owen et al. (2019) found slope, Chl-a, and SST among 
the most important predictors for HW foraging behaviour in East Antarctica. In contrast, we found no clear relationship 
with salinity, Chl-a, and temperature at 200m, and negative with SSH, but neither of them was an important predictor. In 
concordance to our results, Riekkola et al. (2019) found a negative relationship between HW foraging behaviour in the 
Pacific sector of the SO and SSH and low importance of speed, while Kasamatsu et al. (2000b) found no relationship 
between HW density and SST. 

Reasons for discrepancies between studies 

Unambiguously asserting reasons for the discrepancies between the results discussed above is challenging, as we do not 
know the true preferred niche of these species. Generally, inconsistency can be attributed to data and methodological 
reasons. Most studies used occurrences from a limited time frame (e.g., from within summer months of 1-2 years) or 
covered only a small section of the SO, e.g., the northern Antarctic Peninsula (Santora et al., 2014; Williams et al., 2006), 
the Western Antarctic Peninsula (Friedlaender et al., 2011; Kasamatsu, 1988; Murase et al., 2013; Širović & Hildebrand, 
2011; Thiele et al., 2004), East Antarctica (Owen et al., 2019), the Pacific sector of the SO (Andrews-Goff et al., 2018; 
Riekkola et al., 2019), the Weddell Sea (Filun et al., 2020; Schall et al., 2020; Thomisch et al., 2019; Van Opzeeland et 
al., 2013; Williams et al., 2014), the Ross Sea (Murase et al., 2013), and the Bellingshausen and Amundsen Seas 
(Kasamatsu et al., 2000a). The use of spatially or temporally limited sightings and environmental data makes it difficult 
for these models to capture the full range of species niche (e.g., causing truncated or biased response curves; Barbet-
Massin et al., 2010; Thuiller et al., 2004). Although it is technically possible for these models to predict potential 
distributions at the circumantarctic scale, the necessary extrapolation to novel conditions or new combinations increases 
prediction uncertainty (Zurell et al., 2012). 

Contrastingly, this study used circumantarctic visual observation data, covering a wide range of baleen whale suitable 
environmental conditions (and their combinations) in the SO. To date, only a few studies investigated the distribution and 
niche characteristics of baleen whales at the circumantarctic scale (e.g., Bombosch et al., 2014; Branch, 2011; Branch et 
al., 2007), possibly due to challenges obtaining sufficient data. SDM studies at large scales such as the SO assume 
stationary species-environmental relationships through space and time, i.e., same niche characteristics at smaller areas of 
the SO or between seasons (Dormann et al., 2012; El-Gabbas & Dormann, 2018b; Osborne et al., 2007). The distribution 
of baleen whales varies between seasons and spatial divisions of the SO (Riekkola et al., 2019; Thiele et al., 2004). For 
example, Beekmans et al. (2010) found inconsistent relationships between environmental predictors and AMW density 
at circumantarctic and regional scales, suggesting that the relationships between AMW and environmental conditions can 
be best studied at a regional rather than circumantarctic scale.  

The vast majority of our sightings were made from the end of December to the end of February (Figure S25). This evident 
temporal bias towards summer months seems inevitable when using only visual observation data. Passive Acoustic 
Monitoring (PAM), however, has provided ample evidence for the (near-) year-round presence of several species in this 
area (Filun et al., 2020; Schall et al., 2020; Thomisch et al., 2016; Van Opzeeland & Hillebrand, 2020; Van Opzeeland et 
al., 2013). Although we attempted to correct for spatial sampling bias using rarefaction, the absence of visual observations 
from the Weddell Sea has affected model predictability in this area (Figure 1). The integration of other data types in 
SDMs, e.g., from tagged animals (e.g., Hindell et al., 2020) and PAM, will be able to fill this gap and forward our 
understanding of year-round niche preferences of these species. 

Moreover, studies implemented different response types (e.g., presence-only vs presence-absence), modelling techniques 
(e.g., GAMs vs Maxent), spatial and temporal resolutions, predictors combinations, environmental bias patterns, and data 
quality and sampling methods. 

Furthermore, marginal response curves used to describe species response can be deceptive. To estimate a species’ 
marginal response curve for any predictor, each other predictor is fixed at one value, neglecting the true multi-
dimensionality of the environmental space. For example, Maxent uses a predictor-specific mean value at training 
observations. The response curve shape can be sensitive to the values at which other predictors are fixed, especially when 
using limited or biased data or correlated predictors. To overcome this caveat, we show pairwise mean habitat suitability 
in the environmental space of the most important three predictors, while allowing all predictors to vary together (e.g., 
Figure S5). However, Maxent quantifies permutation importance based on training AUC drop after permutation (Phillips, 
2017). Thus, spatiotemporal biases in species data can highly affect this estimate. 

Static SDMs in highly dynamic marine environments 

The majority of SDMs, particularly when covering large spatial scales, including this study, are static. Static models use 
predictors summarising environmental conditions over long periods (seasonal or annual averages over >10-50 years; e.g., 
Sbrocco & Barber, 2013), irrespective of the exact time of species sighting (Bateman et al., 2012). They assume species-
environment relationships fixed in space and time and that locations with species detections represent suitable year-round 
habitats, which likely is a rather poor assumption, especially for migratory species (Bateman et al., 2012; Reside et al., 
2010). Static models are more appropriate in highly static environments (as is the case for many terrestrial settings) and 
for modelling less mobile resident species (e.g., plants and lizards). However, the marine environment is immensely 
dynamic and undergoes significant changes over short periods, which likely affects the distribution of highly mobile 
species (Fernandez et al., 2017).  
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Static models can neither capture environmental dynamics nor predict near-real-time species distribution necessary for 
dynamic ocean management. In a dynamic setting, static models can only provide a fictitious representation (in time) of 
species suitability for the period over which the model is calibrated. To obtain robust SDMs, it is necessary to maintain a 
spatiotemporal match between species occurrences and environment (dynamic SDMs; Fernandez et al., 2017; Reside et 
al., 2010). This is particularly important for highly mobile marine species whose distribution is defined by both short- 
and long-term variations in ocean conditions (Mannocci et al., 2017). In contrast to conventional static models, dynamic 
SDMs capture the year-round species-environment relationships and allow predicting habitat suitability at finer temporal 
resolution (day-week-month). 

The environment in polar regions, particularly the SO, is highly dynamic due to the seasonal waxing and waning of sea 
ice (Dayton et al., 1994). It hence appears intuitive to use dynamic, rather than static, SDMs to study habitat preference 
of migratory whales in the SO. However, obtaining many circumantarctic oceanographic variables at fine spatial and 
temporal resolution is challenging, compromising dynamic models’ feasibility. Many variables are limited to the sea 
surface and are not available at high temporal resolution (e.g., daily or weekly) (Fernandez et al., 2017). For example, 
daily or weekly salinity and productivity data is not available from the SO, and daily oceanic temperatures are limited to 
the water surface. Other variables show inconsistent and incomplete spatial coverage year-round. For example, Chl-a data 
is highly patchy and limited to summer months, which constrains its use in year-round dynamic models.  

The unavailability of sufficient, less temporally- and spatially-biased sightings hinders efficient use of dynamic models 
and can, in part, explain modellers’ preference for static over dynamic models (Milanesi et al., 2020). High spatiotemporal 
resolution of some environmental predictors became available only recently. For example, daily SIC data used here are 
available since June 2002, disallowing using sightings before this time (~22K of 32K sightings used here) in comparable 
dynamic models. Similarly, sightings without a collection date can be used in static but not dynamic models. 

Averaging (during the calculation of predictors) over highly varying environments can diminish the influence of 
environmental variability on the model, possibly leading to over- or under-prediction (Zimmermann et al., 2009). We 
attempted to diminish the impact of temporal mismatch between sightings and environmental conditions by including the 
environmental temporal variation (standard deviation) where appropriate. Seasonal variability in combinations with 
means can express extreme conditions and improve models’ predictive power (Zimmermann et al., 2009). Nevertheless, 
we emphasise that incorporating environmental variability in static SDMs is inevitably insufficient to capture the SO’s 
high dynamics. For example, although seasonal SIC variability had high importance in our models, it is unfit to determine 
species preference to sea ice, and its response curve is hard to interpret. Hence, including predictors representing 
environmental variabilities may improve predictions, but they are fall short of explaining. Further, summarizing some 
highly dynamic variables can be challenging, even on a seasonal or monthly scale. For example, we estimated distance 
to seasonal SIE from seasonal mean SIC. However, sea ice cover (and SIE with it) varies at a high temporal (daily) 
frequency. Therefore, a single line describing long-term average SIE is not a good representative of the true SIE in any 
season or month (Figures 3 and S26-27). Although we found high importance of SIC and distance to SIE in summer, 
relating species observations to their concomitant environmental conditions should be of higher priority in SDMs (Figure 
S28). 

Conclusion 

In this study, we used presence-only SDMs (Maxent) to model the circumantarctic habitat of four baleen whale species 
and identified important predictors affecting their distribution in the Southern Ocean. Model performance was high (Table 
S2), with generally little predicted cross-validated uncertainty. Unsurprisingly, models identified sea ice-derived 
predictors and distance to continental shelf break as the main predictors. The indispensable role of sea ice in the lives of 
many Antarctic species, particularly krill-dependent predators, makes whale species sensitive to future changes in the 
distribution and the dynamics of the sea ice (Herr et al., 2019; Leaper & Miller, 2011; Thiele et al., 2004). Such 
environmental change signals have already been reported from polar regions, e.g., the warming of the West Antarctic 
Peninsula area (Gutt et al., 2015; Vaughan et al., 2003), and the predicted shrinkage of sea ice in the Antarctic under all 
future climate change scenarios (Gutt et al., 2015; Leaper & Miller, 2011; Solomon et al., 2007). This emphasises the 
need for more studies on the spatiotemporal distribution of baleen whales in the SO to understand the potential impact of 
climate change on these species. We compared our species-specific results with results of other studies in the SO and 
provided reasons for results discrepancy, which is generally attributed to the use of different species data quality and 
quantity, different study area extent, and methodological reasons.  

Maxent is known for its high predictive accuracy and considered one of the most frequently used technique in marine 
SDM studies (Melo-Merino et al., 2020). Our models back the usefulness of presence-only SDMs like Maxent as a cost- 
effective tool for studying the distribution of migratory whales (e.g., Smith et al., 2020). The current work further supports 
the pivotal role of crowdsourcing data from biodiversity repositories (e.g., GBIF and OBIS) and circumantarctic dedicated 
surveys (e.g., SO GLOBEC and SOWER) to strengthen our knowledge about the distribution and niche of migratory 
whales in less-surveyed oceans (Beekmans et al., 2010). Nevertheless, future surveys should be prioritised towards less 
studied areas and the pack ice region, especially beyond the summer months. Alternative data sources, such as PAM and 
from tagged animals, form a useful addition for studying marine mammals’ habitat preferences year-round, but still 
require work before these data can be integrated. PAM is particularly useful in the SO for detecting rarely visually-sighted 
species like ABW and covering difficult-to-access areas (e.g., the ice-covered Weddell Sea). PAM data have already been 
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used in SDMs for odontocete species producing clicks which propagate over short distances allowing to use 
environmental data from the recording sites (e.g., Gallus et al., 2012; Soldevilla et al., 2011). To date, only few 
applications have included baleen whales of which calls propagate over long distances causing uncertainty in the 
interpretation of the relationship between whales and the environment due to this potential mismatch in scales (e.g., 
Širović & Hildebrand, 2011; Stafford et al., 2009). Nevertheless, the use of PAM data in SDMS, particularly for species 
in polar waters, holds great potential that calls for exploring this further. 
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Table 1: List of environmental predictors used in the models. 

Statistics: type of statistics used to calculate each predictor (SD = standard deviation); season: which season or month 
range was used; transformation: transformations implemented to maximize uniformity of the data; abbreviation: the 
abbreviation used in the figures; VIF: the value of variance inflation factor. Summer was defined as from January to 
March. See Table S1 for more information on the predictors used. 

Predictor Statistics Season Transformation Abbreviation VIF 

Bathymetry    Bathymetry 3.0 
Slope   natural log Slope 1.5 
Distance to coast    Dist2Coast 2.2 
Distance to 1000m isobath   square root Dist2Isobath1000 2.8 
Chlorophyll-a Mean Summer natural log Chl-a 1.9 
Sea ice concentration Mean Summer  SIC_Mean_S1 3.7 
Distance to the ice edge  Summer  Dist2IceEdge_S1 3.8 
Sea ice concentration SD April  SIC_SD_S2 2.6 
Sea ice concentration SD May–November  SIC_SD_S3 2.8 
Sea ice concentration SD December  SIC_SD_S4 3.3 
Temperature (200m) Mean Annual  Temp_200 3.4 
Surface salinity Mean Annual  Sal_Surf 1.9 
Sea Surface Height Mean Annual  SSH_Mean 4.4 
Sea Surface Height SD Annual  SSH_SD 2.6 
Speed Mean Annual  Speed 3.8 
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Table 2: Summary of the comparison between this study’s results and like studies on the Antarctic minke whale in the SO. Important predictors, as identified by this study, are 
shaded dark grey in the column header (> 5% permutation importance for the full models, in descending order). Cell colours represent the agreement between our study results and 
other studies: green, high agreement; orange, some disagreement; red, high disagreement. Empty cells represent situations when the given predictor was not tested. Similar results for 
other species are shown in Table S3. 
 
Abbreviations used: SIC = sea ice concentration; SIE = sea ice edge; SSH = sea surface height; Chl-a = chlorophyll-a concentration; ✓ = similar results; ⊕ = positive relationship; ⊖ 
= negative relationship; imp. = importance; Dist. = distance; SD = standard deviation; Temp. = water temperature. 
 
 

This study 

 

 

 

 

Other studies 

High importance (>5%) Low importance (<5%) 

Dist. to SIE 

(47%) 

SIC mean 

(19%) 

SIC 

variability 

(19%) 

Dist. to 

coast 

(2.7%) 

Salinity 

(2.2%) 

Temp. 

200m 

(2.2%) 

SSH 

(1.7%) 

Depth 

(1%) 

Dist. to 

Isobath 

(1%) 

Chl-a 

(0.7%) 

Slope 

(0.5%) 

near and S. of 
summer SIE 

⊖ ⊕ unclear or ⊕ 
⊕ ⊕ unclear ⊖ ⊖ ⊖ or 

unclear 
unclear 

Ainley et al., 2012  ⊕, high 
imp. 

     high imp. / high 
suitability at high or 

low depths 

⊖ / most 
important 
predictor 

low imp. low imp. 

Beekmans et al., 2010 ⊖     ⊖  ⊖ ⊖ low imp.  

Bombosch et al., 2014 ✓     ⊖, high imp. ⊕, 
moderate 

imp. 

moderate imp. / 
high suitability at 

average depths 

  ⊖, low 
imp.  

Friedlaender et al., 2011 low to moderate 
imp. 

  most imp. 
predictor 

   moderate imp.  moderate 
imp. 

moderate 
imp. 

Filun et al. 2020 Little acoustic 
activity near 

SIE 

⊕          

Herr et al., 2019 ✓ ✓       ✓   

Kasamatsu et al., 2000a ✓     ⊖, higher 
sighting rate 
at low SST 

     

Kasamatsu et al., 2000b ✓     No 

relationship 

with SST 

     

Murase, 2014  
 

   high suitability 
at low and high 

salinity 

  ⊖    

Murase et al., 2013 ✓    Most imp. 
predictor; high 
suitability at 

moderately low 
salinity 

Low at low 
and high 

temp. at 200m 

  ✓   

Williams et al., 2014 ✓           
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Figure 1: Predicted habitat suitability of four baleen whale species in the Southern Ocean using ModelAll (all 
occurrences, left) and ModelUnique (removed duplicate sightings, right). These maps represent predictions from the 
respective ‘full model’, calibrated without cross-validation. Mean prediction from cross-validated models and their 
coefficient of variation are shown in the Supporting Information. Map colours range from blue (low suitability) to red 
(high suitability). All maps are on Maxent’s cloglog scale.
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(a) (b) 

  
(c) (d) 

Figure 2: Permutation importance of environmental predictors used to train the models of (a) Antarctic minke whale; (b) Antarctic blue whale; (c) fin whale; and (d) humpback 
whale. Results of ModelAll (all occurrences) are shown in dark grey bars, while the results of ModelUnique (removed duplicates) are shown in light grey bars. Bars and their accompanying 
error bars represent the mean and standard deviation of the permutation importance of cross-validated models. Blue dots represent the permutation importance of full models calibrated 
without cross-validation. The horizontal dashed line represents 5% permutation importance, above which environmental predictors were considered as potentially important for the 
distribution of the species (light green-dashed area). Plots for the jackknifing test are shown in the Supporting Information. For more information on the predictors used, see Table 1.
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