

North Pacific Minke Whale Implementation Simulation Trial Specifications

C. Allison, C.L. de Moor and A.E. Punt

Papers submitted to the IWC are produced to advance discussions within that meeting; they may be preliminary or exploratory. It is important that if you wish to cite this paper outside the context of an IWC meeting, you notify the author at least six weeks before it is cited to ensure that it has not been superseded or found to contain errors.

Annex ?

North Pacific Minke Whale Implementation Simulation Trial Specifications

C. Allison, C.L. de Moor and A.E. Punt

DRAFT – the details of some of these specifications remain to be finalised

A. Basic concepts and stock structure

The objective of the North Pacific minke whale *Implementation Simulation Trials* is to examine the performance of the RMP in scenarios that relate to the actual problem of managing a likely fishery for minke whales in the North Pacific. The trials attempt to bound the range of plausible hypotheses regarding the number of minke whale stocks in the North Pacific, how they feed (by sex, age and month) and recruit and how surveys index them. The underlying dynamics model is age- and sex-structured and allows for multiple stocks.

The region to be managed (the western North Pacific) is divided into 22 sub-areas (see Fig. 1). Future surveys are unlikely to cover sub-areas 1, 2, 3, 4 and 13 (see Table 3) so these sub-areas are taken to be *Residual Areas* in the current trials (although allowance is made for future bycatches from some of these sub-areas – see section D). The term 'stock' refers to a group of whales from the same breeding ground.

Fig. 1. The 22 sub-areas used for the Implementation Simulation Trials for North Pacific minke whales

Three fundamental hypotheses are considered to account for patterns observed in the results from the genetic analyses¹:

- (A) there is a single J-stock that occurs to the west of Japan (Sea of Japan and Yellow Sea) and the Pacific coast of Japan (sub-areas 2C, 7CS, 7CN, 11 and 12SW) and a single O-stock in sub-areas to the east and north of Japan (2C, 2R, 3, 4, 7CS, 7CN, 7WR, 7E, 8, 9, 9N, 10E, 11, 12SW, 12NE and 13) (referred to as hypothesis A);
- (B) as for hypothesis (A), but there is a third stock (Y) that resides in the Yellow sea (sub-areas 1W, 5 and 6W) and overlaps with J-stock in the southern part of sub-area 6W (referred to as hypothesis B); and
- (E) there are four stocks, referred to Y, J, P, and O, two of which (Y and J) occur in the Sea of Japan, and three of which (J, P, and O) are found to the east of Japan (referred to as hypothesis E). Stock P is a coastal stock.

Sensitivity tests in which there is a C-stock are also conducted based on stock structure hypotheses A and E. The C-stock is found in sub-areas 9 and 9N for the sensitivity test based on stock structure hypothesis A and in these sub-areas as well as sub-area 12NE for the sensitivity test based on stock structure hypothesis E. There is uncertainty regarding whether C-stock is found in sub-area 12NE because of the lack of genetics data for this sub-area.

¹ See IWC, 2020 pp376-381 for details of the data and analyses used in the development of these hypotheses.

B. Basic dynamics

Further details of the underlying age-structured model and its parameters can be found in IWC (1991, p.112), except that the model has been extended to take sex-structure into account. The dynamics of the animals in stock *j* are governed by equations B.1(a). The current trials do not include any models with dispersal but the control program retains the option to allow dispersal (permanent movement between stocks) so it is included here as Equations B.1(b).

$$N_{t+1,a}^{g,j} = \begin{cases} 0.5 b_{t+1}^{j} & \text{if } a = 0\\ (N_{t+1}^{g,j} - C_{t+1}^{g,j}) \tilde{S}_{g,1} & \text{if } 1 \le a < x \end{cases}$$
(B.1a)

$$\begin{cases} (V_{t,a-1}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_{x-1} \\ (N_{t,x}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j}) \tilde{S}_x + (N_{t,x-1}^{g,j$$

$$N_{t+1,a}^{g,j} = \begin{cases} 0.5 b_{t+1}^{j} & \text{if } a = 0\\ \sum_{j \neq j'} [(1 - D^{j,j'})(N_{t,a-1}^{g,j} - C_{t,a-1}^{g,j})\tilde{S}_{a} + D^{j',j}(N_{t,a-1}^{g,j'} - C_{t,a-1}^{g,j'})\tilde{S}_{a}] & \text{if } 1 \le a < x \end{cases}$$
(B.1b)

$$\begin{bmatrix} \sum_{j \neq j'} [(1 - D^{j,j}) ((N_{t,x}^{g,j} - C_{t,x}^{g,j})S_x + (N_{t,x-1}^{g,j} - C_{t,x-1}^{g,j})S_{x-1}) \\ + D^{j',j} ((N_{t,x}^{g,j'} - C_{t,x}^{g,j'})\tilde{S}_x + (N_{t,x-1}^{g,j'} - C_{t,x-1}^{g,j'})\tilde{S}_{x-1})] & \text{if } a = x \end{bmatrix}$$

where $N_{t,a}^{g,j}$ is the number of animals of gender g and age a in stock j at the start of year t;

- $C_{t,a}^{g,j}$ is the catch (in number) of animals of gender g and age a in stock j during year t (whaling is assumed to take place in a pulse at the start of each year);
- b_t^j is the number of calves born to females from stock j at the start of year t;
- \tilde{S}_a is the survival rate = e^{-M_a} where M_a is the instantaneous rate of natural mortality (assumed to be independent of stock and sex); and
- x is the maximum age (treated as a plus-group); and
- $D^{j,j'}$ is the dispersal rate (i.e. the probability of an animal moving permanently) from stock *j* to *j'*. It is assumed that the numbers dispersing from the *j*-stock to the *j'*-stock are the same as from the *j'*-stock to the *j*-stock at unexploited equilibrium and that the proportion of calves dispersing from the *j*-stock to the *j'*-stock at equilibrium is the same as that from the *j'*-stock to the *j*-stock.

Note that *t*=0, the year for which catch limits might first be set, corresponds to 2020.

For computational ease, the numbers-at-age by sex are updated at the end of each year only, even though catching is assumed to occur from March to October. This simplification is unlikely to affect the results substantially for two reasons: (1) catches are at most only a few percent of the number of animals selected to the fisheries; and (2) sightings survey estimates are subject to high variability so that the resultant slight positive bias in abundance estimates is almost certainly inconsequential.

C. Births

Density-dependence is assumed to act on the female component of the mature population. The convention of referring to the mature population is used here, although this actually refers to animals that have reached the age of first parturition.

is the average number of births (of both sexes) per year for a mature female in stock *j* in the pristine population;

$$b_t^j = B^j N_t^{\mathrm{f},j} \{ 1 + A^j (1 - (N_t^{\mathrm{f},j} / K^{\mathrm{f},j})^{z^j}) \}$$
(C.1)

where

 B^{j}

 A^{j}

is the resilience parameter for stock *j*;

 z^{j} is the degree of compensation for stock *j*;

 $N_{t}^{f,j}$ is the number of 'mature' females in stock j at the start of year t:

$$N_{t}^{f,j} = \sum_{a=a_{m}}^{x} N_{t,a}^{f,j}$$
(C.2)

 a_m is the age-at-first-parturition; and

 $K^{f,j}$ is the number of mature females in stock *j* in the pristine (pre-exploitation, written as $t=-\infty$) population:

$$K^{f,j} = \sum_{a=a_m}^{x} N^{f,j}_{-\infty,a}$$
(C.3)

The values of the parameters A^{j} and z^{j} for each stock are calculated from the values for $MSYL^{j}$ and $MSYR^{j}$ (Punt, 1999). Their calculation assumes harvesting equal proportions of males and females.

D. Catches

The operating model considers two sources for non-natural mortality: direct catches and bycatches (which are also referred to as incidental catches). In future ($t \ge 2020$), the former are set by the RMP, while the latter are a function of abundance and future fishery effort. In cases in which the catch limit set by the RMP is less than the level of incidental catch, the total removals are taken to be the incidental catch only whereas if the RMP catch limit exceeds the incidental catch (if any), the level of the commercial removals is taken to be the difference between the RMP catch limit and the best estimate of the incidental catch (see 'Future incidental catches' below).

Direct catches

The direct historical (pre-2020) catch series used are listed in Adjunct 1 and include both commercial and special permit catches. Details of the sources of the catch data are given in Allison (2011). The baseline trials use the 'best' direct catch series and an alternative 'high' catch series is used in Trial 4. Trials 8 and 9 test the effect of the method used to allocate historical catches between sub-areas 5 and 6W. The RMP will use the 'best' series in all trials. Consequently, the RMP will use what are in effect incorrect catches for Trials 4, 8 and 9 in order to examine the implications of uncertainty about historical catches.

Catch limits are set by *Small Area*. (Catches are always reported by *Small Area*, i.e. the RMP is not provided with catches by sub-area for cases in which sub-areas are smaller than *Small Areas*.) As it is assumed that whales are homogeneously distributed across a sub-area, the catch limit for a sub-area is allocated to stocks by sex and age relative to their true density within that sub-area, and a catch mixing matrix V that depends on sex, age and time of the year (and may also depend on year), i.e.

$$C_{t,a}^{g,j} = \sum_{k} \sum_{q} F_{t}^{g,k,q} \sum_{a} V_{t,a}^{g,j,k,q} S_{a}^{g} \tilde{N}_{t,q,a}^{g,j}$$
(D.1)

$$F_{t}^{g,k,q} = \frac{C_{t}^{g,k,q}}{\sum_{j'} \sum_{a'} V_{t,a'}^{g,j',k,q} S_{a'}^{g} \tilde{N}_{t,q,a'}^{g,j'}}$$
(D.2)

where

 $F_t^{g,k,q}$ is the exploitation rate in sub-area k on fully recruited ($S_a^g \rightarrow 1$) animals of gender g during month q of year t; S_a^g is the selectivity on animals of gender g and age a :

$$S_a^g = (1 + e^{-(a - a_{50}^g)/\delta^g})^{-1}$$
(D.3)

 $\tilde{N}_{t,q,a}^{g,j}$ is the number of animals of gender g and age a in stock j at the start of month q in year t after removal of catches in earlier months and after any bycatches have been removed;

$$\tilde{N}_{t,q,a}^{g,j} = \ddot{N}_{t,q,a}^{g,j} \left(1 - V_{t,a}^{g,j,k,q} F_{B,t}^{g,k,q} \right)$$
 for all sub-areas except 7CS and 7CN and

$$\tilde{N}_{t,q,a}^{g,j} = \ddot{N}_{t,q,a}^{g,j} \left(1 - F_{B,t}^{g,k,q,j} \right)$$
 for sub-areas 7CS and 7CN,

 a_{50}^g, δ^g are the parameters of the (logistic) selectivity ogive for gender g;

 $C_t^{g,k,q}$ is the catch of animals of gender g in sub-area k during month q of year t (see Adjunct 1 for the historical catches); $\ddot{N}_{t,q,a}^{g,j}$ is the number of animals of gender g and age a in stock j at the start of month q in year t after removal of bycatches and catches in any earlier months;

 $F_{B,t}^{g,k,q}$ is the removal rate due to by catch of gender g in sub-area k (all sub-areas except 7CS and 7CN) during month q of year t

$$F_{B,t}^{g,k,q} = \frac{C_{B,t}^{g,k,q}}{\sum_{j'} \sum_{a'} V_{t,a'}^{g,j',k,q} \ddot{N}_{t,q,a}^{g,j'}}$$

 $F_{B,t}^{g,k,q,j}$ is the removal rate due to bycatch of gender g and stock j in sub-area k (sub-areas 7CS and 7CN) during month q of year t.

$$F_{B,t}^{g,k,q,j} = \frac{p_B^{k,q,j} C_{B,t}^{g,k,q}}{\sum_{a'} \ddot{N}_{t,q,a}^{g,j}} \qquad \text{where } p_B^{k,q,j} \text{ is given by Table 2b; and}$$

 $C_{B_t}^{g,k,q}$ is the bycatch of animals of gender g in sub-area k during month q of year t (given by equation D.5).

Each entry in the catch mixing matrix, $V_{t,a}^{g. j.k.q}$, is the fraction of males/females of age *a* from stock *j* that are found in sub-area *k* during month *q* of year *t*. The catch mixing matrix is different for each month to reflect the effects of migration between the breeding and the feeding grounds and back. Adjunct 2 lists the catch mixing matrices considered. The matrices are based on the presence/absence matrices developed at the First Intersessional Workshop (see IWC, 2020) and represent the relative fraction of an age-class in each of the sub-areas during the months March-October. Once the values of the parameters related to mixing rates (the γs – see section F) are specified (these are estimated separately for each trial and each replicate in the conditioning process), the catch mixing matrices can be converted to fractions of each age-class in each sub-area. The values for the γ parameters are selected to mimic available data (see Section F).

Catch mixing matrices are specified for ages 4 and 10 (these being three years below and above the assumed age-at-50%-maturity). Few animals of age 4 are mature while most of age 10 are. The catch mixing matrices for ages 0-3 are assumed to be the same as that

for age 4, and those for ages 11+ the same as that for age 10. The catch mixing matrices for ages 5-9 are set by interpolating linearly between those for ages 4 and 10.

The trials model whale movements in the eight-months from March to October. In order to account for historical direct and incidental catches outside these months, all catches in January-March are modelled as being taken in March and the catches after October are assumed to have been taken in October. The historical direct catches by sex, sub-area, month and year are given in Adjunct 1.

The trials are conducted assuming that the sub-areas for which future catch limits might be set are:

sub-area	7CS and 7CN	April to October (coastal/pelagic whaling outside a specified distance ²)
	7WR and 7E	April to October (pelagic whaling)
	8 and 9	April to October (pelagic whaling)
	11	April to October (coastal and pelagic whaling)
	12	April to October (coastal and pelagic whaling)

The future ($t \ge 2020$) commercial catches by sex, sub-area, month and year are calculated using the equation:

$$C_t^{g,k,q} = C_t^k \mathcal{Q}^{g,k,q} \tag{D.4}$$

- $Q^{g,k,q}$ is the fraction of the commercial catch in sub-area k of gender g that is taken during month q, the values of which are given in Table 1a; and
- C_t^k is the commercial catch limit for sub-area k and year t (t ≥ 2020). Note that C_t^k is equal to the catch limit set by the RMP less any reported incidental catch (constrained to be non-negative).

Entries in the Q matrix are determined by the options related to the sub-areas for which catch limits might be set, The non-zero entries in the Q matrix (see Table 1a) reflect the historical breakdown of catches over the last 10 years of commercial whaling (1978-87) within each sub-area. In sub-areas for which there was no catch between 1978-87 (7E, 8 and 9), the entries in the Q matrix are set using the entrie historical commercial and scientific catch in these sub-areas. In some instances where regulations limited the commercial whaling season, the matrix entries have been adjusted using the special permit data.

The future commercial catches in sub-areas 7CS and 7CN are removed based on the mixing proportions from the Scientific Permit samples only (Table 2a).

Denote the modelled mixing proportion used when conditioning to be R^{k} as:

$$R^{k} = \sum_{t=1996}^{2016} P_{1+,t}^{J/JE,k} \left/ \sum_{j} \sum_{t=1996}^{2016} P_{1+,t}^{j,k} \right|$$
 where $P_{1+,t}^{j,k}$ is the average number of 1+ animals from stock *j* in sub-area *k* in year *t*.

The mixing proportions obtained from the offshore samples, \tilde{R}^k , are given in Table 2a. The proportion of J-stock animals in some future year would normally be $P_{1+,t}^{J,k} / (P_{1+,t}^{J,k} + P_{1+,t}^{P,k} + P_{1+,t}^{O,k})$. For sub-areas 7CS and 7CN in future this equation is adjusted to

$$(\tilde{R}^{k} \neq R^{k}) : \alpha^{k} P_{1+,t}^{J,k} / (\alpha^{k} P_{1+,t}^{J,k} + P_{1+,t}^{P,k} + P_{1+,t}^{O,k}) \quad \text{where} \quad \alpha^{k} = \frac{(1-R^{k})\tilde{R}^{k}}{(1-\tilde{R}^{k})R^{k}}$$
(D4.a)

The α^k factor is then applied to the recruited population from J-stock in sub-area k when setting the commercial catch by stock using equations D.1 and D.2.

In order to comply with RMP specifications regarding the sex ratio in catches (IWC, 1999), if the proportion, P_{f_i} of females in the total direct catch (i.e. commercial and/or special permit) taken from a *Small Area* in the five years prior to the catch limit calculation exceeds 50%, the catch limits are adjusted downwards by the ratio $0.5/P_{f_i}$.

Table 1a.

The Q matrix: the percentage of the future commercial catch in sub-area k that is taken by sex and month for sub-areas other than Residual Areas. Dashes indicate sub-areas/months for which catch limits are defined to be zero. See text for description of how the entries are set.

Sub-area	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
				Males								Female	s			
7CS	-	24.3	21.5	10.1	4.8	0.8	0.3	-	-	21.7	12.6	2.8	0.7	0.3	-	-
7CN	-	-	0.8	8.2	15.5	15.3	23.9	11.9	-	0.1	0.4	4.9	6.9	3.5	5.3	3.1
7WR	-	0.9	45.0	30.3	2.8	0.9	6.4	-	-	-	8.3	2.8	2.8	-	-	-
7E	-	-	32.9	19.3	1.9	7.2	12.6	1.0	-	-	3.9	1.9	5.3	5.3	8.7	-
8	-	-	12.8	33.6	31.9	4.4	3.0	2.0	-	-	2.7	2.0	3.4	2.0	0.7	1.7
9	-	-	5.4	13.6	30.4	36.3	2.9	-	-	-	1.5	1.8	2.7	4.9	0.5	-
11	-	1.3	5.5	9.6	9.6	4.0	3.0	0.6	0.1	10.6	19.3	18.5	10.7	4.5	2.3	0.4

Incidental catches

Incidental catches of minke whales are known to occur off Japan (in sub-areas 1E, 2C, 6E, 7CS, 7CN, 10E and 11 and small numbers in 6W) and the Republic of Korea (sub-areas 5 and 6W and small numbers in 1W).

² Operations preliminarily being considered would be limited "to outside a certain distance from the coast to minimise catch of J-stock whales" (see IWC, 2020 p387). The 2013 trials were conducted assuming whaling would be outside 10 n.miles.

Japan: It has been obligatory to report bycatches in Japan since 2001 since when the bycatch numbers are considered to be reliable. Earlier bycatches are believed to be under-reported based on the sudden increase in reported bycatches in 2001. In view of this, the relationship between bycatch and set-net effort is integrated into the conditioning process, with the advantage that the method is independent of the reporting rate prior to 2001. The reporting rate since 2001 is assumed to be constant at 100% (except in Trial 4 – see below).

Almost all of the reported bycatch off Japan occurred in set-net fisheries. Three types of set nets are used off Japan: large-scale (excluding salmon nets), salmon nets and small-scale. For fishing gears other than set-nets, incidental catch, retention and marketing of whales are prohibited by the 2001 regulation and a diagnostic DNA registry is used to deter illegal distribution of whales caught. Ideally, the catch by each gear type should be modelled separately to allow the historical (pre-2001) bycatch to be predicted. However, information on numbers of catches by net type is not available. Therefore, the historical bycatches for each sub-area are set using the total number of incidental catches and the combined number of large-scale and salmon nets in each sub-area. For the best effort series, the number of nets from Japan is extrapolated from 1946 to 1969 assuming a linear relationship from 0 in 1935 to the known number in 1970 (Tobayama *et al.*, 1992). Incidental catches before 1946 are ignored because although some set-nets were in operation before 1946 (Brownell, pers. comm.) the numbers are highly uncertain and are sufficiently small that they are unlikely to affect the implementation.

The year 2001 is excluded from the fitting because the catch data are incomplete (as the new regulations date from June 2001). No data on the numbers of large-scale salmon nets is available since 2006 so the number of salmon nets from 2007-2019 is assumed to equal the average number of salmon nets over the years 2002-06. Sensitivity to this assumption will be tested for some baseline models, using the maximum and minimum number of salmon nets over the 2002-06 period. A high effort series is also generated, for use in Trial 4, in which the number of nets is double the best-case values from 1946-1969, up to a maximum equal to the number of nets in 1969. In Trial 4 all bycatches are assumed to be under-reported and are adjusted upward by a factor of 2.

Table 1b. To be updated to include recent bycatches

QB matrix: the percentage of the incidental catch in sub-area k that is taken by sex and month. The values are set using all the available bycatch data known by sub-area, sex and month. There is no incidental catch in the other sub-areas.

Sub-area	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Sample size
				Males								Female	S				
1E	18.6	14.0	0.0	4.7	0.0	0.0	0.0	4.7	20.9	2.3	9.3	7.0	7.0	2.3	0.0	9.3	43
2C	12.0	3.4	2.4	0.5	1.4	1.0	0.0	14.4	27.9	1.4	4.3	1.9	3.4	1.4	0.5	24.0	208
5	4.8	0.0	9.6	13.3	7.2	3.6	2.4	12.0	13.3	0.0	4.8	12.0	2.4	0.0	3.6	10.8	83
6W	10.3	5.4	5.7	5.1	3.1	2.5	5.1	14.4	11.3	5.6	6.4	7.2	2.0	1.6	1.8	12.5	610
6E	14.5	6.7	5.8	2.1	2.9	2.5	1.7	9.1	18.9	6.7	7.3	4.0	2.1	2.3	1.2	12.1	519
7CS	6.5	7.1	9.7	9.0	1.9	1.3	0.6	10.3	11.0	10.3	7.7	9.7	3.2	1.3	1.3	9.0	155
7CN	5.5	4.4	5.5	7.7	5.5	3.3	1.1	7.7	4.4	8.8	9.9	11.0	7.7	3.3	2.2	12.1	91
10E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.7	0.0	0.0	0.0	8.3	0.0	0.0	0.0	50.0	12
11	0.00	0.00	0.00	0.00	0.00	0.00	5.41	29.73	0.00	0.00	16.22	16.22	2.70	0.00	0.00	29.73	37

Korea. The same method is used as for Japan above except the incidental catch numbers from 1996-2018 (sub-area 6W) and 2000-2018 (sub-area 5) are used to extrapolate backwards and the catch numbers are adjusted to allow for underreporting. The bycatches in sub-area 6W (the East Sea) are adjusted upward by a factor of 2. The factor 2 is based on DNA profiling and a capture-recapture analysis of market products which estimated a total of 887 whales going through Korean markets from 1999-2003, in comparison to the reported catch of 458 whales (Baker *et al.*, 2007). The baseline trials assume that the bycatches in the Yellow Sea (sub-area 5) are fully reported as there is no evidence of under-reporting. The 'high' effort series for sub-area 5 used in Trial 4 will apply the same estimate of under-reporting as for sub-area 6W (i.e. a factor of 2) and the number of nets is set to the maximum of either double the base-case values or the number of nets in 1969.

To account for bycatch prior to 1996, the average for the *adjusted* takes are used to extrapolate backwards to 1946 based on fisheries effort using the same approach as for Japan. Incidental catches before 1946 are ignored as for Japan.

China. There are no data on incidental catches off China, although they are known to occur. The trials therefore consider two (essentially arbitrary) scenarios: (i) the incidental catch by China is twice that reported by Korea in sub-area 5); and (ii) incidental catches off China are ignored. The first of the options forms part of the baseline specifications and the second is included in a sensitivity test (see Trial 12) to determine the effects of the base case assumptions.

Allocation to sex and month. Bycatches by sex, sub-area (except for sub-areas 7CS and 7CN in future years), month and year are calculated using the equation:

$$C_{B,t}^{g,k,q} = C_{B,t}^k Q_B^{g,k,q}$$
(D.5)

 $Q_B^{g,k,q}$ is the fraction of the bycatch of gender g in sub-area k which is taken during month q and, the values of which are given in Table 1b; and

 $C_{B,t}^k$ is the bycatch in sub-area k and year t (as estimated by the model).

To avoid a proliferation of sub-areas and to avoid the need for finer time-steps than month, the probability of the bycatch in sub-areas 7CS and 7CN being one of the two stocks in the sub-area is assumed to be time-invariant while the incidental catches in sub-areas other than 7CS and 7CN are apportioned to stock and age class in the same way as for the commercial catches (i.e. using Equations D.1 and D.2, but assuming that the bycatch is taken uniformly from all age classes (i.e. selectivity=1)). The bycatches in sub-areas 7CS and 7CN are split to stock using mixing proportions calculated from the number of sampled whales that were assigned to each stock using genetic data from bycatches only, as listed in the final columns of Table 2b.

The historical bycatch model: The historical bycatch $C_{B,t}^k$ in sub-area k in year t is given by:

$$C_{B,t}^{k} = A^{k} P_{t}^{k} E_{t}^{k}$$
(D.6)

where A^k is the bycatch constant, E_t^k is the number of nets in sub-area k in year t and P_t^k is the total population size (including calves) in sub-area k in year t averaged over all 8 time periods. In Trial 17, the abundance P_t^k in equation D.6 is replaced by $\sqrt{P_t^k}$ to test a different assumption for the relationship between bycatch and abundance and the impact of possible saturation effects. The values of the bycatch constants are set by fitting during the conditioning process (see section F).

The recent by catches and the numbers of set-nets by type, year and area are listed in Adjunct 1. Further details are given in Annex H of IWC (2012a).

Table 2a

Time invariant fixed proportions by stock to be used in removing **future commercial catches** from sub-areas 7CS and 7CN for each for Hypothesis, based on the number of sampled whales that were assigned to each stock using the genetic data³ limited to Scientific Permit samples only [in the 2013 trials this was limited to >10nm]. The values are set using data from 1996-2016.

			Sampl	Sample size		ortion
Hypothesis	Sub-Area	Months	J-Stock	O-Stock	J-Stock	O-Stock
A & B	7CS	Apr	48	138	0.258	0.742
A & B	7CS	May	89	225	0.259	0.741
A & B	7CS	Jun-Sep	4	75	0.051	0.949
A & B	7CN	Apr-Jun	12	139	0.079	0.921
A & B	7CN	Jul-Dec	169	645	0.208	0.792

				Sample size		Proportion				
Hypothesis	Sub-Area	Months	J-Stock	P-Stock	O-Stock	J-Stock	P-Stock	O-Stock		
Е	7CS	Apr	0	188	0	0.000	1.000	0.000		
Е	7CS	May	0	303	24	0.000	0.927	0.073		
E	7CS	Jun-Sep	0	5	73	0.000	0.064	0.936		
Е	7CN	Apr-Jun	2	28	109	0.014	0.201	0.784		
E	7CN	Jul-Dec	10	574	225	0.012	0.710	0.278		

Table 2b

Time invariant fixed proportions by stock to be used in removing **bycatch** from sub-areas 7CS and 7CN for each for Hypothesis, based on the number of sampled whales that were assigned to each stock using genetic data⁴ limited to bycatch only, using data from 2001-2016.

			Sample	e size	Proportion		
Hypothesis	Sub-Area	Months	J-Stock	O-Stock	J-Stock	O-Stock	
A & B	7CS	Jan-Apr	43	34	0.558	0.442	
A & B	7CS	May	16	31	0.340	0.660	
A & B	7CS	Jun-Dec	86	34	0.717	0.283	
A & B	7CN	Jan-Jun	38	44	0.463	0.537	
A & B	7CN	Jul-Dec	51	15	0.773	0.227	
			Sample size	2		Proportion	

				Sample Size			FIOPOLIIOII	
Hypothesis	Sub-Area	Months	J-Stock	P-Stock	O-Stock	J-Stock	P-Stock	O-Stock
Е	7CS	Jan-Apr	0	73	1	0.000	0.986	0.014
Е	7CS	May	0	49	2	0.000	0.961	0.039
Е	7CS	Jun-Dec	0	118	1	0.000	0.992	0.008
Е	7CN	Jan-Jun	12	69	0	0.148	0.852	0.000
E	7CN	Jul-Dec	13	59	0	0.181	0.819	0.000

Future bycatches: Future bycatches by sub-area (except in sub-areas 7CS and 7CN) are generated assuming that the exploitation rate due to bycatch in the future equals that estimated for the trial in question for the most recent five-years of data used in the conditioning process, i.e.:

$$C_{B,t}^{k} = \overline{F}^{k} P_{t}^{k}$$
(D.7)

where $C_{B,t}^k$ is the bycatch in sub-area k in year t, P_t^k is the total population (including calves) in sub-area k in year t averaged over all 8 time periods (March-October), and \overline{F}^k is the average exploitation rate (sum over years of the known bycatch divided by the sum over years of P_t^k) over the last five years of the period used for conditioning (2012-16 for sub-areas off Japan and 2014-18 for those off Korea i.e. F is reset for each of the 100 simulations within a trial. Thus, the future bycatch by sex, month and sub-area is given by: $C_{B,t}^{g,k,q} = Q_{B}^{g,k,q} \overline{F}^k P_t^k$ (D.7a)

³ From the data file Data_NPM_190226_v3.csv", based on "stock90" for Hypotheses A&B and "geneland.stock2" for Hypothesis E, using Scientific Permit data only. The months are based on the same month-split used in 2013 for commercial catches. There were no Scientific Permit catches in 7CN & 7CS in Jan-Mar or in 7CS in Oct-Dec.

⁴ From the data file Data_NPM_190226_v3.csv", based on "stock90" for Hypotheses A&B and "geneland.stock2" for Hypothesis E, using Scientific Permit data only. The months are based on the same month-split used in 2013 for bycatches.

For Trial 17, the abundance P_t^k in equation D.7a is replaced by $\sqrt{(P_t^k)}$.

To avoid possible dis-proportionate by catches of J- to O-stock whales, equation (D.7a) is replaced with (D.7b) in sub-areas 7CS and 7CN [to come: 3 stock version of this equation for hypothesis E].

$$C_{B,t}^{g,k,q} = \tilde{P}_t^{k,q} \overline{F}^k Q_B^{g,k,q}$$
(D.7b)

where $\tilde{P}_t^{k,q}$ is the availability-weighted population size in sub-area k during month q:

$$\tilde{P}_{t}^{k,q} = \left(P_{t}^{k,q,J} + \lambda^{k,q} P_{t}^{k,q,O}\right) \frac{\overline{P}^{k,q,J} + \overline{P}^{k,q,O}}{\overline{P}^{k,q,J} + \lambda^{k,q} \overline{P}^{k,q,O}}$$
(D.8)

where $\overline{P}^{k,q,j}$ is the average number (including calves) of stock *j* animals in sub-area *k* during month *q* over the last five years of the period used for conditioning;

 $P_{t}^{k,q,j}$ is the total population (including calves) of stock j in sub-area k during month q of year t;

 $\lambda^{k,q}$ is a relative availability factor for J whales relative to O whales:

$$\lambda^{k,q} = \frac{(1 - \overrightarrow{P}^{k,q})}{\overrightarrow{P}^{k,q}} \frac{\overline{P}^{k,q,J}}{\overline{P}^{k,q,O}}$$
(D.9)

 $\ddot{P}^{k,q}$ is the weighted mean proportion of J-stock in sub-area k during month q (as given in Table 2b).

This bycatch is allocated to stock as follows:

$$C_{B,t}^{g,k,q,J} = \frac{P_t^{g,k,q,J}}{\lambda^{k,q} P_t^{g,k,q,O} + P_t^{g,k,q,J}} C_{B,t}^{g,k,q}$$
(D.10a)

$$C_{B,t}^{g,k,q,O} = \frac{\lambda^{k,q} P_t^{g,k,q,O}}{\lambda^{k,q} P_t^{g,k,q,O} + P_t^{g,k,q,J}} C_{B,t}^{g,k,q}$$
(D.10b)

where $P_i^{g,k,q,j}$ is the total population size (including calves) of animals of gender g from stock j in sub-area k during month q of year t.

Reported bycatches

A single series of historical bycatches will be used for all of the trials when applying the RMP (i.e. for calculating catch limits), irrespective of the true values of the bycatches, which differ both among trials and simulations within trials. The estimate of the historical bycatches used by the CLA will be set to the averages of the predicted bycatches based on the fit to the actual data⁵ of the operating model for the six baseline trials (i.e. using the 'best fit' simulation (0)). The series will be generated after conditioning is complete (see Adjunct 1).

The future bycatches used when applying the RMP are the true bycatches in all sub-areas⁶, except for Trial 4 (in which the estimated bycatches are in error to reflect the under-estimation of bycatch inherent in these trials) and Trial 12 (in which the bycatch by China is taken to be zero).

E. Generation of data

The plan for future sightings surveys is listed in Table 3a. Surveys will be conducted by Japan in sub-areas 7CS, 7CN, 7WR, 7E, 8, 9, 11, 12SW and 12N. Additional surveys will be conducted by Japan in sub-areas 6E, 10W, 10E and by Korea in sub-areas 5 and 6W (see IWC, 2020 p382), but they are not listed here as they are not required for setting future catch limits and so are not modelled in the trials. Table 3b shows how surveys will be combined for areas that are combinations of sub-areas.

The estimates of absolute abundance (and their associated CVs) for the years prior to 2019 provided to the *CLA* are given in Table 4a. To allow for results of surveys already conducted, but for which the results are not yet available, estimates of abundance are generated for surveys listed for 2019 in sub-areas 7WR, 7E and 12NE using the same method as for future estimates.

The sightings mixing matrix for a year in which a survey takes place is the average of the catch mixing matrices over the two survey months in that year (April-May for surveys to the west of Japan or August-September for the remainder). The values for the parameters of the various distributions have been selected to achieve CVs for *Small Areas* comparable to those for the surveys in Table 6(a). The future estimates of abundance for a *Small Area* (say *Small Area E*) are generated using the formula:

$$\hat{P} = PYw/\mu = P^*\beta^2 Yw \tag{E.1}$$

Y is a lognormal random variable $Y = e^{\varepsilon}$ where $\varepsilon \sim N[0, \sigma^2]$ and $\sigma^2 = Ln(\alpha^2 + 1)$;

w is Poisson random variable with
$$E(w) = var(w) = \mu = (P/P^*)/\beta^2$$
; (Y and w are independent);

P is the average current total (1+) population size in the *Small Area* (*E*) over the survey period:

$$P = P_t^E = \frac{1}{2} \sum_{k \in F} \sum_{q \in Survey Period} \sum_j \sum_{g a=1}^{\infty} \left(V_{t,a}^{g,j,k,q} N_{t,a}^{g,j} \right)$$
(E.2)

⁵ In the case of sub-area 6W the actual data is the *adjusted* bycatch data.

⁶ Including sub-area 6W since the best estimate of bycatches in this area is the adjusted figure.

*P** is the reference population level, and is equal to the mean total (1+) population size in the *Small Area* prior to the commencement of exploitation in the area being surveyed; and

F is the set of sub-areas making up *Small Area E*.

Note that under the approximation $CV^2(ab) \cong CV^2(a) + CV^2(b)$: $E(\hat{P}) \cong P$ and $CV^2(\hat{P}) \cong \alpha^2 + \beta^2 P^* / P$

For consistency with the first stage screening trials for a single stock (IWC, 1991, p.109; 1994, pp.85-86), the ratio $\alpha^2:\beta^2=0.12:0.025$, so that:

$$CV(\hat{P}) = \tau (0.12 + 0.025P^* / P)^{1/2}$$
(E.3)

and the CV of a survey estimate prior to the commencement of exploitation in the area being surveyed would be:

$$\sqrt{(\alpha^2 + \beta^2)} = 0.38\tau \tag{E.4}$$

The values of τ applicable to each sub-area are calculated separately for each replicate once the conditioning has been accomplished by substituting the true value of the CV for each abundance estimate used in conditioning (Table 6)⁷ and the corresponding model depletion level into equation E.3. If more than one abundance estimate exists for a particular sub-area, the value assumed for τ is calculated taking the true CV to be the root mean square of the values obtained from the abundance estimates for that sub-area, and the depletion to be the mean value over the corresponding years.

An estimate of the CV, X_t is also generated for each sightings estimate, \hat{P}_t :

$$X_t = \sqrt{(\sigma_t^2 \chi^2 / n)} \tag{E.5}$$

where $\sigma_t^2 = Ln(1 + \alpha^2 + \beta^2 P^* / \hat{P}_t)$, and χ^2 is a random number from a Chi-square distribution with *n*=10 degrees of freedom. The value 10 is chosen to roughly indicate the number of trackline segments in a sightings survey in a *Small Area*.

The trials will be based on the use of two alternative values for g(0) in the conditioning process: g(0) = 0.798 (the base case value) and g(0)=1 (Trial 3) (IWC, 2012a, p.417; Okamura *et al.*, 2010). When g(0) = 0.798 the values of the operating model abundances are multiplied by this factor when setting the future survey estimates of abundance.

Table 3a

Past and planned future Japanese surveys to the North and East of Japan. The survey coverage is given in parentheses. Future coverage in sub-areas 7CN, 7WR and 7E is expected to be similar to the values below (because of territorial issues). Coverage in sub-areas 8 and 9 assumes that future surveys include the Russian EEZ. Future coverage in sub-areas 11 and 12SW (of 30.1% and 48.9% respectively) excludes areas in the Russian EEZ which cannot be surveyed until the resolution of territorial issues with Japan. Future coverage in sub-area 12NE (of 46.4) reflects the area which cannot be surveyed in the North and East because of Russian restrictions. * Estimate=0; # surveys covered different parts of sub-area 12NE each year.

	7CS	7CN	7WR	7E	8	9	11	12SW	12NE
1990	-	-	-	-	Aug-Sep (62%)	Aug-Sep (35%)	Aug-Sep(100%)	Aug-Sep(100%)	Aug-Sep(100%)
1991	Aug-	Aug-Sep(100%)	Aug-Sep(100%)	-	-	-	-	-	-
	Sep*(100%)								
1992	-	-	-	-	-	-	-	-	Aug-Sep (89%)
1999	-	-	-	-	-	-	Aug-Sep(100%)	-	Aug-Sep (64%)
2000	-	-	-	-	-	-	-	-	-
2001	-	-	-	-	-	-	-	-	-
2002	-	-	-	-	Jun-Jul (65%)*	-	-	-	-
2003	-	-	May-Jun (27%)	-	-	Jul-Sep (33%)	Aug-Sep (34%)	Aug-Sep(100%)	Aug-Sep (46%)
2004	May (37%)	-	May-Jun (89%)	My-Jun (57%)	Jun (40%)	-	-	-	-
2005	-	-	-	-	May-Jul (65%)	-	-	-	-
2006	Jun-Jul (100%)	-	-	My-Jun (57%)	May-Jul (65%)	-	-	-	-
2007	-	-	Jun-Jul (89%)	Jun-Jul (65%)*	Jun-Jul (65%)	-	Aug-Sep (20%)	-	-
2008	Jul-Aug* (100%)	Jul-Aug*(75%)	Jul-Aug*(89%)	Jul-Aug*(57%)	Jul-Aug*(65%)	Jul-Aug (87%)	-	-	-
2009	May-Jun (100%)	May-Jun (75%)	May-Jun (89%)	May-Jun (57%)	May-Jun (65%)	May-Jun (87%)	-	-	-
2010	-	-	-	-	-	-	-	-	-
2011	-	-	-	-	May-Jun-(65%)	May-Jun (87%)	-	-	-
2012	May-Jun (100%)	May-Jun (75%)	May-Jun (89%)	May-Jun*(57%)	-	-	-	-	-
		Aug-Sep (75%)							
2013	-	-	May-Jun (89%)	May-Jun (57%)	May-Jun (65%)	-	-	-	-
2014	-	Aug-Sep (73%)	-	-	-	-	Aug-Sep (35%)	-	-
2015	-		-	-	-	May-Jun (87%)		-	Aug-Sep#(17%)
2016	Jul-Aug(100%)	Jul-Aug (75%)	Jul-Aug (89%)	-	-	-	-	-	Aug-Sep#(28%)
2017	May-Jun(100%)	May-Jun (75%)	-	-	-	-	-	-	Aug [#] (14%)
2018	May-Jun(100%)	May-Jun (75%)	-	-	-	-	May-Jun (35%)	-	Aug [#] (11%)
2019	-	-	May-Jun (89%)	May-Jun (57%)	-	-	-	-	Aug-Sep#(16%)
2020	-	-	-	-	-	-	Aug-Sep	Aug-Sep	Aug-Sep
2021	-	-	Aug-Sep	Aug-Sep	Aug-Sep	Aug-Sep	-	-	-
2022	Aug-Sep	Aug-Sep	-	-	-	-	-	-	-
2023	-	-	-	-	-	-	-	-	-
2024	-	-	-	-	-	-	Aug-Sep	Aug-Sep	Aug-Sep
2025	-	-	Aug-Sep	Aug-Sep	Aug-Sep	Aug-Sep	-	-	-
2026	Aug-Sep	Aug-Sep	-	-	-	-	-	-	-
2027	-	-	-	-	-	-	-	-	-

Continue in future in the same pattern.

⁷ Excluding zero, minimum and maximum estimates and those assumed to apply to adjacent areas.

Table 3b

Component survey estimates to include in estimates for areas that are combinations of sub-areas

	C4 = 7,8	C5 = 7WR,7E,8	C6 = 7,8,9,11	C7 = 7,8,9,11,12
1991	Yes ^a : 1990-91	Yes ^a : 1990-91	Yes a: 1990-91	Yes ^a : 1990-92
2003	Yes: 2002-04	Yes: 2002-04	Yes: 1999-04	Yes: 1999-04
2006	Yes ^b : 2005-07	Yes ^b : 2005-07	- (see^{c})	- (see ^c)
2013	Yes: 2012-3	Yes: 2013	Yes: 2012-14	Yes: 2012-14
2016	-	-	-	-
2017	Yes: 2016-17	Yes: 2017	Yes: 2016-18	Yes: 2016-18
2018	-	-	-	-
2019	-	-	-	-
2020	-	-	-	-
2021	Yes: 2020-21	Yes: 2021	Yes: 2020-22	Yes: 2020-22
2022	-	-	-	-
2023	-	-	-	-

Continue in future in the same pattern.

a) The abundance estimates set for the combined sub-areas in 1990-92 assume a zero contribution from sub-area 7E as there is no available estimate for sub-area 7E to include.

b) The abundance estimates set for combined areas C4 and C5 in 2005-07 assume a zero contribution from sub-area 7CN as there is no sub-area 7CN estimate to include.

c) There are no 2005-2011 abundance estimate for sub-areas 9 and 12 to include in combination estimates C6 and C7; no C6 or C7 estimates are generated in this period.

Table 4a

List of historical abundance estimates agreed in 2013 for use by the *CLA* (*= zero estimate – see text and Table 4b). Further details are given in IWC, 2014a, pp.126-9. All estimates are calculated assuming a value of 1.0 for g(0) but the trials (except Trial 3) assume that g(0) = 0.798. Requires updating after consideration of the estimates available since the 2013 trials

Year	SubA	Period	Est.	CV	Year	SubA	Period	Est.	CV	Year	SubA	Period	Est.	CV
1991	7CS	Aug-Sep	42*	0.603	1990	8	Aug-Sep	1,057	0.705	1990	11	Aug-Sep	2,120	0.449
2004	7CS	May	504	0.291	2002	8	Jun-Jul	63.6*	0.603	1999	11	Aug-Sep	1,456	0.565
2006	7CS	Jun-Jul	3,690	1.199	2004	8	Jun	1,093	0.576	2003	11	Aug-Sep	882	0.820
2012	7CS	May-Jun	890	0.393	2005	8	May-Jul	132	1.047	2007	11	Aug-Sep	377	0.389
1991	7CN	Aug-Sep	853	0.23	2006	8	May-Jul	309	0.677	1990	12SW	Aug-Sep	5,244	0.806
2012	7CN	Sept	398	0.507	2007	8	Jun-Jul	391	1.013	2003	12SW	Aug-Sep	3,401	0.409
1991	7WR	Aug-Sep	311	0.23	1990	9	Aug-Sep	8,264	0.396	1990	12NE	Aug-Sep	10,397	0.364
2003	7WR	May-Jun	267	0.700	2003	9	Jul-Sep	2,546	0.276	1992	12NE	Aug-Sep	11,544	0.380
2004	7WR	May-Jun	863	0.648						1999	12NE	Aug-Sep	5,088	0.377
2007	7WR	Jun-Jul	546	0.953						2003	12NE	Aug-Sep	13,067	0.287
2004	7E	May-Jun	440	0.779										
2006	7E	May-Jun	247	0.892										
2007	7E	Jun-Jul	52.6*	0.603										

Table 4b

Population estimates which replace any zero estimates in the historical series or which are generated in future. A default value of 42 is used to replace a future zero estimate generated in any other sub-area.

Sub-area	7CS	7CN		7W	R	7E	8		11	
Season		1991	1992	1991	1992	2006	2006	2007	2003	2007
n		11	6	1	2	2	3	2	10	19
Р		976	730	188	434	247	309	391	882	377
Scaled		37.8	51.8	80.1	92.4	52.6	43.9	83.3	37.6	8.5
Average	42.0	44.	.8	86.	3	52.6	63	.6	23	.0

The trials assume that it takes two years for the results of a sighting survey to become available to be used by the management procedure, i.e. a survey conducted in 2018 would first be used for setting the catch limit in 2020. Table 3 lists the pattern for future surveys and also shows how results of surveys from different sub-areas are combined for use in variants in which *Small Areas* are comprised of more than one sub-areas. If a *Small Area* is comprised of sub-areas that are surveyed in different years, the combination abundance estimate is taken to be a summation of the estimates of abundance in the sub-areas over the years and taken to refer to the mean year (where the mean year is defined as the centre year in the set, or the later of two if this yields a half-integral year) (IWC, 1999). In cases in which the combined survey used more than one abundance estimate from the same sub-area, the abundance estimates are pooled using inverse variance weighting.

In cases where a zero abundance estimate occurs (either in the historical series or in the generated future estimates), a fixed standard deviation of 0.603 is assumed, and the zero estimate is replaced by a value that depends on the what the population estimates would have been for recent surveys in the areas had there been only one minke whale sighting made. Specifically, the averages taken over such population estimates are calculated separately for each of the surveys listed and then scaled by 42/98.6 as given in Table 4b. Details of the rationale are given in IWC, 2014b, pp.493-6, Butterworth D. and Miyashita T. 2014⁸.

⁸ The approach is based on that for the zero abundance estimate obtained in sub-area 7CS in 1991 for which there was a final output negative log – likelihood component of P/98.6 where P is the true abundance present. This form was replaced by a negative log-likelihood based on the assumption

F. Parameter values and Conditioning

The biological parameters (natural mortality, age-at-maturity) and the technological parameters (selectivity) will be the same as for the previous Implementations (IWC, 1992a, p.160; IWC, 2014a, pp.133-180) (based on those for N Atlantic minke whales, IWC, 1992b, p.249)⁹ i.e.:

Table 5

The values for the biological and technological parameters that are fixed							
Parameter	Value						
Plus group age, <i>x</i>	20 yrs						
Age-at-first-parturition, $a_{\rm m}$	$m_{50} = 7$; $\sigma_m = 1.2$; first age at which a female can be mature is three,						
Selectivity: Males and Females	$r_{50} = 4;$ $\sigma_r = 1.2$						
Maximum Sustainable Yield Level, MSYL	0.6 in terms of mature female component of the population						

Natural mortality is age-dependent, and identical to that for the North Atlantic minke trials:

$$M_a = \begin{cases} 0.085 & \text{if } a \le 4\\ 0.0775 + 0.001875 a & \text{if } 4 < a < 20\\ 0.115 & \text{if } a \ge 20 \end{cases}$$

The MSYR scenarios are specified in Section G.

The 'free' parameters of the above model are the initial (pre-exploitation) sizes of each of the stocks, the values that determine the mixing matrices (i.e. the γ parameters), the bycatch constants (A_k). The process used to select the 'free' parameters is known as conditioning. The conditioning process involves first generating 100 sets of 'target' data as detailed in steps (a) and (b) below, and then fitting the population model to each (in the spirit of a bootstrap). The number of animals in sub-area k at the start of year t is calculated starting with guessed values of the initial population sizes and projecting the operating model forward to 2019 in order to obtain values of abundance etc. for comparison with the generated data¹⁰. (When performing the projections, the direct catches from each sub-area are set to their historical values – Adjunct 1 and the bycatches are set as detailed below).

The information used in the conditioning process is as follows.

(a) Abundance estimates

The target values for the historical abundance by sub-area (excepting for the maximum and zero estimates – see below) are generated using the formula:

$$P_t^k = O_t^k \exp[\mu_t^k - (\sigma_t^k)^2 / 2] \qquad \qquad \mu_t^k \sim N[0; (\sigma_t^k)^2]$$
(F.1)

 P_t^k is the abundance for sub-area k in year t

 O_t^k is the actual survey estimate for sub-area k in year t (see Table 6); and

$$\sigma_t^k$$
 is the CV of Q_t^k .

The trials are based on the two alternative values for g(0) in the conditioning process: g(0)=0.798 (the base case value) and g(0)=1 (Trial 3) (IWC, 2012a, p.417; Okamura *et al.*, 2010). When g(0)=0.798 the values of the operating model abundances (P_t^k) are multiplied by this factor for comparison with the conditioning targets.

Minimum abundance estimates:

Table 6 includes several survey estimates which are assumed to be minima. Target values for these are similarly generated using Equation (F.1). [Add criteria for the estimates to be used as minima – after agreement by Steering Group].

of a log-normally distributed pseudo estimate, which as with the Poisson form would yield a value of 1 when P = 98.6. Since this is not sufficient to define this likelihood term unambiguously, the mean was fixed at 42 (D. Adams, 1995) which resulted in a standard deviation of 0.603.

⁹ The values are consistent with the results from JARPN. Japanese scientists advised that the above approach is appropriate given the well-known practical difficulties in using earplugs for age determination of North Pacific common minke whales. However, they also noted that technical advances mean that it may be possible to obtain age estimates in the future (IWC, 2014b, p.492).

¹⁰ In order to check that the conditioning exercise has been successfully achieved, plots such as those shown in IWC (2003, pp.473-80) will be examined, together with time-trajectories of the fraction of each stock in each sub-area.

Table 6 [To be updated]

Abundance data used to condition the trials. These estimates were all calculated assuming g(0)=1. In all trials, except Trial 3, it is assumed that g(0) = 0.798. See IWC, 2014a, pp. 126-9 for details of estimates used in the 2013 implementation.

Sub-area	Year	Season	Mode ^a	Areal coverage (%)	STD estimate ^b	CV ^c	Conditioning	Source
5	2001	Apr-May	NC	13	1,534	0.523	Min & Max ^d	An et al, 2010
5	2004	Apr-May	NC	13	799	0.321	Min & Max ^d	An et al, 2010
5	2008	Apr-May	NC	13	680	0.372	Min & Max ^d	An et al, 2010
5	2011	Apr-May	NC	13	587	0.405	Min & Max ^d	Park et al, 2012
6W	2000	Apr-May	NC	14.3	549	0.419	Min & Max ^d	An et al, 2010
6W	2002	Apr-May	NC	14.3	391	0.614	Min & Max ^d	An et al, 2010
6W	2003	Apr-May	NC	14.3	485	0.343	Min & Max ^d	An et al, 2010
6W 6W	2005	Apr-May	NC NC	14.3 14.3	336 459	0.317 0.516	Min & Max ^d	An et al. 2010
6W	2006 2007	Apr-May Apr-May	NC NC	14.3	439 574	0.310	Min & Max ^d Min & Max ^d	An et al, 2010 An et al, 2010
6W	2007	Apr-May	NC	14.3	884	0.286	Min & Max ^d	An et al, 2010
6W	2010	Apr-May	NC	23.6	1,014	0.397	Min & Max ^d	An et al, 2011
6E	2002	May-Jun	NC	79.1	891	0.608	Yes ^f	Miyashita <i>et al</i> , 2009
	2003	May-Jun	NC	79.1	935	0.357	Yes ^f	Miyashita et al, 2009
	2004	May-Jun	NC	79.1	727	0.372	Yes ^f	Miyashita et al, 2009
10W	2006	May-Jun	IO-PS	59.9	2,476	0.312	Yes	Miyashita and Okamura 2011
10E	2002	May-Jun	NC	100.0	816	0.658	Yes	Miyashita <i>et al</i> , 2009
	2003	May-Jun	NC	100.0	405	0.566	Yes	Miyashita et al, 2009
	2004	May-Jun	NC	100.0	474	0.537	No: Qu re survey design	Miyashita et al, 2009
	2005	May-Jun	NC	64.6	599	0.441	Yes	IWC, 2014a, pp.126-9
	2007	May-Jun		80.1	575	0.327	No – except see Trial 14	Miyashita et al, 2009
	2014	Sep		100	872	0.585	Yes	Miyashita, 2019
	2018	May-Jun		100	620	0.478	Yes	Hakamada <i>et al</i> , 2019
7CS	2004	May	NC	36.7	504	0.291	Yes	IWC, 2014a, pp.126-9
	2006	Jun-Jul	NC	100	3,690	1.199	Yes	Hakamada & Kitakado, 2010
	2012 2016	May-Jun		100 100	537	0.346	Yes Yes	Hakamada <i>et al</i> , 2016
	2016	Aug-Sep May		100	0 284	0.497	Yes	Hakamada <i>et al</i> , 2019 Hakamada <i>et al</i> , 2019
	2017	May-Jun		100	245	0.497	Yes	Hakamada <i>et al</i> , 2019
7CN	2018	May	NC	75.4	184	0.828	Min/No	Hakamada & Kitakado, 2010
/011	2003	May-Jun	ne	66.7	542	0.601	Yes	Hakamada <i>et al</i> , 2016
	2012	Sep		66.7	599	0.525	Yes	Hakamada <i>et al</i> , 2016
	2014	Sep		75	244	0.454	Yes	Miyashita, 2019
	2016	Jul-Aug		75	185	0.423	Yes	Hakamada et al, 2019
	2017	Apr-May		75	179	0.377	Yes	Hakamada et al, 2019
	2018	May		75	212	0.784	Yes	Hakamada et al, 2019
7WR	2003	May-Jun	NC	26.7	267	0.700	No: low coverage	IWC, 2014a, pp.126-9
	2004	May-Jun	NC	88.8	863	0.648	Yes	Hakamada & Kitakado, 2010
	2007	Jun-Jul	NC	88.8	546	0.953	Yes	Hakamada & Kitakado, 2010
	2012	May-Jun			378	0.79	Yes	Hakamada & Matsuoka 2016
	2013	May-Jun		89	65	1.007	Yes	Hakamada <i>et al</i> , 2019
	2016	Jul-Aug		89	75	1.062	Yes	Hakamada et al, 2019
W: 7CS+ CN+7WR	1991	Aug-Sep			1,164	0.183	Yes	Butterworth & Miyashita, 2014
7E	1990	Aug-Sep			791	1.848	No	IWC, 2014a, pp.126-9
	2004	May-Jun	NC	57.1	440	0.779	Yes	Hakamada & Kitakado, 2010
	2006	May-Jun	NC	57.1	247	0.892	Yes	Hakamada & Kitakado, 2010
	2012	May-Jun		57	0		Yes	Hakamada & Matsuoka 2016
	2013	Jun		57	0		Yes	Hakamada et al, 2019
_	2016	Aug-Sep		57	0		Yes	Hakamada <i>et al</i> , 2019
7	2008	Jul-Sep			0	0.042	Yes	Hakamada & Kitakado, 2016
70.0	2009	May-Jun	NC		215	0.942	Yes	Hakamada & Matsuoka 2016
7E+8	2007	Jun-Jul	NC NC	62.2	391 ⁸	1.013	Yes	Hakamada & Kitakado, 2010
8	1990	Aug-Sep Jun-Jul	NC NC	62.2 65.0	1,057	0.706 482 ^h	Yes Yes	IWC, 2004, p.124 Hakamada & Kitakado, 2010
	2002 2004	Jun-Jul Jun	NC NC	65.0 40.5	0 1,093	482 ² 0.576	Y es Yes	Hakamada & Kitakado, 2010 Hakamada & Kitakado, 2010
	2004	May-Jul	NC	40.3 65.0	1,095	1.047	Yes	Hakamada & Kitakado, 2010
	2005	May-Jul	NC	65.0	309	0.677	Yes	Hakamada & Kitakado, 2010 Hakamada & Kitakado, 2010
	2000	Jul-Sep		65	0	0.077	Yes	Hakamada & Matsuoka 2016
	2008	May-Jun		65	602	0.725	Yes	Hakamada & Matsuoka 2010
	2005	May-Jun		65	121	0.966	Yes	Hakamada & Matsuoka 2016
	2013	May-Jun		65	413	0.586	Yes	Hakamada <i>et al</i> , 2019
9	1990	Aug-Sep	NC	35.1	8,264	0.396	Yes	IWC, 2004, p.124
	2003	Jul-Sep	NC	33.2	2,546	0.276	Min ^e	Hakamada & Kitakado, 2010
	2008	Jul-Sep		87	2,458	0.664		Hakamada <i>et al</i> , 2016
	2009	May-Jun		63	2,079	0.688	Yes	Hakamada <i>et al</i> , 2016
	2011	May-Jun			0	- I	No ⁱ	Hakamada et al, 2016
	2015	Apr-May		87	140	0.963	Yes	Hakamada et al, 2019
9N	2005	Aug-Sep	IO-PS	67.8	420	0.969	Yes	Miyashita and Okamura 2011
		May-Jun			115	1.05	Yes	Hakamada et al, 2016

Table 6 continued

Sub-area	Year	Season	Mode ^a	Areal coverage (%)	STD estimate ^b	CV ^c	Conditi	ioning	Source
11	1990	Aug-Sep	NC	100.0	2,120	0.449	Ye	es	IWC, 2004, p.124
	1999	Aug-Sep	IO	100.0	1,456	0.565	Ye	es	IWC, 2004, p.124
	2003	Aug-Sep	IO-AC	33.9	882	0.820	Ye	es	Miyashita & Okamura, 2011
	2007	Aug-Sep	IO-PS	20.2	377	0.389	Mi	n ^e	Miyashita & Okamura, 2011
	2014	Aug		35	306	0.679			Miyashita, 2019
	2018	May		35	235	0.481			Hakamada et al, 2019
12SW	1990	Aug-Sep	NC	100.0	5,244	0.806	Ye	es	IWC, 2004, p.124
	2003	Aug-Sep	IO-AC	100.0	3,401	0.409	Ye	es	Miyashita & Okamura, 2011
12NE	1990	Aug-Sep	NC	100.0	10,397	0.364	Ye	es	IWC, 2004, p.124
	1992	Aug-Sep	NC	89.4	11,544	0.380	Ye	es	Miyashita & Shimada, 1994
	1999	Aug-Sep	NC	63.8	5,088	0.377	Ye	es	IWC, 2014a, pp.126-9
	2003	Aug-Sep	IO-AC	46.0	13,067	0.287	Ye	es	Miyashita & Okamura, 2011
rial 13: Us	se estimat	tes in full area	in 2002 &	k 2003 (original	ly 100% cove	rage) and o	ne extrapolated t	o the full	area in 2004 (79.1% coverage)
6E	2002	May-Jun	NC	100.0	1,795	0.458	Ye	es	Miyashita, 2010
	2003	May-Jun	NC	100.0	1,059	0.322	Ye	es	Miyashita, 2010
	2004	May-Jun	NC	100.0	919	0.372	Ye	es	Miyashita, 2010
				timate extrapola					
10E	į,	2007 Ma	ıy-Jun	IO-PS 1	00.0	552	0.159	Yes	Miyashita, pers. comm.

^a Mode: NC=Normal-closing, IO-PS=Passing with IO mode, IO-AC=Abeam-closing with IO mode. (STD estimates by different modes, NC, IO-AC, IO-NC, are considered comparable.).

^b Standard (STD) estimate based on 'Top and Upper bridge', which will be corrected by estimate of g(0) for the combined platform 'Top and Upper bridge'.

^c CV does not consider any process errors.

d

^f Alternative values used in Trial 13

^g The estimate of 0 from sub-area 7E was combined with the estimate of 391 from sub-area 8.

^h Average of the SEs for the non-zero estimates.

ⁱ Only southern portion of sub-area surveyed

Maximum abundance estimates.

Bounds need to be placed on the maximum size of populations in sub-areas 5 and 6W as there is insufficient information to estimate the abundance in sub-areas 5 and 6W, given that the only estimates available for these sub-areas have very low survey coverage. Target values were generated as $P_t^k = Z_t^k / C_t^k$, where Z_t^k is the minimum estimate for the survey in the same year and period and C_t^k is the proportion of the sub-area that was covered by the survey.

A maximum abundance of 500 whales in sub-area 2R in August-September 2009 was imposed in hypothesis C in the 2013 trials, to avoid undesirably high number of animals in this area. A need for such a requirement will be reviewed on inspection of the conditioning results.

Zero abundance estimates:

Table 6 includes several survey estimates of zero abundance. The target values for the historical abundance are generated using a Poisson distribution

(b) Proportion estimates

Estimates of the number of genetic samples assigned by stock in sub-areas 2C, 6W, 7CS, 7CN, 7WR, 10E and 11 are generated from a multinomial distribution that correspond to the observed data (see Tables 7a,b). Some of the mixing proportions are based on data from several years so the model estimates to which these proportions are fitted during conditioning are sample size-weighted year-specific proportions.

Estimates of the proportion of recruited J-stock whales in sub-areas 6W (see Adjunct 3 for how these proportions are estimated) are generated from appropriately truncated normal distributions that correspond to the observed data and are based on mtDNA and other genetic information (see Table 7c). Some of the mixing proportions are based on data from several years so the model estimates to which these proportions are fitted during conditioning are sample size-weighted year-specific proportions. A minimum standard error for the mixing proportions of 0.05 was imposed so as to prevent a few of the mixing proportions from dominating the conditioning processes – see IWC (2012c, p.106).

(c) Fixed stock proportion in sub-area 12SW

The data for sub-area 12SW is limited and so the proportion of J-stock in sub-area 12SW in June is fixed at 20% in the baseline trials. The value reflects a rough average of the J-stock mixing proportions for sub-area 11 (J-stock animals in sub-area 12SW need to pass through sub-area 11). Since the proportions for sub-area 11 are calculated from the 1984-1999 data, the 20% will be taken as an average over these same years. Sensitivity trials test different levels of the sub-area 12SW proportion. In Trial 10 the proportion is 10% (with 0% J-stock in sub-area 12NE as for the base case) and in Trial 11 the proportion is 30% (with 10% J-stock in sub-area 12NE in the same months/years; the mixing matrix is adjusted accordingly). In Trial 21 the proportion of J-stock in sub-area 12NE in May-July is fixed at 10%.

(d) Fixed stock proportion in sub-area 9 and 9N

The data for sub-area 9 is also limited. For Trials 2 and 23 which assume a C-stock that mixes with the O-stock in sub-area 9 and 9N, the proportion of O-stock is assumed to be 0.5 during August and September in 1995. This is based on the ratio assumed in 9W in 2003. For hypothesis E, Trial 2 the same proportion is also assumed in 12NE in August and September 1995 (but not in Trial 23).

Table 7a

The number of sampled whales that were assigned to each stock using the genetic assignment data based on STRUCTURE (Hypothesis A & B) and Geneland (Hypothesis E) using a 90% probability of assignment. In sub-areas 7CS and 7CN the baseline and Trial 5 proportion of whales assigned to each stock is weighted by 5/60 of the bycatch proportion and 55/60 of the special permit proportion. The number assigned by stock is then taken as this proportion multiplied by the total number of assigned animals. In Trial 6 the proportion of whales assigned to each stock is weighted by 2/60 of the special permit proportion, while in Trial 7 10/60 of the bycatch proportion and 50/60 of the special permit proportion was used. These data are used to condition the trials.

		Proportio	Jii was useu. I						-
Hypothesis	Trial	Area	Years	Months	Sex	Total Sample	J-Stock	O-Stock	
A & B	Baseline	2C	2002-16	Jan-Apr	M+F	155	127	28	_
A & B	Baseline	2C 2C	2002-10	May-Sep	M+F	56	46	10	
A & B	Baseline	$\frac{2C}{2C}$	2001-16	Oct-Dec	M+F	134	122	12	
A & B	Baseline	7CS	2002-16	Jan-Apr	M+F	263	74	189	
A & B	Baseline	7CS	2001-16	May	M+F	391	104	287	
A & B	Baseline	7CS	1999-2016	Jun-Dec	M+F	199	21	178	
A & B	Baseline	7CN	2002-16	Jan-May	M+F	100	17	83	
A & B	Baseline	7CN	1999-2016	Jun	M+F	133	12	121	
A & B	Baseline	7CN	1996-2016	Jul-Sep	M+F	610	127	483	
A & B	Baseline	7CN	2001-16	Oct-Dec	M+F	270	91	179	
A & B	Baseline	10E	2001-16	Jun-Dec	M+F	15	14	1	
A & B	Baseline	11	1996-2012	May-Dec	М	57	28	29	
A & B	Baseline	11	1996-2015	May-Dec	F	58	28	30	
A & B	5	2C	2002-16	Jan-Apr	M+F	170	138	32	-
A & B	5	2C 2C	2002-10	May-Sep	M+F	57	47	10	
A & B	5	2C 2C	2001-16	Oct-Dec	M+F	141	129	12	
A & B	5	7CS	2002-16	Jan-Apr	M+F	291	80	211	
A & B	5	7CS	2002-10	May	M+F	431	116	315	
A&B	5	7CS	1999-2016	Jun-Dec	M+F	212	22	190	
A&B	5	7CS 7CN	2002-16	Jan-May	M+F	105	19	86	
A & B A & B	5	7CN 7CN	1999-2016	Jun	M+F	139	19	125	
A&B	5	7CN	1996-2016	Jul-Dec	M+F	660	138	522	
A & B	5	7CN	2001-16	Oct-Dec	M+F	283	94	189	
A&B	5	7WR+7E	1996-2006	May	M+F	87	3	84	
A & B	5	7WR+7E 7WR+7E	1996-2012	Jun-Aug	M+F	49	0	49	
A&B	5	8	1998-2012	May-Jun	M+F	139	1	138	
A&B	5	8	1996-2009	Jul-Sep	M+F	106	1	105	
A&B	5	9	1995-2011	May-Jun	M+F	125	1	105	
A&B	5	9	1993-2011	Jul	M+F	123	4	124	
A & B	5	9	1994-2013	Aug-Sep	M+F	212	0	212	
A & B	5	10E	2001-16	Jun-Dec	M+F	16	15	1	
A & B	5	11	1996-2012	May-Dec	M	64	30	34	
A & B	5	11	1996-2012	May-Dec	F	63	30	33	
A & B	6	7CS	2002-16	Jan-Apr	M+F	263	71	192	-
A & B A & B	6	7CS	2002-10	May	M+F	391	102	289	
A&B	6	7CS	1999-2016	Jun-Dec	M+F	199	102	185	
A & B	6	7CS 7CN	2002-16	Jan-May	M+F	100	14	85	
A & B	6	7CN	1999-2016	Jun	M+F	133	9	124	
A & B	6	7CN	1996-2016	Jul-Sep	M+F	610	116	494	
A & B A & B	6	7CN 7CN	2001-16	Oct-Dec	M+F	270	82	188	
A & B	7	7CN 7CS	2001-10	Jan-Apr	M+F	263	82	188	-
А & В А & В	7	7CS	2002-16	May	M+F M+F	205 391	106	285	
	7	7CS	1999-2016	Jun-Dec	M+F M+F	199	32	283 167	
A & B A & B	7	7CS 7CN	2002-16	Jan-May	M+F M+F	199	52 19	81	
A & B A & B	7	7CN 7CN	1999-2016	Jun	M+F	133	19	117	
А & В А & В	7	7CN 7CN	1999-2016	Jul-Sep	M+F M+F	610	146	462	
А & В А & В	7	7CN 7CN	2001-16	Oct-Dec	M+F M+F	270	146	462 144	
									0.04 1
Hypothesis	Trial	Area	Years	Months	Sex	Total Sample	J-Stock	P-Stock	O-Stock
Е	Baseline	2C	2002-16	Jan-Apr	M+F	138	107	31	-
Е	Baseline	2C	2001-16	May-Sep	M+F	49	32	17	-
Е	Baseline	2C	2001-16	Oct-Dec	M+F	122	105	17	-
Е	Baseline	7CS	2002-16	Jan-Apr	M+F	262	-	262	0
Е	Baseline	7CS	2001-16	May	M+F	378	-	351	27
Ē	Baseline	7CS	1999-2016	Jun-Dec	M+F	197	-	28	169
	Baseline	7CN	1999-2016	Jan-Jun	M+F	220	6	56	158
Е									
E E			1996-2016	Jul-Dec	M+F	881	23	633	225
E E E	Baseline Baseline	7CN 11	1996-2016 1996-2012	Jul-Dec May-Dec	M+F M	881 59	23 13	633 45	225 1

Table 7a contd.

Hypothesis	Trial	Area	Years	Months	Sex	Total	J-Stock	P-Stock	O-Stock
						Sample			
Е	5	2C	2002-16	Jan-Apr	M+F	150	116	33	1
Е	5	2C	2001-16	May-Sep	M+F	54	36	18	0
E	5	2C	2001-16	Oct-Dec	M+F	125	108	17	0
Е	5	7CS	2002-16	Jan-Apr	M+F	282	3	278	1
E	5	7CS	2001-16	May	M+F	411	1	376	34
Е	5	7CS	1999-2016	Jun-Dec	M+F	211	0	36	175
E	5	7CN	1999-2016	Jan-Jun	M+F	237	6	59	172
Е	5	7CN	1996-2016	Jul-Dec	M+F	915	26	641	247
E	5	11	1996-2012	May-Dec	М	63	14	48	1
E	5	11	1996-2015	May-Dec	F	64	18	42	4
Е	6	7CS	2002-16	Jan-Apr	M+F	262	-	262	0
Е	6	7CS	2001-16	May	M+F	378	-	351	27
Е	6	7CS	1999-2016	Jun-Dec	M+F	197	-	19	178
E	6	7CN	1999-2016	Jan-Jun	M+F	220	4	49	167
Е	6	7CN	1996-2016	Jul-Dec	M+F	881	16	628	237
Е	7	7CS	2002-16	Jan-Apr	M+F	262	-	261	1
E	7	7CS	2001-16	May	M+F	378	-	352	26
Е	7	7CS	1999-2016	Jun-Dec	M+F	197	-	43	154
E	7	7CN	1999-2016	Jan-Jun	M+F	220	8	68	144
E	7	7CN	1996-2016	Jul-Dec	M+F	881	36	641	204

Table 7b

Estimates of the proportion of recruited 'J'-whales used to condition the trials based on mtDNA and Allele samples.

Hypothesis	Area	Years	Months	Sex	Ratio	CV^{11}	Data Type	Stock	
B and E	6W	1999-2007	Jan-Mar	M+F	0.584	0.131	mtDNA	J:Total	Bycatch samples
B and E	6W	1999-2007	Jan-Mar	M+F	0.672	0.05	Allelle	J:Total	Bycatch samples
B and E	6W	1999-2007	Apr-Jun	M+F	0.496	0.126	mtDNA	J:Total	Bycatch samples
B and E	6W	1999-2007	Apr-Jun	M+F	0.812	0.05	Allelle	J:Total	Bycatch samples
B and E	6W	1999-2007	Jul-Aug	M+F	1.000	0.05	mtDNA	J:Total	Bycatch samples
B and E	6W	1999-2007	Jul-Aug	M+F	0.749	0.077	Allelle	J:Total	Bycatch samples
B and E	6W	1999-2007	Sep-Dec	M+F	0.593	0.123	mtDNA	J:Total	Bycatch samples
B and E	6W	1999-2007	Sep-Dec	M+F	0.761	0.05	Allelle	J:Total	Bycatch samples

(f) Calculation of likelihood

The objective function consists of three components: Objective Function = $-(L_1+L_2+L_3)$ Equations F.4-6 list the negative of the logarithm of the objective function for each of the three components:

Abundance estimates

$$L_{1a} = 0.5 \sum_{n} \frac{1}{(\sigma_t^k)^2} \ln \left(P_n^k / \hat{P}_n^k \right)^2$$
(F.4a)

where \hat{P}_n^k is the model estimate of the abundance in the same year, period and sub-area as the *n*th estimate of abundance P_n^k .

Minimum abundance estimates

$$L_{1b} = \left\{ ln\sigma_t^k + \frac{1}{2(\sigma_t^k)^2} ln \left(P_n^k / \hat{P}_n^k \right)^2 \right\} \left\{ \frac{exp\left(\Delta (P_n^k - \hat{P}_n^k) \right)}{1 + exp\left(\Delta (P_n^k - \hat{P}_n^k) \right)} \right\} + ln\sigma_t^k \left\{ \frac{1}{1 + exp\left(\Delta (P_n^k - \hat{P}_n^k) \right)} \right\}$$
(F.4b)
Where Δ is a "large" number (here 30).

Maximum abundance estimates

$$L_{1c} = \left\{ ln\sigma_t^k + \frac{1}{2(\sigma_t^k)^2} ln \left(P_n^k / \hat{P}_n^k \right)^2 \right\} \left\{ \frac{1}{1 + exp\left(\Delta(P_n^k - \hat{P}_n^k) \right)} \right\} + ln\sigma_t^k \left\{ \frac{exp\left(\Delta(P_n^k - \hat{P}_n^k) \right)}{1 + exp\left(\Delta(P_n^k - \hat{P}_n^k) \right)} \right\}$$
(F.4c)

Zero abundance estimates

$$L_{1d} = -\left[n_n^k ln(\beta_n^k \hat{P}_n^k) - \beta_n^k \hat{P}_n^k\right] / \hat{\sigma}_n^k \tag{F.4d}$$

where n_n^k is the number of animals seen in the *n*th survey in period k, β_n^k is the product of the realised track length resulting in survey estimate P_n^k and average effective search half width and $\hat{\sigma}_n^k$ is the adjusted coefficient of variation of survey estimate P_n^k [add equation for $\hat{\sigma}_n^k$]

Stock proportions

For sub-areas 2C, 7CN, 7CS, 10E and 11:

$$L_2 = \sum_j \sum_n N_{j,n}^k ln(\hat{p}_{j,n}^k) \tag{F.5a}$$

where $\hat{p}_{j,n}^k$ is the model estimate of the proportion of *j*-stock whales in the same year, period, sub-area and gender as the *n*th set of data with $N_{j,n}^k$ denoting the observed number of samples of *j*-stock whales in the *n*th set of data.

¹¹ In cases when the sample size used to generate the proportion estimates is small and the se's are small (which will overweight such results), the standard error is set to 0.05.

For sub-area 6W in Hypotheses B and E only:

$$L_{2} = 0.5 \sum_{n} \frac{1}{(\sigma_{n}^{k})^{2}} \left(p_{n}^{k} - \hat{p}_{n}^{k} \right)^{2}$$
(F.5b)

where \hat{p}_n^k is the model estimate of the proportion of whales in the same year, period and sub-area as the *n*th proportion estimate p_n^k .

Bycatch estimates

$$L_3 = 0.5 \sum_{n} \left(B_n^k - \hat{B}_n^k \right)^2 / 10$$
(F.6)

where \hat{B}_n^k is the model estimate of the total bycatch in sub-area k over the years being fitted and B_n^k is the observed bycatch in the same area and period.

G. Trials

The factors considered in the trials are listed in Table 8 and the set of trials in Table 9. The sensitivity trials are variants of the basecase trials A01-1 etc. (see section A).

Table 8

The factors to be considered in the	Implementation Simulation Trials
-------------------------------------	----------------------------------

Factor	
tock structure hypothesis	
Stock structure hypotheses A, B and E	
ISYR	
$1\%_{1+2}^{+}4\%_{mat}$	
(0)	
0.798; 1.00 (Trial 3)	
ther stock structure issues	
With a C-stock i.e. from a putative 'Central' North Pacific population (Trial 2)	
Alternative basis for mixing rates (Trial 5)	
10% J-stock in sub-area 12SW in June (Trial 10)	
30% J-stock in sub-area 12SW in June (Trial 11)	
No C-stock (i.e. from a putative 'Central' North Pacific population) in sub-area 12NE (Trial 23)	
10% J-stock in sub-area 12NE in May-July (Trial 21)	
atches and bycatches	
High direct catches + alternative Korean + Japanese bycatch level (Trial 4)	
More Korean catches in sub-area 5 (and fewer in 6W) (Trial 8)	
More Korean catches in sub-area 6W (and fewer in 5) (Trial 9)	
Chinese incidental catch = 0 (Trial 12) (Baseline value = $2*$ Korean bycatch in sub-area 5)	
Number of bycaught animals is proportional to square root of abundance (Trial 17)	
fixing and dispersion	
Mixing proportion in sub-areas 7CS and 7CN calculated using 2/60 weight for bycatch (Trial 6)	
Mixing proportion in sub-areas 7CS and 7CN calculated using 10/60 weight for bycatch (Trial 7)	
A substantially larger fraction of whales 1-4 from O-stock are found in sub-areas 2R, 3 and 4 year round (Trial 18)	
Set the proportion of O-stock animals of ages 1-4 in sub-areas 9 and 9N to zero (Trial 19)	
Time-varying mixing matrix for the bycatch (Trial 22) (requires specification)	
bundance estimates	
Alternative abundance estimates for sub-area 6E (Trial 13)	
Alternative abundance estimates for sub-area 10E in 2007 (Trial 14)	
Abundance estimate in sub-area 5 – 'maximum' (Trial 15)	
Abundance estimate in sub-area 6W = 'maximum' (Trial 16)	
The number of 1+ whales in 2009 in sub-area 2C in any month \leq 200 (Trial 20)	

H. Management options

Future direct catch options will be specified later.

Table 9

The list of trials (MSYR 1% is defined in terms of the total (1+) component and 4% on the mature female component of the population).

Stock hypothesis	Trial no.	MSYR	Mix matrix:	Description
А	A01-1 & A01-4	1%/4%	Baseline	Baseline A: 2 stocks (J- and O-); $g(0) = 0.798$; including Chinese bycatch
В	B01-1 & B01-4	1%/4%	Baseline	Baseline B: 3 stocks (J-, O,- and Y-); $g(0) = 0.798$; including Chinese bycatch
Е	E01-1 & E01-4	1%/4%	Baseline	Baseline E: 5 stocks (J-, P-, O-, and Y-); g(0) = 0.798; including Chinese bycatch
AE	A02-1 etc	1%/4%	Trial 2	With a C- ('Central' North Pacific) stock
ABE	A03-1 etc	1%/4%	Baseline	Assume $g(0) = 1$
ABE	A04-1 etc	1%/4%	Baseline	High direct catches + alternative Korean & Japanese bycatch levels
ABE	A05-1 etc	1%/4%	Trial 5	Alternative (70% probability) thresholds for assignment of stock proportions
ABE	A06-1 etc	1% / 4%	Baseline	No. of genetic samples assigned to stock in sub-areas 7CS and 7CN calculated using 2/60 weight for bycatch
ABE	A07-1 etc	1% / 4%	Baseline	No. of genetic samples assigned to stock in sub-areas 7CS and 7CN calculated using 10/60 weight for bycatch
ABE	A08-1 etc	1% / 4%	Baseline	More Korean catches in sub-area 5 (and fewer in sub-area 6W). Rationale: the baseline uses the best split. Trials 8 and 9 test alternatives in both directions.
ABE	A09-1 etc	1%/4%	Baseline	More Korean catches in sub-area 6W (and fewer in 5)
ABE	A10-1 etc	1%/4%	Baseline	10% J -stock in sub-area 12SW in June (base case value = 20%). See section $F(c)$.
ABE	A11-1 etc	1%/4%	Trial 11	30% J -stock in sub-area 12SW in June (base case value = $20%$) with 10% J-stock in 12NE in May-June. See section F(c).
ABE	A12-1 etc	1%/4%	Baseline	Chinese incidental catch = 0 (the base case value = twice that of Korea in sub-area 5)
ABE	A13-1 etc	1%/4%	Baseline	Alternative abundance estimates in sub-area 6E (see table 6)
ABE	A14-1 etc	1%/4%	Baseline	Additional abundance estimate in sub-area 10E in 2007 (see table 6)
ABE	A15-1 etc	1%/4%	Trial 15	Abundance estimate in sub-area $5 =$ 'maximum' value listed in Table 6b (= $5 *$ baseline value), with CV=0.1 *
ABE	A16-1 etc	1%/4%	Trial 16	Abundance estimate in sub-area $6W = `maximum' value listed in Table 6b (= 5 * baseline value), with a CV=0.1 $$
AE	A17-1 etc	1%/4%	Baseline	The number of bycaught animals is proportional to the square-root of abundance rather than to abundance (in order to examine the impact of possible saturation effects)
ABE	A18-1 etc	1% / 4%	Trial 18	A substantially larger fraction of whales ages 1-4 from O-stock are found in sub-areas 2R, 3 and 4 year-round (so the proportion of 1-4 whales in sub-area 9 is closer to expectations given the length-frequencies of catches from sub-area 9).
				The mixing matrices are adjusted such that the numbers of age 1-4 of O-stock animals in sub- areas 9 and 9N are no more than half the base case numbers; juveniles are allowed into sub- areas 2R, 3 and 4 in the corresponding months.
ABE	A19-1 etc	1% / 4%	Trial 19	Set the proportion of O animals of ages 1-4 in sub-areas 9 and 9N to zero and allow the abundance in sub-areas 7CS and 7CN to exceed the abundance estimates for these sub-areas. Projections for these sub-areas will need to account for the implied survey bias
ABE	A20-1 etc	1% / 4%	Trial 20	The number of 1+ whales in 2009 in sub-area 2C in any month < 200 (if large numbers of whales were found in 2C, the historical catch would be expected to be much greater).
ABE	A21-1 etc	1%/4%	Trial 21	10% J-stock in sub-area 12NE in May-July. See section F(c).
ABE	A22-1 etc	1%/4%	Trial 22	Time-varying mixing matrix for the bycatch [details to be specified]
Е	E23-1 & 4	1%/4%	Trial 23	With a putative C ('Central North' Pacific) stock, but no C animals in sub-area 12NE

I. Output statistics

Population-size and continuing catch statistics are produced for each stock, and catch-related statistics for each sub-area. Catch related statistics are produced both for the total catches (commercial and incidental) and for the commercial catches alone.

(1) Total catch (TC) distribution: (a) median; (b) 5th value; (c) 95th value.

- (2) Initial mature female population size (P₂₀₀₀) distribution: (a) median; (b) 5th value; (c) 95th value.
- (3) Final mature female population size ($P_{\rm f}$) distribution: (a) median; (b) 5th value; (c) 95th value.

(4) Lowest mature female population over 100 years (Plow) distribution: (a) median; (b) 5th value; (c) 95th value.

(5) Average catch over the last 10 years of the 100-year management period: (a) median; (b) 5th value; (c) 95th value.

(6) Catch by sub-area, stock and catch-type (incidental or commercial): (a) median; (b) 5th value; (c) 95th value.

(7) The median percentage of mature J-stock females being in sub-area 12 in June-August 1973-75.

(8) The median annual rate of decline in the number of whales assumed recruited to the Korean fishery over the period 1973-1986.

(9) The median 1+ population size for animals in sub-areas 6 and 10 in August-September in 1992 and in 2000 (corresponding to Sea of Japan surveys).

(10) Proportion Mature: compare the numbers of mature animals by sub-area and time period with the (approximate) proportion mature in the available observation data.

(11) The mean proportion of 'J' whales in the total (scientific, commercial and incidental) catch taken by Japan from 1993-98 is output in trials, for comparison with results obtained from market samples.

REFERENCES

- Allison, C. 2011. Direct catch data for western North Pacific minke whale simulation trials. Paper SC/D11/NPM3 presented to the First Intersessional Workshop for the *Implementation Review* of western North Pacific common minke whales, 12-16 December 2011, Tokyo, Japan (unpublished). [Paper available from the Office of this Journal].
- An, Y.R., Choi, C.D., Moon, D.Y. and Park, K.H. 2010. Summary of the information on Korean dedicated sighting surveys for abundance estimates of common minke whales. Paper SC/D10/NPM15 presented to the First Intersessional Workshop for Western North Pacific Common Minke Whales, 14-17 December 2010, Pusan, Republic of Korea (unpublished). 7pp. [Paper available from the Office of this Journal].
- An, Y.-R., Park, K.-Y., Choi, S.-G., Kim, H.-W. And Moon, D.-Y. 2011. Abundance estimation of western North Pacific minke whales using the Korean sighting survey in 2010. 4pp.
- Baker, C.S., Cooke, J.G., Lavery, S., Dalebout, M.L., Ma, Y.U., Funahashi, N., Carraher, C. and Brownell, J., R.L. 2007. Estimating the number of whales entering trade using DNA profiling and capture-recapture analysis of market produce. *Mol. Ecol.* 16(13): 2617-26.
- Butterworth D. and Miyashita T. 2014. Derivation of revised estimate for subarea 7 in 1991 and zero abundance estimates. Annex F. J. Cetacean Res. Manage. (Suppl.) 15:502-3.
- Hakamada, T. 2010. The number of set nets in the coast of Japan by sub-areas and years during 1979-2006. Paper SC/D10/NPM13 presented to the First Intersessional Workshop for Western North Pacific Common Minke Whales, 14-17 December 2010, Pusan, Republic of Korea (unpublished). 1pp. [Paper available from the Office of this Journal].
- Hakamada, T. and Kitakado, T. 2010. Abundance estimation for western North Pacific common minke whales using sighting information from JARPN and JARPN II. Paper SC/D10/NPM12rev 25pp. [Paper available from the Office of this Journal].
- Hakamada, T. and Matsuoka, K. 2016. The number of western North Pacific common minke, Bryde's and sei whales distributed in JARPN II Offshore survey area. Paper SC/F16/JR12. 13pp. [Paper available from the Office of this Journal].
- Hakamada, T., Matsuoka, K., Toshiya, K. and Miyashita, T. 2016. The number of the western North Pacific common minke whales (Balaenoptera acutorostrata) distributed in JARPN II coastal survey areas. Paper SC/F16/JR11. 7pp. [Paper available from the Office of this Journal]. Hakamada, T., Katsumata, T., Takahashi, M. and Matsuoka, K. 2019. Common minke whale abundance estimates based on dedicated sightings surveys
- Hakamada, T., Katsumata, T., Takahashi, M. and Matsuoka, K. 2019. Common minke whale abundance estimates based on dedicated sightings surveys during 2013-2018. Paper SC68a/ASI/14rev (unpublished). [Paper available from the Office of this Journal].
- International Whaling Commission. 1991. Report of the Sub-Committee on Management Procedures, Appendix 4. Report of the *ad-hoc* trials subgroup. *Rep. int. Whal. Commn* 41:108-12.
- International Whaling Commission. 1992a. Report of the Scientific Committee, Annex F. Report of the Sub-Committee on North Pacific Minke Whales. Rep. int. Whal. Commn 42:156-77.
- International Whaling Commission. 1992b. Report of the Scientific Committee, Annex K. Report of the Working Group on North Atlantic Minke Trials. Rep. int. Whal. Commn 42:246-51.
- International Whaling Commission. 1994. Report of the Scientific Committee, Annex D. Report of the Sub-Committee on Management Procedures, Appendix 2. Minimum Standards Trials. *Rep. int. Whal. Commn* 44:85-88.
- International Whaling Commission. 1999. Report of the Scientific Committee. Annex N. The Revised Management Procedure (RMP) for Baleen Whales. J. Cetacean Res. Manage. (Suppl.) 1:251-58.
- International Whaling Commission. 2004. Report of the Scientific Committee. Annex D. Report of the Sub-Committee on the Revised Management Procedure. J. Cetacean Res. Manage. (Suppl.) 6: 75-184.
- International Whaling Commission. 2012a. Report of the first RMP intersessional workshop for western North Pacific common minke whales. J. Cetacean Res. Manage. (Suppl.) 13:411-60.
- International Whaling Commission. 2012b. Report of the first RMP intersessional workshop for western North Pacific common minke whales. Annex G. NPM mixing matrices. J. Cetacean Res. Manage. (Suppl.) 13:445-48.
- International Whaling Commission. 2012c. Report of the Scientific Committee. Annex D1. Report of the Working Group on the *Implementation Review* for western North Pacific common minke whales. J. Cetacean Res. Manage. (Suppl.) 13:102-29.
- International Whaling Commission. 2014a. Report of the Scientific Committee. Annex D1. Report of the Working Group on the *Implementation Review* for western North Pacific common minke whales. J. Cetacean Res. Manage. (Suppl.) 15: 112-88.
- International Whaling Commission. 2014b. Report of the 'Second' Intersessional Workshop on the Implementation Review for western North Pacific Common Minke Whales, 19-23 March 2013, La Jolla, California, USA. J. Cetacean Res. Manage. (Suppl.) 15:489-506.
- International Whaling Commission. 2020. Report of the 'First' Intersessional Workshop on the Implementation Review for western North Pacific Common Minke Whales, 25 February-1 March 2019, Tokyo, Japan. J. Cetacean Res. Manage. (Suppl.) 21:373-445.
- Miyashita, T. 2010. Summary of the information on Japanese dedicated sighting surveys for abundance estimation. Paper SC/D10/NPM11 presented to the First Intersessional Workshop for Western North Pacific Common Minke Whales, 14-17 December 2010, Pusan, Republic of Korea (unpublished). 6pp. [Paper available from the Office of this Journal].
- Miyashita, T. and Okamura, H. 2011. Abundance estimates of common minke whales using the Japanese dedicated sighting survey data for RMP Implementation and CLA - Sea of Japan and Sea of Okhotsk. Paper SC/63/RMP11 presented to the IWC Scientific Committee, June 2011, Tromsø, Norway (unpublished). 34pp.
- Miyashita, T., Okamura, H. and Kitakado, T. 2009. Abundance of J-stock common minke whales in the Sea of Japan using the Japanese sighting data with g(0)=1. Paper SC/61/NPM7 presented to the IWC Scientific Committee, June 2009, Madeira, Portugal (unpublished). 10pp.
- Miyashita, T. and Shimada, H. 1994. Minke whale abundance in the Okhotsk Sea, the Sea of Japan and off the Pacific coast of Northern Japan estimated from sighting data. Paper SC/46/NP6 presented to the IWC Scientific Committee, May 1994 (unpublished). 9pp. [Paper available from the Office of this Journal].
- Miyashita, 2019. Abundance estimate of common minke whales in sub-areas 11, 10E and 7CN in 2014. Paper SC/68a/ASI 15. [Paper available from the Office of this Journal].
- Okamura, H., Miyashita, T. and Kitakado, T. 2010. g(0) estimates for western North Pacific common minke whales. Paper SC/62/NPM9 presented to the IWC Scientific Committee, June 2010, Agadir, Morocco (unpublished). 7pp. [Paper available from the Office of this Journal].
- Park, K.J., An, Y.R., Kim, H.W., Kim, D.N., Sohn, H.S. And An, D.H. 2012. Abundance estimation of common minke whales in the Yellow Sea using the Korean sighting data in 2011. 4pp. Paper SC/64/NPM7. [Paper available from the Office of this Journal].
- Punt, A.E. 1999. Report of the Scientific Committee. Annex R. A full description of the standard BALEEN II model and some variants thereof. J. Cetacean Res. Manage. (Suppl.) 1: 267-76.
- Tobayama, T., Yanagisawa, F. and Kasuya, T. 1992. Incidental take of minke whales in Japanese trap nets. Rep. int. Whal. Commn 42: 433-36.

Adjunct 1

The Historical Catch Series

C. Allison

Direct catches

The baseline trials use the 'best' estimates of the historical direct catch, which are summarised in Tables 1 and 2. Details of the sources and construction of the catch series are given in Allison (2011). The data are taken from the IWC individual catch database (Allison, 2013) where available.

An alternative 'high' catch series is used in Trial 4. Table 3 lists the 'high' catch numbers for the years and sub-areas where they differ from the 'best' catch series. The catches are identical to the 'best' series for all other areas and years. The Japanese coastal catch from 1930-1 and 1936-45 (in sub-areas 7CS, 7CN and 11) is estimated (Ohsumi 1982) and the values are doubled in the 'high' catch series. The catch series off Korea assumes a linear increase from 60 whales in 1946 to 249 in 1957 in the 'best' series whereas the 'high' series assumes an annual catch of 249 minke whales over this period.

The split between sub-areas 5 and 6W is unknown for most of the catches taken off Korea. The 'best' catch series includes 19,349 minke whales taken off Korea, of which 3,902 are recorded in the Yellow Sea and 4,199 in the Sea of Japan (East Sea) and Southern waters. The remaining 11,248 of unknown area are allocated between sub-areas 5 and 6W in the ratio of the catches known by area from 1940-79¹² (2,028:2,517). Trials 8 and 9 test the sensitivity to this assumption. In Trial 8 the number of whales allocated to sub-area 5 is reduced by 20% and reallocated to sub-area 6W. In Trial 9, 20% fewer animals are allocated to sub-area 6W and are reallocated to sub-area 5. The resulting catch series are given in Table 4.

Table 1.	
Summary of the final western North Pacific Minke Whale Direct Catch Series (1930-2011) by sub-area, se	x and month

	Males								Females										
Area	J-M	Apr	May	Jun	Jul	Aug	Sep	O-D	J-M	Apr	May	Jun	Jul	Aug	Sep	O-D	Total	М	F
1E	17	0	0	0	1	0	0	0	11	0	0	0	0	0	0	0	29	18	11
2C	3	2	2	3	2	0	1	0	2	2	0	0	1	0	0	0	18	13	5
2R	1	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	4	2	2
5	981	1,280	906	671	568	322	102	174	1,128	1,457	1,244	757	570	300	121	185	10,766	5,004	5,762
6W	181	383	1,325	1,167	392	202	557	1,063	178	364	1,300	1,136	376	189	545	1,009	10,367	5,270	5,097
6E	181	223	135	13	21	0	8	2	95	144	95	16	3	0	6	1	943	583	360
7CS	210	999	1,811	768	129	8	1	0	164	1,123	1,357	464	27	1	0	0	7,062	3,926	3,136
7CN	0	0	61	228	380	424	899	188	0	19	79	98	158	118	305	108	3,065	2,180	885
7W	0	1	49	33	3	1	7	0	0	0	9	3	3	0	0	0	109	94	15
7E	0	0	37	21	3	0	13	1	0	0	7	2	0	0	9	0	93	75	18
8	0	0	39	101	99	21	11	6	0	0	8	10	17	4	5	6	327	277	50
9	0	0	32	82	183	218	17	0	0	0	9	11	16	29	3	0	600	532	68
9N	0	0	1	2	5	8	0	1	0	0	0	6	0	11	0	0	34	17	17
10W	0	0	6	12	1	0	2	0	0	2	0	9	0	0	0	0	32	21	11
10E	2	25	42	119	83	26	5	3	0	1	28	60	26	9	7	0	436	305	131
11	0	62	248	498	560	226	143	29	2	465	872	882	607	271	113	25	5,003	1,766	3,237
12SW	0	0	0	1	11	9	1	0	0	0	1	5	16	27	5	0	76	22	54
12NE	0	0	0	0	36	9	10	0	0	0	0	3	33	14	6	0	111	55	56
13	0	0	0	0	0	2	0	0	0	0	0	0	1	3	0	0	6	2	4
Total	1,576	2,976	4,694	3,719	2,477	1,476	1,777	1,467	1,581	3,577	5,009	3,462	1,854	976	1,126	1,334	39,081	20,162	18,919

¹² The period 1940-79 is used in view of a comment by Gong (1982) that, in 1980, Government policy led to a shift to the western sector in order to direct the minke whale fishery away from areas where the (protected) fin whale might also be caught.

 Table 2.

 Summary of the 'Best' Direct Catch Series for western North Pacific Minke Whales by Year, sub-area and sex. Catches in 2012 were not
 available when the conditioning was performed and so are assumed to be equal to the catch in 2011.

Males:		av	allable	e when	the co	nditio	nıng w	as peri	ormed	and so) are a	issume	ed to b	be equ	al to th	le cate	h in 20	11.		
Wales.	1E	2C	2R	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13	Total
1930	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	1	0	0	0	8
1931	0	0	0	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0	8
1932	0	0	0	0	9	0	13	1	0	0	0	0	0	0	0	0	0	0	0	23
1933 1934	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 1	8 21	0 0	13 20	1 1	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	0 0	22 43
1934	0	0	0	9	9	0	20	1	0	0	0	0	0	0	0	1	0	0	0	40
1936	0	0	Õ	12	14	0	15	0	Ő	0	Õ	Ő	Ő	0	0	0	0	0	Õ	41
1937	0	0	0	13	17	0	37	0	0	0	0	0	0	0	0	1	0	0	0	68
1938	0	0	0	15	20	0	44	0	0	0	0	0	0	0	0	1	0	0	0	80
1939 1940	0	$\begin{array}{c} 0\\ 0\end{array}$	0	18	24 33	0	44	1	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	2	0 0	0 0	0	0 0	0	$\begin{array}{c} 0\\ 0\end{array}$	89
1940	0 0	0	$\begin{array}{c} 0\\ 0\end{array}$	15 40	33 40	0 0	52 37	0 1	0	0	0	0	0 2	0	0	1 0	0	0 0	0	101 120
1942	0	0	0	53	67	0	44	0	0	0	0	0	1	0	0	1	0	0	0	166
1943	0	0	0	42	51	0	67	1	0	0	0	0	0	0	0	0	0	0	0	161
1944	0	0	0	38	47	0	52	0	0	0	0	0	0	0	0	1	0	0	0	138
1945	0	0	0	3	2	0	44	0	0	0	0	0	0	0	0	0	0	0	0	49
1946 1947	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	11 19	21 21	14 27	51 57	4 7	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	1 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	4 8	0 0	0 0	0 0	106 139
1947	0	3	0	22	26	56	57	1	0	0	1	0	0	0	0	26	0	0	0	192
1949	Ő	0	Ő	25	31	20	61	0	Ő	Ő	1	Ő	2	Ő	5	6	0	2	Ő	153
1950	0	3	0	29	37	15	63	41	0	0	2	0	1	0	13	18	0	0	0	222
1951	1	1	0	31	40	62	87	9	0	3	0	0	0	0	5	14	0	0	0	253
1952	0	1	0	36	45	142	92	1	0	0	0	0	1	0	9	20	0	0	0	347
1953 1954	0 0	0 0	0 1	42 43	50 54	90 35	75 24	1 26	0 0	0 0	3 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	38 32	35 59	1	0 0	0 0	335 275
1954	0	0	0	49	60	20	108	11	0	0	2	0	0	0	20	43	1	1	0	315
1956	0	0	0	54	62	16	140	25	0	1	3	0	0	0	47	69	0	0	0	417
1957	17	1	0	59	70	2	111	14	2	0	1	0	0	0	31	33	1	0	0	342
1958	0	0	0	67	65	0	126	13	0	0	1	0	0	0	0	86	0	0	0	358
1959 1960	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	78 72	71 59	0 0	69 64	7 6	0 0	0 1	0 1	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	47 41	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	272 244
1960	0	0	0	39	28	0	81	9	0	0	0	0	0	0	0	41 56	0	0	0	244 213
1962	0	0	0	55	52	0	46	7	0	0	0	0	Ő	Ő	0	48	0	0	0	208
1963	0	0	0	122	52	0	49	6	0	0	0	0	0	0	0	40	0	0	0	269
1964	0	0	0	139	95	6	85	6	0	0	0	0	0	0	0	39	0	0	0	370
1965	0	1	0	83	101	11	51	3	0	0	0	0	0	0	0	62	0	0	0	312
1966 1967	0 0	2 0	$\begin{array}{c} 0\\ 0\end{array}$	76 109	87 73	0 2	81 50	8 6	1 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 2	71 55	0 0	0 0	0 0	326 297
1967	0	0	0	98	75	8	58	4	1	0	0	0	0	2	$\frac{2}{0}$	22	0	0	0	268
1969	0	0	0	118	95	10	27	2	0	0	0	0	3	0	7	43	0	0	0	305
1970	0	0	0	186	188	5	101	5	1	0	0	2	4	0	8	38	0	0	2	540
1971	0	0	0	200	189	3	84	6	0	0	0	0	0	0	8	54	1	0	0	545
1972 1973	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	252 215	286 244	0 0	35 83	17 26	0 0	0 2	0 14	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 15	78 95	0 2	0 28	0 0	668 724
1974	0	0	0	213	271	0	63	34	0	9	0	0	0	1	5	44	4	20	0	666
1975	0	0	0	196	293	9	35	63	0	3	0	0	0	18	2	62	11	1	0	693
1976	0	0	0	353	174	0	35	27	0	0	0	0	0	0	10	89	0	0	0	688
1977	0	0	0	234	304	0	32	71	0	0	0	0	0	0	0	58	0	0	0	699 700
1978 1979	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	181 164	354 379	0 0	93 95	133 150	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 8	19 17	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	780 813
1980	0	0	0	447	147	0	88	72	0	0	0	0	0	0	10	40	0	0	0	804
1981	Ő	1	Ő	188	192	0	148	39	1	Ő	Ő	Ő	0	Ő	13	28	0	0	Ő	610
1982	0	0	0	229	210	2	105	56	1	0	0	0	0	0	9	5	0	0	0	617
1983	0	0	0	100	142	3	66	68	0	0	0	0	0	0	6	4	0	0	0	389
1984 1985	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 1	87 23	105 29	0 5	64 39	88 123	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 2	46 30	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	390 252
1985	0	0	0	25 1	31	20	59 69	89	0	0	0	0	0	0	0	50 19	0	0	0	232
1987	Ő	Ő	Ő	0	0	0	80	86	0	Ő	Ő	Ő	0	Ő	0	16	0	0	Ő	182
1988	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1991 1992	0 0	0 0	0 0	0 0	0 0	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	0 0	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	Ő	Ő	Ő	Ő	ů 0	Ő	Ő	ů	ů	Ő	Ő	18	Ő	Ő	0	Ő	0	0	Ő	18
1995	0	0	0	0	0	0	0	0	0	0	0	91	0	0	0	0	0	0	0	91
1996	0	0	0	0	0	0	0	28	0	0	16	0	0	0	0	19	0	0	0	63
1997 1998	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	0 0	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	1 22	1 26	30 41	55 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	0 0	0 0	0 0	0 0	87 89
1998	0	0	0	0	0	0	2	39	22	26 0	41 0	0	0	0	0	28	0	0	0	89 71
2000	0	0	0	0	0	0	4	15	0	0	0	16	0	0	0	0	0	0	0	35
2001	0	0	0	0	Ő	0	11	10	19	7	20	26	0	0	0	0	0	0	0	93
2002	0	0	0	0	0	0	0	79	1	0	8	31	0	0	0	0	0	0	0	119
2003	0	0	0	0	0	0	32	0	4	7	35	37	0	0	0	0	0	0	0	115

_	11	20	20	5			700	701	711/10	75	0	0	01	10117	100	11	120W	1011	10	T (1
2004	1E	2C	2R	5	6W	6E	7CS	7CN 62	7WR	7E	8	9 75	9N	10W	10E	11	12SW	12NE	13	Total 138
2004	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0	0 0	0 0	0 28	67	0 2	0 0	7	52	0 0	0 0	0 0	0 0	0 0	1 0	0 0	156
2005	0	0	0	0	0	0	41	33	11	1	36	23	0	0	0	0	0	0	0	145
2007	0	0	Õ	0	Õ	Õ	50	67	3	0	15	5	0	0	0	0	Õ	Õ	Õ	140
2008	0	0	0	0	0	0	23	33	0	0	5	48	0	0	0	0	0	0	0	109
2009	0	0	0	0	0	0	29	41	8	3	13	6	0	0	0	0	0	0	0	100
2010	0	0	0	0	0	0	17	40	0	0	0	12	0	0	0	0	0	0	0	69
2011	0	0	0	0	0	0	17	64	0	0	0	1	0	0	0	0	0	0	0	82
2012	0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0	0	0 0	47 17	61 41	4 0	$\begin{array}{c} 0\\ 0\end{array}$	3 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	115
2013 2014	0 0	0	0	0	0	0	16	35	0	0	0	3 0	0	0	0	0	0	0	0	61 51
2014	0	0	0	0	0	0	10	35	0	0	0	0	0	0	0	0	0	0	0	45
2016	Ő	Ő	Ő	Ő	ů 0	Ő	7	8	Ő	Ő	Ő	0	Ő	Ő	Ő	Ő	Ő	Ő	Ő	15
2017	0	0	0	0	0	0	3	22	6	10	4	17	0	0	0	9	0	0	0	71
2018	0	0	0	0	0	0	28	22	4	1	15	14	0	0	0	16	0	0	0	100
Total	18	13	2	5,004	5,270	583	3,926	2,180	94	75	277	532	17	21	305	1,766	22	55	2	20,162
Females:																				
	1E	2C	2R	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13	Total
1930	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	1	0	0	0	5
1931	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	2	0	0	0	6
1932	0	0	0	5	4	0	7	0	0	0	0	0	0	0	0	1	0	0	0	17
1933	0	0	0	5	4	0	7	1	0	0	0	0	0	1	0	1	0	0	0	19
1934	0	0	0	9	10 14	0	10	0	0	0	0	0	0	1	0	1	0	0	0	31
1935 1936	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 0	8 12	14 13	0 0	10 7	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	0 0	1 2	0 0	0 0	0 0	33 34
1930	0	0	0	12	13	0	18	1	0	0	0	0	0	0	0	2 1	0	0	0	54 52
1938	0	0	0	18	20	0	22	0	0	0	0	0	0	0	0	1	0	0	0	61
1939	0	Ő	0	19	23	0	22	0	0	0	Ő	Ő	1	Ő	Ő	2	Ő	Ő	1	68
1940	Ő	0	Õ	13	34	Õ	25	Õ	Ő	Õ	Ő	0	0	0	Ő	1	Ő	Õ	0	73
1941	0	0	0	64	38	0	18	0	0	0	0	0	0	0	0	2	0	0	0	122
1942	0	0	0	54	66	0	22	0	0	0	0	0	2	0	0	1	0	0	0	145
1943	0	0	0	39	51	0	32	0	0	0	0	0	0	0	0	2	0	0	0	124
1944	0	0	0	38	45	0	25	0	0	0	0	0	0	0	0	1	0	0	0	109
1945	0	0	0	2	3	0	22	1	0	0	0	0	0	0	0	2	0	0	0	30
1946	0	0	0	10	18	10	24	1	0	0	0	0	1	0	0	13	0	0	0	77
1947	0	0	0	18	19	21	27	3	0	0	0	0	0	0	0	23	0	0	0	111
1948	0	0	0	21	25	38	31	0	0	0	0	0	0	0	0	53	0	0	0	168
1949	0	0	0	25	31	30	32	0	0	0	2	0	0	0	4	27	0	1	0	152
1950	0	1	1	29	34	9	25	19	0	0	0	0	0	0	0	32	0	1	0	151
1951 1952	0 0	0 0	0 1	33 37	42 45	39 43	42 78	2 2	0	2 0	1 0	0 0	2 1	0 0	2 0	70 97	0 1	1 0	0 0	236 305
1952	0	0	0	39	43	43	56	2	0	0	3	0	0	0	5	57	1	0	0	259
1955	0	1	0	45	55	27	22	15	0	0	3	0	1	0	4	124	0	0	0	297
1955	0	0	0	58	59	15	80	4	0	0	3	0	0	0	7	119	0	2	0	347
1956	ŏ	Ŏ	Ő	62	66	23	97	7	ŏ	Ő	1	ŏ	1	Ő	13	108	ŏ	4	Ő	382
1957	11	1	0	79	68	0	81	12	2	0	3	0	0	0	13	96	1	0	0	367
1958	0	0	0	101	63	0	128	8	0	0	1	0	0	0	0	153	0	0	0	454
1959	0	0	0	126	73	0	70	4	0	0	0	0	0	0	0	83	0	1	0	357
1960	0	0	0	141	57	0	65	4	0	1	1	0	0	0	0	73	0	0	0	342
1961	0	0	0	82	30	0	83	5	0	0	1	0	0	0	0	98	0	0	0	299
1962	0	0	0	117	52	0	47	5	0	0	0	0	0	0	0	85	0	1	0	307
1963	0	0	0	168	52	0	50	4	0	0	0	0	0	0	0	71	0	0	0	345
1964 1965	0	0	0 0	186	97 102	6 9	86 99	4	0 0	0 0	0 0	0 0	0 0	0 0	0 0	69 94	0	0 0	0 0	448 418
1965	$\begin{array}{c} 0\\ 0\end{array}$	1 1	0	110 105	88	2	100	3 15	0	0	0	0	0	0	0	94 84	0 0	0	0	418 395
1900	0	0	0	105	73	8	65	13	0	0	0	0	0	0	3	87	0	0	0	393
1967	0	0	0	124	73	3	81	3	0	0	0	0	0	7	5	56	0	0	0	352
1969	0	0	Ő	156	96	10	32	1	0	0	0	0	8	Ó	5	97	0	0	0	405
1970	0	Ő	Ő	216	188	2	87	5	1	Ő	ů	0	Ő	Ő	4	70	0	Ő	2	575
1971	Ő	0	Õ	250	190	2	67	4	0	0	Õ	0	0	0	9	52	0	0	0	574
1972	0	0	0	292	286	0	75	22	0	0	0	0	0	0	1	113	0	0	0	789
1973	0	0	0	239	244	2	90	15	0	2	7	0	0	0	6	116	11	27	0	759
1974	0	0	0	267	272	0	51	19	0	3	0	0	0	0	3	79	17	18	0	729
1975	0	0	0	229	288	2	46	22	0	4	0	0	0	2	4	58	23	0	0	678
1976	0	0	0	445	174	0	46	29	0	0	0	0	0	0	11	113	0	0	1	819
1977	0	0	0	269	303	0	28	14	0	0	0	0	0	0	2	43	0	0	0	659
1978	0	0	0	207	356	0	85	22	0	0	0	0	0	0	0	48	0	0	0	718
1979	0	0	0	130	264	0	38	28	0	0	0	0	0	0	7	64	0	0	0	531
1980 1981	0	0	0 0	272 188	109 192	0	70	12	0	$\begin{array}{c} 0\\ 0\end{array}$	0 0	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	5 2	82 63	0	0 0	0	550 524
1981	0 0	0 0	0	236	219	0 2	68 58	11 28	0 0	0	0	0	0	0	2 6	63 56	0 0	0	0 0	524 605
1982	0	0	0	230 98	138	2 4	58 69	28 30	0	0	0	0	0	0	5	56 42	0	0	0	386
1983	0	0	0	98 87	138	4	38	55	0	0	0	0	0	0	0	42 76	0	0	0	370
1985	0	0	0	26	35	4	20	41	0	0	0	0	0	0	5	66	0	0	0	197
1985	0	0	0	20	15	2	35	43	2	0	0	0	0	0	0	54	0	0	0	151
1987	0	Ő	Ő	0	0	0	43	30	0	Ő	ů	0	Ő	Ő	Ő	49	0	Ő	Ő	122
1988	0	Ő	Ő	0	Ő	Ő	0	0	Ő	Ő	Ő	0	Ő	Ő	Ő	0	0	Ő	Ő	0

	1	E	2C	2R	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13	Total
198	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199	90	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199	92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
199	94	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3
199		0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	9
199		0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	11	0	0	0	14
199		0	0	0	0	0	0	0	0	0	0	1	12	0	0	0	0	0	0	0	13
199		0	0	0	0	0	0	0	0	3	4	4	0	0	0	0	0	0	0	0	11
199		0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	22	0	0	0	29
200		0	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	5
200		0	0	0	0	0	0	0	0	3	0	1	3	0	0	0	0	0	0	0	7
200		0	0	0	0	0	0	0	31	0	0	0	2	0	0	0	0	0	0	0	33
200		0	0	0	0	0	0	30	0	1	0	3	2	0	0	0	0	0	0	0	36
200		0	0	0	0	0	0	0	14	0	0	0	8	0	0	0	0	0	0	0	22
200		0	0	0	0	0	0	37	19	0	0	7	3	0	0	0	0	0	0	0	66
200		0	0	0	0	0	0	35	12	1	1	2	1	0	0	0	0	0	0	0	52
200		0	0	0	0	0	0	46	21	0	0	0	1	0	0	0	0	0	0	0	68
200		0	0	0	0	0	0	38	18	0	0	0	6	0	0	0	0	0	0	0	62
200		0	0	0	0	0	0	35	24	0	0	5	1	0	0	0	0	0	0	0	65
201		0	0	0	0	0	0	28	20	0	0	0	2	0	0	0	0	0	0	0	50
201		0	0	0	0	0	0	6	37	0	0	0	1	0	0	0	0	0	0	0	44
201		0	0	0	0	0	0	38	30	l	0	0	0	0	0	0	0	0	0	0	69
201		0	0	0	0	0	0	17	17	0	0	0	0	0	0	0	0	0	0	0	34
201		0	0	0	0	0	0	14	16	0	0	0	0	0	0	0	0	0	0	0	30
201		0	0	0	0	0	0	9	16	0	0	0	0	0	0	0	0	0	0	0	25
201		0	0	0	0	0	0	9	13	0	0	0	0	0	0	0	0	0	0	0	22
201		0	0	0	0	0	0	0	13	0	1	0	6	0	0	0	38	0	0	0	58
201		0	0	0	0	0	0	23	8	0	0	1	8	0	0	0	31	0	0	0	71
Tot	al 1	11	5	2	5,762	5,097	360	3,136	885	15	18	50	68	17	11	131	3,237	54	56	4	18,919

Table 3

The High Catch Series.

The table shows the catches for the years and sub-areas where they differ from the 'best' catch series (1930-1, 1936-45 in sub-areas 7CS, 7CN and 11; 1947-56 in sub-areas 5 and 6W). Numbers from the 'best' catch series are shown for comparison. The 'high' catch series is identical to the 'best' series for all other areas and years.

Series:	Best	Best	High	High	Best	Best	High	High	Best	Best	High	High
Sub-area:	7CS	7CS	7CS	7CS	7CN	7CN	7CN	7CN	11	11	11	11
	Male	Fem										
1930	7	4	14	8	0	0	0	0	1	1	2	2
1931	7	4	14	8	1	0	2	0	0	2	0	4
1932	13	7	13	7	1	0	1	0	0	1	0	1
1933	13	7	13	7	1	1	1	1	0	1	0	1
1934	20	10	20	10	1	0	1	0	0	1	0	1
1935	20	10	20	10	1	0	1	0	1	1	1	1
1936	15	7	30	14	0	0	0	0	0	2	0	4
1937	37	18	74	36	0	1	0	2	1	1	2	2
1938	44	22	88	44	0	0	0	0	1	1	2	2
1939	44	22	88	44	1	0	2	0	0	2	0	4
1940	52	25	104	50	0	0	0	0	1	1	2	2
1941	37	18	74	36	1	0	2	0	0	2	0	4
1942	44	22	88	44	0	0	0	0	1	1	2	2
1943	67	32	134	64	1	0	2	0	0	2	0	4
1944	52	25	104	50	0	0	0	0	1	1	2	2
1945	44	22	44	22	0	1	0	2	0	2	0	4

Series:	Best	Best	High	High	Best	Best	High	High
Sub-area:	5	5	5	5	6W	6W	6W	6W
	Male	Fem	Male	Fem	Male	Fem	Male	Fem
1946	11	10	11	10	21	18	21	18
1947	19	18	55	56	21	19	70	68
1948	22	21	55	56	26	25	70	68
1949	25	25	55	56	31	31	70	68
1950	29	29	55	56	37	34	70	68
1951	31	33	55	56	40	42	70	68
1952	36	37	55	56	45	45	70	68
1953	42	39	55	56	50	49	70	68
1954	43	45	55	56	54	55	70	68
1955	49	58	56	66	60	59	70	68
1956	54	62	57	66	62	66	70	68
1957	59	79	59	79	70	68	70	68

Table 4

		Tri	al 8			Tri	al 9	
Sub-area:	5	5	6W	6W	5	5	6W	6W
	Male	Fem	Male	Fem	Male	Fem	Male	Fem
1932	0	5	9	4	0	5	9	4
1933	0	5	8	4	0	5	8	4
1934	1	9	21	10	1	9	21	10
1935	9	12	9	10	7	7	12	14
1936	14	15	13	9	9	10	15	17
1937	17	16	14	15	12	9	21	20
1938	19	22	16	16	14	13	24	22
1939	23	23	20	18	15	15	27	27
1940 1941	21 48	21 72	27 31	26 31	12 38	11 62	37 41	35 41
1941	48 66	66	53	55	43	43	41 77	41 77
1942	51	51	40	41	43 31	43 33	59	60
1943	48	48	37	35	31	31	53	53
1945	3	48	2	33	3	2	2	3
1946	14	15	15	16	10	8	22	20
1940	24	21	16	16	15	15	23	20
1948	27	26	20	21	18	18	28	30
1949	30	32	25	25	18	22	36	36
1950	34	38	28	29	23	24	42	40
1951	40	40	33	33	26	26	47	47
1952	46	46	37	34	29	30	51	53
1953	50	51	40	39	31	33	58	58
1954	55	54	43	45	35	35	64	63
1955	62	69	46	49	39	48	70	69
1956	67	74	52	51	42	53	75	74
1957	73	92	56	55	49	66	79	82
1958	80	114	51	51	53	89	77	77
1959	93	141	57	57	63	110	86	89
1960	84	152	46	47	63	131	68	67
1961	44	87	24	24	35	77	33	34
1962	65	128	43	40	49	110	58	59
1963	131	179	43	41	104	149	71	70
1964	159	205	77	76	118	162 97	119	118
1965 1966	102 95	131 121	82 70	81 70	68 64	97	116 100	115 101
1966	125	121	70 59	70 57	91	120	93	90
1967	123	133	60	59	82	120	93 91	90 90
1969	137	176	75	77	98 98	138	114	115
1970	223	253	151	151	152	183	221	222
1971	239	286	151	151	165	214	225	225
1972	308	348	229	231	230	267	311	308
1973	251	275	208	208	197	220	262	263
1974	251	302	235	235	188	241	297	297
1975	253	287	235	231	159	196	327	324
1976	389	479	139	139	292	384	235	235
1977	294	331	242	243	192	226	346	346
1978	253	276	283	286	152	175	384	387
1979	164	130	379	264	164	130	379	264
1980	447	272	147	109	447	272	147	109
1981	188	188	192	192	188	188	192	192
1982	236	247	202	209	222	229	217	226
1983	100	98	142	138	100	98	142	138
1984	87	87	105	114	87	87	105	114
1985	23	26	29	35	23	26	29	35
1986	1	0	31	15	1	0	31	15

The Catch Series for Trials 8 and 9 used to test the sensitivity to the allocation of catches off Korea between sub-areas 5 and 6W. Catches in the other sub-areas are the same as for the 'Best' catch series.

Bycatches

Recent by-catches (also referred to as incidental catches) are listed in Tables 5 and 6. The numbers of nets are listed in Table 7. The numbers of bycatches are only used in the trials if the number of nets is also known. Thus, for Japan, the catches from 2007-9 are not used and are shown greyed out in the table.

The bycatch in sub-area 6W by Japan is small (9 whales) (and there are no corresponding set net numbers) so the numbers are added to the bycatches for sub-area 6E. The bycatch by Korea in sub-area 1W is very small (2 whales in total) and there are no corresponding set net numbers so the numbers are added to the bycatches for sub-area 5. Similarly, the numbers in sub-areas 6E (3 whales) are added to the bycatches for sub-area 6W.

A single series of historical bycatches is used for all of the trials when applying the RMP (i.e. for calculating catch limits), irrespective of the true values of the bycatches, which differ both among trials and simulations within trials. The estimate of the bycatches used by the CLA is set to the averages of the predicted bycatches based on the fit to the actual data of the operating model for the six baseline trials (i.e. using the 'best fit' simulation (0)). This series will be generated once conditioning is complete.

	Irc	m sub-area	a ow are i	ncluded wit	in those in	oe (see lex	.().	
Year	1E	2C	6E	7CN	7CS	10E	11	Total
2001	1	10	25	3	8	4	3	54
2002	7	19	45	13	17	3	5	109
2003	5	17	61	15	18		8	124
2004	4	19	66	9	14		3	115
2005	4	33	55	10	17	3	6	128
2006	3	28	76	16	21		3	147
2007	7	42	69	11	20		6	155
2008	9	23	68	11	17	2	3	133
2009	3	17	69	3	25		1	118
2010	3	18	74	8	17		4	124
2011	6	28	65	9	8		1	117
2012	5	25	56	9	15		4	114
2013	5	20	54	9	15	2		105
2014	3	21	74	16	23	1	2	140
2015	5	28	84	12	26		1	156
2016	7	34	86	17	22	3		169

 Table 5

 Recent by-catches by Japan (some are updates to those listed in progress reports). It is known that the numbers are incomplete for 2001. Bycatches from sub-area 6W are included with those in 6E (see text).

-)	-)				
	5	6W	1W	Posn.Unk	Total
1996	0	128	0	0	128
1997	0	81	0	0	81
1998	0	47	0	0	47
1999	0	59	0	0	59
2000	14	81	0	0	95
2001	12	150	0	0	162
2002	8	81	0	0	89
2003	10	80	2	0	92
2004	13	56	0	0	69
2005	7	100	0	0	107
2006	11	69	0	2	82
2007	13	66	0	1	80
2008	12	67	0	2	81
2009	12	72	0	3	87
2010	8	67	0	1	76
2011	16	74	0	1	91
2012	9	70	0	0	79
2013	11	46	0	0	57
2014	10	44	0	0	54
2015	7	88	1	1	97
2016	10	89	0	0	99
2017	13	59	0	0	72
2018	8	74	0	0	82

23

 Table 6

 Recent bycatches by Korea. The numbers are taken from the individual records.

			T	1 1			Tumbe	rs of net	3.	T	1 /			IZ.		
	1E	2C	Japan 6E	large-scal	e trap net 7CN	s 10E	11	Total	7CS	Japan sa 7CN	lmon trap 10E		Total	K0 5	rean net 6W	s Total
1946	24	67	103	7CS 41	7CN 7	<u>10E</u> 9	2	252	3	57	24	11 44	129	3.5	10	10ta1 0
1940	24 26	73	103	41	7	10	2	232	3	62	24 26	44	129	3.5 7	10	13
1948	20 29	79	122	48	8	11	2	298	3	68	29	52	152	10.5	29	26
1949	31	85	131	52	8	12	2	320	4	73	31	56	164	14	39	40
1950	33	91	141	55	9	12	2	343	4	78	33	60	175	17.5	48	53
1951	35	97	150	59	10	13	2	366	4	83	35	64	187	21	58	66
1952	37	103	159	63	10	14	2	389	4	88	37	68	199	24.5	68	79
1953	40	109	169	66 70	11	15	3	412	5	94	40	73	210	28	77	92
1954 1955	42 44	115 121	178 187	70 74	11 12	16 17	3 3	435 458	5 5	99 104	42 44	77 81	222 234	31.5 35	87 97	105 119
1955	44	121	197	74	12	17	3	438	5	104	44	85	234	38.5	106	132
1950	48	133	206	81	13	18	3	503	6	114	48	89	257	42	116	145
1958	51	139	216	85	14	19	3	526	6	120	51	93	269	45.5	126	158
1959	53	145	225	88	14	20	3	549	6	125	53	97	280	49	135	171
1960	55	151	234	92	15	21	4	572	6	130	55	101	292	52.5	145	184
1961	57	157	244	96	16	22	4	595	7	135	57	105	304	56	155	198
1962	59	164	253	100	16	22	4	618	7	140	59	109	316	59.5	164	211
1963 1964	62 64	170 176	262 272	103 107	17 17	23 24	4 4	641 664	7 7	146 151	62 64	113 117	327 339	63 66.5	174 184	224 237
1964	66	182	272	111	18	24	4	687	8	151	66	121	359	70	193	250
1965	68	182	291	111	19	26	4	709	8	161	68	121	362	73.5	203	263
1967	70	194	300	118	19	27	5	732	8	166	70	129	374	77	213	277
1968	73	200	309	122	20	27	5	755	8	172	73	133	386	80.5	222	290
1969	75	206	319	125	20	28	5	778	9	177	75	137	397	84	232	303
1970	77	212	328	129	21	29	5	801	9	182	77	141	409	87.5	242	316
1971	80	209	324	127	21	29	5	795	9	190	81	148	428	91	251	329
1972 1973	83	206 203	321	124	21 20	29 28	5 5	789 781	9 10	199 207	84 88	154	447 465	94.5 98	261	342
1973	86 89	203	317 314	122 119	20	28 28	5	781	10	207	88 91	161 167	465	101.5	271 280	356 369
1974	92	197	314	117	20	28	5	769	10	210	95	174	503	101.5	280	382
1976	82	197	320	119	20	33	4	775	11	249	104	196	559	108.5	300	395
1977	72	197	330	122	20	39	3	783	11	274	113	217	615	112	309	408
1978	61	197	339	124	20	44	1	786	12	299	122	239	671	115.5	319	421
1979	45	201	355	120	29	24	11	785	12	324	131	260	727	119	329	435
1980	48	204	365	128	28	23	11	807	0	334	125	263	722	122.5	338	448
1981	50	201	367	131	26	20	9	804	0	327	141	281	749	126	348	461
1982 1983	48 53	198 195	381 384	129 130	26 36	21 30	10 14	813 842	0 0	332 330	134 126	277 278	743 734	129.5 133	358 367	474 487
1985	50	189	387	130	48	41	14	873	0	320	120	278	734	136.5	377	500
1985	46	189	412	139	42	35	16	879	0	348	151	256	762	140	387	514
1986	49	196	408	134	49	42	19	897	0	349	154	255	758	143.5	396	527
1987	47	194	405	137	48	41	19	891	0	357	158	251	766	147	406	540
1988	46	187	400	130	39	33	15	850	0	362	165	252	779	150.5	416	553
1989	55	181	391	139	34	29	13	842	0	369	287	230	886	154	425	566
1990	55	178	404	133	35	29	13	847	0	363	293	226	882	157.5	435	579
1991 1992	60 55	174 166	401 392	132 132	28 26	23 22	11 10	829 803	0 0	373 369	290 287	229 231	892 887	161 164.5	445 454	593 606
1992	61	179	392 397	132	20	21	10	803	0	369	287	231	895	164.5	464	619
1994	54	175	378	128	28	22	10	795	0	350	401	217	968	159	447	632
1995	55	175	372	116	26	20	9	773	0	349	400	216	965	149	443	606
1996	56	171	371	129	26	20	9	782	0	335	390	217	942	144	438	592
1997	53	168	368	130	24	19	9	771	0	335	372	210	917	142	433	582
1998	55	164	370	130	26	19	9	773	0	331	372	211	914	138	427	575
1999 2000	54 54	166	363	128 128	28 27	21 21	10	770 765	0	322 322	386 381	209 209	917 912	129	426	565 555
2000	54 56	165 149	360 354	128	27	21	10 10	765 747	0 0	322 327	368	209	912 914	128 135	425 417	555 553
2001	51	149	363	128	32	26	10	774	0	316	367	209	892	133	422	552
2002	48	163	360	136	31	25	11	774	0	315	353	207	875	133	421	556
2004	50	159	348	135	26	21	10	749	0	312	354	211	877	132	421	554
2005	52	158	326	131	25	20	9	721	0	313	356	209	878	131	420	553
2006	45	154	310	130	26	21	10	696	0	324	353	209	886	141	414	551
2007	39	132	298	112	7	4	2	594						126	414	555
2008	39	124	301	115	21	16	7	623						125	411	540
2009	41	127	303	118	21	15	41	666						125	411	536
2010 2011	39 39	127 126	306 302	113 91	20 20	14 14	39 39	658 631						125 121	411 405	536 526
2011 2012	39 38	126	302 305	91 93	20 20	14 14	39 38	631						121	405 399	526 520
2012	37	123	300	90	20	14	37	615						115	398	513
2013	35	117	293	95	19	14	35	608						115	393	508
2015	35	112	293	98	19	14	35	606						117	385	502
2016	35	112	261	95	19	14	35	571						115	381	496
2017		1025 70						0 : 10						114	380	494

Table 7 Numbers of nets.

Sources: Japan 1935-70. Set using linear interpolation, assuming 0 in 1935. Japan 1970-79. Set using linear interpolation between the numbers for 1970 and 1975 from Tobayama *et al.* (1992).

Japan 1979-2016. Goto, pers. comm. Feb. 2019 Korea 1946-1996. Set using linear interpolation, assuming 0 in 1946. Korea 1996-2017. No. of set net licences

Missing data: where the numbers of nets between 2007-2017 are unknown, the numbers from the last known year are used.

References

Allison, C. 2011. Direct catch data for western North Pacific minke whale simulation trials. Paper SC/D11/NPM3 presented to the First Intersessional Workshop for the *Implementation Review* of western North Pacific common minke whales, 12-16 December 2011, Tokyo, Japan (unpublished). [Paper available from the Office of this Journal].

Allison, C. 2013. IWC individual catch database Version 5.5 (12 February 2013).

Gong, Y. 1982. A note on the distribution of minke whales in Korean waters. Rep int. Whal. Commn 32:279-82. SC/33/Mi7.

Hakamada, T. 2010. The number of set nets in the coast of Japan by sub-areas and years during 1979-2006. Paper SC/D10/NPM13 presented to the First Intersessional Workshop for Western North Pacific Common Minke Whales, 14-17 December 2010, Pusan, Republic of Korea (unpublished). 1pp. [Paper available from the Office of this Journal].

Tobayama, T., Yanagisawa, F., and Kasuya, T. 1992. Incidental Take of Minke Whales in Japanese Trap Nets. Rep. Int. Whal. Commn 42:433-436.

Ohsumi, S. 1982 Minke whales in the coastal waters of Japan, 1980 and a population assessment of the Okhotsk Sea-West Pacific stock. *Rep. Int. Whal. Commn* 32, 1982, pp283-6. SC/33/Mi8.

Adjunct 2

Using the Genetic Stock Assignment by Sub-Area to Inform the Mixing Matrices of the North Pacific Minke Whale *Implementation Simulation Trials*

CL de Moor, C Allison, AE Punt

This adjunct details the stock assignment by sub-area and sex used to develop the data used to estimate mixing matrices for the North Pacific minke whale *Implementation Simulation Trials*. The baseline mixing matrices for Hypothesis E were newly developed for these *Implementation Simulation Trials*, largely informed by the genetic assignment tables below. The baseline mixing matrices for Hypotheses A and B were only changed from those used during the 2013 *Implementation Simulation Trials* where the genetic assignment tables below strongly supported such changes.

Baseline Trials, Hypotheses A and B

For the baseline trials, the stock assignment for Hypotheses A and B is based on the "stock90" assignment by STRUCTURE in *Data_NPM_190226_v3.csv*. The number of samples assigned to stock by sub-area is as follows. Table 7a of specifications details the assigned numbers by stock, sub-area, period and sex used to condition the trials.

Males	10E	11	1E	2C	6E	7CN	7CS	7E	7WR	8	9
J-stock	8	28	29	107	453	158	135	0	0	0	1
O-stock	1	29	1	26	1	580	281	41	74	207	442
Unassigned	2	7	2	10	41	80	61	3	6	22	44
Females											
J-stock	6	28	42	188	471	112	151	0	1	0	0
O-stock	0	30	0	24	3	263	286	4	8	17	49
Unassigned	1	7	2	17	33	23	49	1	0	6	5

Grey highlight: stock has been assigned to a sub-area, but is not modelled in that sub-area in the mixing matrices

- The singleton assignment of a J-stock female to sub-area 7WR is ignored for the baseline trials, but in Trial 5 J-stock animals are assumed to be found in both sub-areas 7E and 7WR.
 - The singleton assignment of an O-stock male to sub-area 1E is ignored for modelling purposes
- The singleton assignment of a J-stock male to sub-area 9 in 1E is small compared to the total sample size, and is therefore ignored for the baseline, but in Trial 5 J-stock animals are assumed to be found in sub-areas 8 and 9
- The assignment of O-stock animals to sub-area 6E are very small compared to the total sample size, and O-stock animals are therefore not modelled to be found in sub-area 6E.
- Pink highlight: females of a stock have not been assigned to a sub-area, but are modelled in that sub-area in the mixing matrices
 - The sample sizes in sub-area 10E are low and one cannot therefore discount the presence of O-stock females in sub-area 10E.

Hypothesis A Baseline

Age/	Mon										Sub -	Area											
Sex	-	$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	2	2	2				2	2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ7				
	Apr	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$						γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	May	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$						γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	Jun	2	2	2				2	2	4γ ₂₉	2γ ₃	$2\gamma_4$						γ_6	γ7	2γ9	2γ9		
	Jul	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉	$2\gamma_9$		
	Aug	2	2	2				2	2	4γ ₂₉	2γ ₃	2γ5						γ_6	γ7	2γ9	2γ9		
	Sep	2	2	2				2	2	4γ ₂₉	2γ ₃	2γ5						γ6	γ7	2γ9	2γ9		
	O-D	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉			
Ad.M	J-M	2	2	1				2	4	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ7				
	Apr	0	0	1				2	2	2γ ₂₉	$4\gamma_1$	$2\gamma_4$						γ6	$2\gamma_7$	γ_8	γ_8		
	May	0	0	1				2	2	$2\gamma_{29}$	$4\gamma_2$	$2\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$		
	Jun	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ9	2γ ₉		
	Jul	0	0	1				2	2	2γ ₂₉	2γ ₃	4γ5						γ6	γ7	γ9	2γ9		
	Aug	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ ₆	γ7	γ9	2γ ₉		
	Sep	2	2	1				2	4	4γ ₂₉	2γ ₃	$4\gamma_5$						γ6	γ7				
	O-D	4	4	1				2	2		$2\gamma_3$	$2\gamma_5$											
Ad.F	J-M	2	2	1				2	4	4γ ₂₉	γ_1	γ_4						γ_6	γ7				
	Apr	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_1$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{10}	γ_{10}		
	May	0	0	1				2	2	2γ ₂₉	$2\gamma_2$	γ4						$2\gamma_6$	$2\gamma_7$	γ ₁₁	$2\gamma_{11}$		
	Jun	0	0	1				2	2	$2\gamma_{29}$	γ3	γ_4						$2\gamma_6$	$2\gamma_7$	γ ₁₂	$2\gamma_{12}$		
	Jul	0	0	1				2	2	2γ ₂₉	γ3	γ5						γ6	γ7	γ ₁₂	$2\gamma_{12}$		
	Aug	0	0	1				2	2	2γ ₂₉	γ3	γ5						γ ₆	γ7	γ ₁₂	$2\gamma_{12}$		
	Sep	2	2	1				2	4	4γ ₂₉	γ3	γ5						γ ₆	γ7				
	O-D	4	4	1				2	2		γ3	γ5						•	•				

J-Stock Baseline A (Matrix J-A)

Hypothesis A Baseline (contd.)

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M			γ13	4	4	4				4	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ ₁₄	2	2	2				8	2γ ₁₆	γ_{17}	γ_{18}	γ ₁₉	γ_{20}	0		2γ ₃₀	γ22	γ ₂₃	γ24	0
	May			γ_{14}	2	2	2				8	$2\gamma_{16}$	γ17	γ_{18}	γ19	γ20	γ_{21}		$2\gamma_{30}$	Υ ₂₂	γ ₂₃	γ ₂₄	0
	Jun			γ_{14}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ20	γ_{21}		$4\gamma_{30}$	γ ₂₂	γ ₂₃	γ ₂₄	0
	Jul			γ15	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ ₂₁		4γ ₃₀	γ22	γ23	γ ₂₄	0
	Aug			γ15	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ ₂₂	γ ₂₃	γ_{24}	0
	Sep			γ_{15}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	γ_{21}		4γ ₃₀	γ22	γ ₂₃	γ_{24}	0
	O-D			γ15	4	4	4				4	$2\gamma_{16}$	0	0	0	0	0		2γ ₃₀	0	0	0	0
Ad.M	J-M			γ13	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ_{14}	2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0		2γ ₃₀	γ22	γ ₂₃	$3\gamma_{24}$	0
	May			0	0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		2γ ₃₀	γ22	γ23	6γ ₂₄	0
	Jun			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ ₂₂	γ ₂₃	6γ ₂₄	0
	Jul			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		4γ ₃₀	γ22	γ23	6γ ₂₄	0
	Aug			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ ₂₂	γ_{23}	6γ ₂₄	0
	Sep			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ_{21}		$4\gamma_{30}$	γ ₂₂	γ ₂₃	$3\gamma_{24}$	0
	O-D			γ15	4	4	4				1	γ16	0	0	0	0	0		γ ₃₀	0	0	0	0
Ad.F	J-M			γ13	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ_{14}	2	2	2				1	γ16	$2\gamma_{17}$	$2\gamma_{18}$	2γ19	$2\gamma_{20}$	0		γ30	γ22	γ23	$3\gamma_{24}$	0
	May			0	0	0	0				1	γ16	γ17	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		γ 30	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Jun			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Jul			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		2γ ₃₀	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Aug			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Sep			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$2\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	0
	O-D			γ15	4	4	4				1	γ16	0	0	0	0	0		γ 30	0	0	0	0

O-Stock Baseline A (Matrix O-AB) Blue indicates changes since 2013 ISTs.

Hypothesis B Baseline

Y-Stock Baseline B (Matrix Y-BE)

Age/	Mon										Sub -	Area											
Sex	-	1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	4						4	γ25														
	Apr	1						4	γ26														
	May	1						4	γ26														
	Jun	1						4	γ26														
	Jul	1						4	γ27														
	Aug	1						4	γ27														
	Sep	2						4	γ28														
	O-D	4						4	γ28														
AdM		4						4	γ25														
	Apr	1						4	γ26														
	May	1						4	γ26														
	Jun	1						4	γ26														
	Jul	1						4	γ27														
	Aug	1						4	γ27														
	Sep	2						4	γ28														
	O-D	4						4	γ28														
AdF	J-M	4						4	γ25														
	Apr	1						4	γ26														
	May	1						4	γ26														
	Jun	1						4	γ26														
	Jul	1						4	γ27														
	Aug	1						4	γ27														
	Sep	2						4	γ28														
	O-D	4						4	γ28														

Hypothesis B Baseline (contd.)

											G 1												
Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M		2	2					2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$						γ_6	γ_7				
	Apr		2	2					2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ_7	$2\gamma_8$	$2\gamma_8$		
	May		2	2					2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$						γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	Jun		2	2					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_4$						γ_6	γ_7	2γ9	$2\gamma_9$		
	Jul		2	2					2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ_6	γ7	2γ9	2γ9		
	Aug		2	2					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ_6	γ7	$2\gamma_9$	$2\gamma_9$		
	Sep		2	2					2	4γ ₂₉	2γ ₃	2γ5						γ6	γ7	2γ9	2γ ₉		
	O-D		2	2					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉			
Ad.M	J-M		2	1					4	4γ ₂₉	$2\gamma_1$	2γ ₄						γ6	γ7				
	Apr		0	1					2	2γ ₂₉	$4\gamma_1$	2γ4						γ6	$2\gamma_7$	γ_8	γ_8		
	May		0	1					2	2γ ₂₉	4γ ₂	2γ4						$2\gamma_6$	2γ7	γ8	$2\gamma_8$		
	Jun		0	1					2	2γ ₂₉	$2\gamma_3$	$4\gamma_4$						$2\gamma_6$	2γ ₇	γ9	2γ ₉		
	Jul		0	1					2	2γ ₂₉	2γ3	4γ5						γ6	γ7	γ9	2γ ₉		
	Aug		0	1					2	2γ ₂₉	$2\gamma_3$	4γ ₅						γ ₆	γ7	γ9	2γ9		
	Sep		2	1					4	4γ ₂₉	$2\gamma_3$	4γ5						γ6	γ7	•			
	O-D		4	1					2	12/	2γ3	2γ5						10	• *				
Ad.F	J-M		2	1					4	4γ ₂₉	γ1	γ4						γ_6	γ7				
	Apr		0	1					2	2γ ₂₉	$2\gamma_1$	γ4						$2\gamma_6$	2γ7	γ 10	γ_{10}		
	May		0	1					2	$2\gamma_{29}$	$2\gamma_2$	γ ₄						$2\gamma_6$	2γ ₇	γ11 γ11	$2\gamma_{11}$		
	Jun		0	1					2	$2\gamma_{29}$	-12 γ3	γ ₄						$2\gamma_6$	$2\gamma_7$	γ ₁₂	$2\gamma_{12}$		
	Jul		0	1					2	$2\gamma_{29}$	γ ₃	γ ₅						-76 γ6	-17 γ7	γ ₁₂	$2\gamma_{12}$		
	Aug		0	1					2	$2\gamma_{29}$	γ ₃	γ ₅						γ ₆	γ ₇	γ ₁₂ γ ₁₂	$2\gamma_{12}$ $2\gamma_{12}$		
	Sep		2	1					4	$4\gamma_{29}$										112	-112		
	O-D		4	1					2	-729	γ ₃	γ ₅						γ6	γ7				
	ע-ט		4	1					7		γ3	γ5											

J-Stock Baseline B (Matrix J-BE)

O-Stock Baseline A (Matrix O-AB) Blue indicates changes since 2013 ISTs.

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M			γ_{13}	4	4	4				4	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ_{14}	2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	0		2γ ₃₀	γ22	γ ₂₃	γ_{24}	0
	May			γ_{14}	2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$2\gamma_{30}$	γ22	γ ₂₃	γ_{24}	0
	Jun			γ_{14}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ22	γ23	γ_{24}	0
	Jul			γ_{15}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ ₂₂	γ ₂₃	γ_{24}	0
	Aug			γ_{15}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ ₂₀	γ_{21}		$4\gamma_{30}$	γ22	γ ₂₃	γ_{24}	0
	Sep			γ_{15}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ22	γ ₂₃	γ_{24}	0
	O-D			γ15	4	4	4				4	$2\gamma_{16}$	0	0	0	0	0		$2\gamma_{30}$	0	0	0	0
Ad.M	J-M			γ_{13}	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ_{14}	2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0		2γ ₃₀	γ22	γ ₂₃	$3\gamma_{24}$	0
	May			0	0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$2\gamma_{30}$	γ ₂₂	γ ₂₃	6γ ₂₄	0
	Jun			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ22	γ23	6γ ₂₄	0
	Jul			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ22	γ23	6γ ₂₄	0
	Aug			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ22	γ ₂₃	6γ ₂₄	0
	Sep			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ ₂₁		$4\gamma_{30}$	γ22	γ23	$3\gamma_{24}$	0
	O-D			γ15	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
Ad.F	J-M			γ_{13}	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	0
	Apr			γ_{14}	2	2	2				1	γ_{16}	$2\gamma_{17}$	$2\gamma_{18}$	2γ19	$2\gamma_{20}$	0		γ30	γ22	γ23	$3\gamma_{24}$	0
	May			0	0	0	0				1	γ_{16}	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$		γ ₃₀	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Jun			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	9γ24	0
	Jul			0	0	0	0				1	$2\gamma_{16}$	γ17	γ_{18}	γ19	γ ₂₀	$4\gamma_{21}$		2γ ₃₀	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Aug			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Sep			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$2\gamma_{21}$		2γ ₃₀	$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	0
	O-D			γ15	4	4	4				1	γ16	0	0	0	0	0		γ30	0	0	0	0

Baseline Trials, Hypothesis E

For the baseline trials, stock assignment for Hypothesis E is based on the "geneland.stock2" assignment by GENELAND in *Data_NPM_190226_v3.csv*. The number of samples assigned to stock by sub-area is as follows. Table 7a of specifications details the assigned numbers by stock, sub-area, period and sex used to condition the trials.

Males	10E	11	1E	2C	6E	7CN	7CS	7E	7WR	8	9
J-stock	8	13	31	88	492	20	0	0	0	0	0
P-stock	0	39	0	10	0	384	217	0	0	0	0
O-stock	0	1	0	0	0	280	83	41	70	207	464
Unassigned	0	6	0	19	0	55	105	0	0	0	0
Females											
J-stock	7	18	44	156	500	17	0	0	0	0	0
P-stock	0	24	0	10	0	216	296	0	0	0	0
O-stock	0	4	0	0	0	54	18	5	7	22	49
Unassigned	0	17	0	26	0	75	118	0	0	0	0

Pink highlight: animals of a stock have not been assigned to a sub-area, but are modelled in that sub-area in the mixing matrices - It is assumed the J-stock occurs distributed in sub-area 7CS given they have been assigned to sub-areas 7CN and 2C to the

Hypothesis E Baseline

east of Japan as well as sub-areas 6E and 10E to the west of Japan.

	Y-Sto	CK Da	asem	ne E (wiat	rix i	-DL))															
Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	4						4	γ25														
	Apr	1						4	γ26														
	May	1						4	γ26														
	Jun	1						4	γ26														
	Jul	1						4	γ27														
	Aug	1						4	γ27														
	Sep							4	γ28														
	O-D							4	γ28														
AdM	J-M	4						4	γ25														
	Apr							4	γ26														
	May	1						4	γ26														
		1						4	γ26														
	Jul	1						4	γ27														
	Aug							4	γ27														
	Sep							4	γ28														
	O-D							4	γ28														
AdF	J-M	4						4	γ25														
		1						4	γ26														
	May	1						4	γ26														
		1						4	γ26														
	Jul	1						4	γ27														
	Aug							4	γ27														
	Sep							4	γ28														
	O-D	4						4	γ28														

Y-Stock Baseline E (Matrix Y-BE)

Hypothesis	Е	Baseline	(contd.)
------------	---	----------	----------

	J-Stocl	k Bas	selin	e E (I	Matr	ix J-	BE)																
Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M		2	2					2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ_7				
	Apr		2	2					2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ7	$2\gamma_8$	$2\gamma_8$		
	May		2	2					2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$						γ ₆	γ ₇	$2\gamma_8$	$2\gamma_8$		
	Jun		2	2					2	4γ ₂₉	$2\gamma_3$	$2\gamma_4$						γ6	γ_7	$2\gamma_9$	$2\gamma_9$		
	Jul		2	2					2	4γ ₂₉	2γ ₃	2γ5						γ6	γ7	2γ9	2γ9		
	Aug		2	2					2	$4\gamma_{29}$	2γ ₃	$2\gamma_5$						γ ₆	γ ₇	2γ ₉	$2\gamma_9$		
	Sep		2	2					2	4γ ₂₉	2γ ₃	2γ5						γ6	γ7	2γ9	2γ9		
	O-D		2	2					2	$4\gamma_{29}$	2γ ₃	$2\gamma_5$						γ ₆	γ ₇	2γ ₉			
Ad.M	J-M		2	1					4	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ_7				
	Apr		0	1					2	2γ29	$4\gamma_1$	$2\gamma_4$						γ6	$2\gamma_7$	γ_8	γ_8		
	May		0	1					2	2γ ₂₉	4γ ₂	2γ4						2γ ₆	2γ7	γ8	$2\gamma_8$		
	Jun		0	1					2	2γ ₂₉		$4\gamma_4$						$2\gamma_6$	$2\dot{\gamma}_7$	γ9	2γ9		
	Jul		0	1					2	2γ29	2γ ₃	4γ5						γ6	γ7	γ9	$2\gamma_9$		
	Aug		0	1					2	$2\gamma_{29}$	2γ ₃	4γ ₅						γ6	γ ₇	γ9	2γ ₉		
	Sep		2	1					4	$4\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ ₆	γ ₇				
	O-D		4	1					2		2γ ₃	2γ5											
Ad.F	J-M		2	1					4	4γ ₂₉	γ1	γ4						γ6	γ_7				
	Apr		0	1					2	$2\gamma_{29}$	$2\gamma_1$	γ4						$2\gamma_6$	$2\gamma_7$	γ_{10}	γ ₁₀		
	Ŵау		0	1					2	2γ ₂₉	$2\gamma_2$	γ4						$2\gamma_6$	$2\gamma_7$	γ11	2γ11		
	Jun		0	1					2	$2\gamma_{29}$	γ ₃	γ4						$2\gamma_6$	$2\gamma_7$	γ ₁₂	$2\gamma_{12}$		
	Jul		0	1					2	2γ ₂₉	γ3	γ5						γ6	γ7	γ ₁₂	$2\gamma_{12}$		
	Aug		0	1					2	$2\gamma_{29}$	γ3	γ5						γ ₆	γ ₇	γ ₁₂	$2\gamma_{12}$		
	Sep		2	1					4	$4\gamma_{29}$	γ3	γ5						γ ₆	γ ₇				
	O-D		4	1					2		γ3	γ5							-				

P-Stock Baseline E (Matrix P-E)

Age/	Mon										Sub -	Area											
Sex		1 W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M			γ13							4	γ16								0			
	Apr			γ_{14}							8	$2\gamma_{16}$								γ_{22}			
	May			γ_{14}							8	$2\gamma_{16}$								γ_{22}			
	Jun			γ_{14}							4	$4\gamma_{16}$								γ22			
	Jul			γ15							4	$4\gamma_{16}$								γ_{22}			
	Aug			γ_{15}							4	$4\gamma_{16}$								γ22			
	Sep			γ15							4	$4\gamma_{16}$								γ22			
	O-D			γ15							4	$2\gamma_{16}$								0			
Ad.M	J-M			γ13							1	γ16								0			
	Apr			γ_{14}							2	$2\gamma_{16}$								γ22			
	May			0							2	$2\gamma_{16}$								γ_{22}			
	Jun			0							2	$4\gamma_{16}$								γ22			
	Jul			0							2	$4\gamma_{16}$								γ_{22}			
	Aug			0							2	$4\gamma_{16}$								γ_{22}			
	Sep			0							2	$4\gamma_{16}$								γ22			
	O-D			γ15							1	γ16								0			
Ad.F	J-M			γ_{13}							1	γ16								0			
	Apr			γ_{14}							1	γ16								γ22			
	May			0							1	γ16								$2\gamma_{22}$			
	Jun			0							1	$2\gamma_{16}$								$2\gamma_{22}$			
	Jul			0							1	$2\gamma_{16}$								$2\gamma_{22}$			
	Aug			0							1	$2\gamma_{16}$								$2\gamma_{22}$			
	Sep			0							1	$2\gamma_{16}$								$2\gamma_{22}$			
	O-D			γ_{15}							1	γ16								0			

Hypothesis E Baseline (contd.)

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M				4	4	4				4	γ_{16}	0	0	0	0	0			0	0	0	0
	Apr				2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	0			γ22	γ ₂₃	γ24	0
	May				2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ20	γ_{21}			γ_{22}	γ_{23}	γ_{24}	0
	Jun				2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ22	γ23	γ24	0
	Jul				2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ20	γ_{21}			γ_{22}	γ ₂₃	γ ₂₄	0
	Aug				2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ20	γ_{21}			γ_{22}	γ ₂₃	γ ₂₄	0
	Sep				2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ_{22}	γ ₂₃	γ_{24}	0
	O-D				4	4	4				4	$2\gamma_{16}$	0	0	0	0	0			0	0	0	0
Ad.M	J-M				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	0
	Apr				2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0			γ22	γ ₂₃	$3\gamma_{24}$	0
	May				0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ_{22}	γ ₂₃	6γ ₂₄	0
	Jun				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ22	γ23	6γ24	0
	Jul				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ_{22}	γ ₂₃	6γ ₂₄	0
	Aug				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ_{22}	γ ₂₃	6γ ₂₄	0
	Sep				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ_{21}			γ22	γ23	$3\gamma_{24}$	0
	O-D				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	0
Ad.F	J-M				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	0
	Apr				2	2	2				1	γ16	$2\gamma_{17}$	$2\gamma_{18}$	2γ19	$2\gamma_{20}$	0			γ_{22}	γ ₂₃	$3\gamma_{24}$	0
	May				0	0	0				1	γ_{16}	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Jun				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ ₂₀	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	9γ24	0
	Jul				0	0	0				1	$2\gamma_{16}$	γ ₁₇	γ_{18}	γ19	γ ₂₀	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	0
	Aug				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	9γ ₂₄	0
	Sep				0	0	0				1	$2\gamma_{16}$	γ17	γ_{18}	γ19	γ20	$2\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	0
	O-D				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	0

O-Stock Baseline E (Matrix O-E)

Trial 5

For Trial 5, stock assignment for Hypotheses A and B are based on "stock70" assignment by STRUCTURE in *Data_NPM_190226_v3.csv*. The number of samples assigned to stock by sub-area is as follows. Table 7a of specifications details the assigned numbers by stock, sub-area, period and sex used to condition the trials.

Males	10E	11	1E	2C	6E	7CN	7CS	7E	7WR	8	9
J-stock	9	30	30	114	482	171	151	0	2	2	5
O-stock	1	35	1	27	3	625	308	44	76	223	470
Unassigned	1	0	1	2	10	22	18	0	2	4	12
Females											
J-stock	6	30	43	200	495	118	161	0	1	0	0
O-stock	0	33	0	27	5	273	314	5	8	20	52
Unassigned	1	2	1	2	7	7	11	0	0	3	2

Pink highlight: animals of a stock have not been sampled in a sub-area, but are allowed in that sub-area in the mixing matrices Green highlight: indicates sub-areas that differ in presence/absence in Trial 5 from the baseline trials.

- The distribution of J-stock whales is assumed to extend further in Trial 5 compared to the baseline, and are thus assumed to be found in sub-areas 7WR, 8 and 9 and by default therefore also in sub-area 7E.

Grey highlight: stock has been assigned to a sub-area, but is not modelled in that sub-area in the mixing matrices

- No further extension in the distribution of O-stock whales from that assumed in the baseline is assumed in Trial 5 (e.g. into sub-areas 1E or 6E) due to the small assignments of O-stock whales for sub-areas 1E and 6E compared to the number of J-stock whales assigned to these sub-areas.

For Trial 5, stock assignment for Hypothesis E is based on "geneland.stock4" assignment by GENELAND in *Data_NPM_190226_v3.csv*. The number of samples assigned to stock by sub-area is as follows. Table 7a of specifications details the assigned numbers by stock, sub-area, period and sex used to condition the trials.

Males	10E	11	1E	2C	6E	7CN	7CS	7E	7WR	8	9
J-stock	8	14	31	96	492	21	4	0	0	0	0
P-stock	0	40	0	11	0	390	240	0	0	0	0
O-stock	0	1	0	0	0	308	91	42	77	217	478
Unassigned	0	8	0	20	0	55	111	0	0	0	0
Females											
J-stock	7	18	44	164	501	20	2	0	0	0	0
P-stock	0	24	0	11	0	219	312	0	0	0	0
O-stock	0	4	0	1	0	62	20	5	9	23	52
Unassigned	0	18	0	26	0	77	124	0	0	0	0

Trial 5

O-Stock: as for Baseline (Matrix O-AB, O-E)

J-Stock Trial 5 (Matrix J-A5) Differences from the Baseline trial are highlighted in blue

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	2	2	2				2	2	4γ ₂₉	$2\gamma_1$	2γ4	γ ₃₁	γ35	γ32	γ33		γ6	γ7				
	Apr	2	2	2				2	2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$	γ ₃₁	γ35	γ ₃₂	γ33		γ6	γ7	$2\gamma_8$	$2\gamma_8$		
	May	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$	γ ₃₁	γ35	γ ₃₂	γ ₃₃		γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	Jun	2	2	2				2	2	4γ ₂₉	2γ ₃	$2\gamma_4$	γ ₃₁	γ35	γ ₃₂	γ33		γ6	γ_7	2γ9	2γ9		
	Jul	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$	γ_{31}	γ35	γ ₃₂	γ ₃₃		γ_6	γ_7	2γ9	$2\gamma_9$		
	Aug	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$	γ_{31}	γ35	γ ₃₂	γ ₃₃		γ_6	γ_7	2γ9	$2\gamma_9$		
	Sep	2	2	2				2	2	4γ ₂₉	2γ ₃	$2\gamma_5$	γ ₃₁	γ35	γ ₃₂	γ33		γ6	γ_7	2γ9	2γ9		
	O-D	2	2	2				2	2	4γ ₂₉	2γ ₃	$2\gamma_5$	γ_{31}	γ35	γ ₃₂	γ ₃₃		γ_6	γ_7	2γ9			
Ad.M	J-M	2	2	1				2	4	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$	γ_{31}	γ35	γ ₃₂	γ ₃₃		γ_6	γ_7				
	Apr	0	0	1				2	2	2γ ₂₉	$4\gamma_1$	$2\gamma_4$	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	2γ ₃₃		γ6	$2\gamma_7$	γ_8	γ_8		
	May	0	0	1				2	2	$2\gamma_{29}$	$4\gamma_2$	$2\gamma_4$	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	$2\gamma_{33}$		$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$		
	Jun	0	0	1				2	2	2γ ₂₉	$2\gamma_3$	$4\gamma_4$	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	2γ ₃₃		$2\gamma_6$	$2\gamma_7$	γ9	$2\gamma_9$		
	Jul	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$	γ ₃₁	γ35	γ_{32}	γ ₃₃		γ_6	γ_7	γ9	2γ9		
	Aug	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$	γ ₃₁	γ35	γ_{32}	γ ₃₃		γ_6	γ_7	γ9	2γ ₉		
	Sep	2	2	1				2	4	$4\gamma_{29}$	2γ ₃	4γ5	γ ₃₁	γ35	γ32	γ33		γ_6	γ_7				
	O-D	4	4	1				2	2		$2\gamma_3$	$2\gamma_5$	γ_{31}	γ35	γ ₃₂	γ ₃₃							
Ad.F	J-M	2	2	1				2	4	$4\gamma_{29}$	γ_1	γ_4	γ ₃₁	γ35	γ_{32}	γ ₃₃		γ_6	γ_7				
	Apr	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_1$	γ_4	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	$2\gamma_{33}$		$2\gamma_6$	$2\gamma_7$	γ_{10}	γ_{10}		
	May	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_2$	γ_4	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	2γ ₃₃		$2\gamma_6$	$2\gamma_7$	γ_{11}	$2\gamma_{11}$		
	Jun	0	0	1				2	2	$2\gamma_{29}$	γ3	γ_4	$2\gamma_{31}$	$2\gamma_{35}$	$2\gamma_{32}$	$2\gamma_{33}$		$2\gamma_6$	$2\gamma_7$	γ_{12}	$2\gamma_{12}$		
	Jul	0	0	1				2	2	$2\gamma_{29}$	γ3	γ5	γ ₃₁	γ35	γ32	γ33		γ_6	γ_7	γ_{12}	$2\gamma_{12}$		
	Aug	0	0	1				2	2	$2\gamma_{29}$	γ ₃	γ5	γ_{31}	γ35	γ_{32}	γ ₃₃		γ_6	γ_7	γ_{12}	$2\gamma_{12}$		
	Sep	2	2	1				2	4	$4\gamma_{29}$	γ ₃	γ5	γ_{31}	γ35	γ_{32}	γ ₃₃		γ_6	γ_7				
	O-D	4	4	1				2	2		γ3	γ5	γ_{31}	γ35	γ ₃₂	γ ₃₃							

J-Stock Trial 5 (Matrix J-BE5) Differences from the Baseline trial are highlighted in blue

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M		2	2					2	4γ ₂₉	$2\gamma_1$	2γ4	γ ₃₁	γ ₃₁	γ ₃₂	γ33		γ6	γ_7				
	Apr		2	2					2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$	γ ₃₁	γ ₃₁	γ ₃₂	γ ₃₃		γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	May		2	2					2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$	γ ₃₁	γ ₃₁	γ ₃₂	γ ₃₃		γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	Jun		2	2					2	4γ ₂₉	2γ3	$2\gamma_4$	γ ₃₁	γ31	γ32	γ33		γ6	γ_7	2γ9	2γ9		
	Jul		2	2					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$	γ_{31}	γ_{31}	γ_{32}	γ ₃₃		γ6	γ_7	2γ9	$2\gamma_9$		
	Aug		2	2					2	$4\gamma_{29}$	2γ3	2γ5	γ ₃₁	γ31	γ32	γ33		γ6	γ_7	2γ9	2γ9		
	Sep		2	2					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$	γ_{31}	γ_{31}	γ_{32}	γ_{33}		γ_6	γ_7	2γ9	2γ ₉		
	O-D		2	2					2	4γ ₂₉	2γ ₃	$2\gamma_5$	γ ₃₁	γ ₃₁	γ ₃₂	γ ₃₃		γ_6	γ_7	2γ ₉			
Ad.M			2	1					4	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$	γ ₃₁	γ31	γ32	γ33		γ6	γ_7				
	Apr		0	1					2	$2\gamma_{29}$	$4\gamma_1$	$2\gamma_4$	$2\gamma_{31}$	$2\gamma_{31}$	$2\gamma_{32}$	$2\gamma_{33}$		γ_6	$2\gamma_7$	γ_8	γ_8		
	May		0	1					2	$2\gamma_{29}$	$4\gamma_2$	$2\gamma_4$	$2\gamma_{31}$	$2\gamma_{31}$	$2\gamma_{32}$	$2\gamma_{33}$		$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$		
	Jun		0	1					2	$2\gamma_{29}$	2γ ₃	$4\gamma_4$	2γ ₃₁	$2\gamma_{31}$	$2\gamma_{32}$	2γ ₃₃		$2\gamma_6$	$2\gamma_7$	γ9	2γ ₉		
	Jul		0	1					2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$	γ_{31}	γ_{31}	γ_{32}	γ_{33}		γ_6	γ_7	γ9	2γ9		
	Aug		0	1					2	2γ29	2γ3	4γ5	γ ₃₁	γ31	γ32	γ33		γ6	γ_7	γ9	2γ ₉		
	Sep		2	1					4	4γ ₂₉	2γ3	4γ5	γ ₃₁	γ31	γ32	γ33		γ6	γ_7				
	O-D		4	1					2		2γ ₃	2γ ₅	γ ₃₁	γ ₃₁	γ ₃₂	γ ₃₃							
Ad.F	J-M		2	1					4	4γ ₂₉	γ_1	γ_4	γ31	γ31	γ32	γ33		γ_6	γ_7				
	Apr		0	1					2	2γ29	$2\gamma_1$	γ4	2γ ₃₁	$2\gamma_{31}$	$2\gamma_{32}$	2γ ₃₃		$2\gamma_6$	$2\gamma_7$	γ_{10}	γ_{10}		
	May		0	1					2	$2\gamma_{29}$	$2\gamma_2$	γ_4	$2\gamma_{31}$	$2\gamma_{31}$	$2\gamma_{32}$	$2\gamma_{33}$		$2\gamma_6$	$2\gamma_7$	γ_{11}	$2\gamma_{11}$		
	Jun		0	1					2	2γ29	γ3	γ4	2γ ₃₁	$2\gamma_{31}$	$2\gamma_{32}$	2γ ₃₃		$2\gamma_6$	$2\gamma_7$	γ_{12}	$2\gamma_{12}$		
	Jul		0	1					2	$2\gamma_{29}$	γ3	γ5	γ_{31}	γ ₃₁	γ ₃₂	γ ₃₃		γ_6	γ_7	γ_{12}	$2\gamma_{12}$		
	Aug		0	1					2	$2\gamma_{29}$	γ3	γ5	γ_{31}	γ_{31}	γ_{32}	γ ₃₃		γ6	γ_7	γ_{12}	$2\gamma_{12}$		
	Sep		2	1					4	$4\gamma_{29}$	γ3	γ5	γ31	γ31	γ32	γ33		γ6	γ_7				
	O-D		4	1					2		γ3	γ5	γ ₃₁	γ_{31}	γ ₃₂	γ ₃₃							

Trial 2 (with a 'C' stock): Hypothesis A

J-Stock and O-Stock:	As for Baseline A (Matrix J-A and O-AB)
C-Stock Trial A2 (Ma	trix C-A2)

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M															0	0						1
	Apr															0	0						1
	May															0	0						1
	Jun															0	0						1
	Jul															0	0						1
	Aug															0	0						1
	Sep															0	0						1
	O-D															0	0						1
Ad.M																0	0						1
	Apr															(33	0						6
	May															(33	γ_{31}						5
	Jun															(33	γ ₃₁						4
	Jul															(33	γ ₃₁						4
	Aug															(33	γ ₃₁						4
	Sep															(33	γ ₃₁						3
	O-D															0	0						1
Ad.F	J-M															0	0						1
	Apr														2	γ33	0						6
	May															(33	$3\gamma_{31}$						3
	Jun															(33	3γ ₃₁						1
	Jul															(33	3γ ₃₁						1
	Aug															(33	$3\gamma_{31}$						1
	Sep															(33	3γ ₃₁						1
	O-D															0	0						1

Trial 2 (With a 'C' stock): Hypothesis E

Y-Stock, J-Stock, P-Stock and O-Stock: As for Baseline E (Matrix Y-BE, J-BE, P-E & O-E) C-Stock Trial E2 (Matrix C-E2)

Age/	Mon										Sub -	Area											
Sex		1 W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M															0	0					0	1
	Apr															0	0					0	1
	May															0	0					0	1
	Jun															0	0					0	1
	Jul															0	0					0	1
	Aug															0	0					0	1
	Sep															0	0					0	1
	O-D															0	0					0	1
Ad.M	J-M															0	0					0	1
	Apr															γ33	0					0	2
	May															γ33	γ ₃₁					γ32	1
	Jun															γ33	γ ₃₁					γ ₃₂	0
	Jul															γ33	γ ₃₁					γ32	0
	Aug															γ33	γ ₃₁					γ32	0
	Sep															γ33	γ ₃₁					γ ₃₂	0
	O-D															0	0					0	1
Ad.F	J-M															0	0					0	1
	Apr															2γ ₃₃	0					0	2
	May															γ33	$3\gamma_{31}$					$3\gamma_{32}$	1
	Jun															γ33	$3\gamma_{31}$					$3\gamma_{32}$	0
	Jul															γ33	$3\gamma_{31}$					$3\gamma_{32}$	0
	Aug															γ ₃₃	$3\gamma_{31}$					$3\gamma_{32}$	0
	Sep															γ33	$3\gamma_{31}$					$3\gamma_{32}$	0
	O-D															0	0					0	1

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	2	2	2				2	2	4γ ₂₉	$2\gamma_1$	2γ4						γ6	γ7				
	Apr	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$						γ_6	γ_7	$2\gamma_8$	$2\gamma_8$	$2\gamma_{34}$	
	May	2	2	2				2	2	4γ ₂₉	$2\gamma_2$	$2\gamma_4$						γ_6	γ7	$2\gamma_8$	$2\gamma_8$	2γ ₃₄	
	Jun	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_4$						γ_6	γ_7	2γ9	2γ9	$2\gamma_{34}$	
	Jul	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ_6	γ_7	2γ9	2γ ₉	2γ ₃₄	
	Aug	2	2	2				2	2	4γ ₂₉	2γ3	$2\gamma_5$						γ_6	γ7	2γ9	2γ9	$2\gamma_{34}$	
	Sep	2	2	2				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ_6	γ_7	2γ9	2γ9	2γ ₃₄	
	O-D	2	2	2				2	2	4γ ₂₉	2γ ₃	2γ5						γ6	γ7	2γ9			
Ad.M	J-M	2	2	1				2	4	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ_7				
	Apr	0	0	1				2	2	$2\gamma_{29}$	$4\gamma_1$	$2\gamma_4$						γ6	$2\gamma_7$	γ_8	γ_8	γ34	
	May	0	0	1				2	2	2γ ₂₉	$4\gamma_2$	$2\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$	2γ ₃₄	
	Jun	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ9	2γ9	$2\gamma_{34}$	
	Jul	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ6	γ_7	γ9	$2\gamma_9$	2γ ₃₄	
	Aug	0	0	1				2	2	2γ ₂₉	$2\gamma_3$	4γ5						γ_6	γ_7	γ9	$2\gamma_9$	$2\gamma_{34}$	
	Sep	2	2	1				2	4	$4\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ_6	γ_7				
	O-D	4	4	1				2	2		2γ ₃	2γ5											
Ad.F	J-M	2	2	1				2	4	$4\gamma_{29}$	γ_1	γ_4						γ_6	γ_7				
	Apr	0	0	1				2	2	2γ29	$2\gamma_1$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{10}	γ_{10}	γ ₃₄	
	May	0	0	1				2	2	$2\gamma_{29}$	$2\gamma_2$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{11}	$2\gamma_{11}$	2γ ₃₄	
	Jun	0	0	1				2	2	2γ29	γ3	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{12}	$2\gamma_{12}$	$2\gamma_{34}$	
	Jul	0	0	1				2	2	$2\gamma_{29}$	γ3	γ_5						γ_6	γ_7	γ_{12}	$2\gamma_{12}$	2γ ₃₄	
	Aug	0	0	1				2	2	$2\gamma_{29}$	γ3	γ5						γ_6	γ_7	γ_{12}	$2\gamma_{12}$	2γ ₃₄	
	Sep	2	2	1				2	4	$4\gamma_{29}$	γ_3	γ5						γ_6	γ_7				
	O-D	4	4	1				2	2		γ3	γ5											

O-Stock: As for Baseline A (Matrix O-AB)

J-Stock Baseline A (Matrix J-A) Differences from the Baseline trial are highlighted in blue.

Trial 11 (30% J-stock in sub-area 12SW, with 10% J-stock in 12NE): Hypotheses B & E

J-Stock Baseline E (Matrix J-BE) Differences from the Baseline trial are highlighted in blue.

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M		2	2					2	4γ ₂₉	$2\gamma_1$	2γ4						γ6	γ7				
	Apr		2	2					2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$						γ ₆	γ7	$2\gamma_8$	$2\gamma_8$	$2\gamma_{34}$	
	May		2	2					2	4γ ₂₉	$2\gamma_2$	$2\gamma_4$						γ6	γ7	$2\gamma_8$	$2\gamma_8$	$2\gamma_{34}$	
	Jun		2	2					2	4γ ₂₉	2γ3	$2\gamma_4$						γ6	γ7	2γ9	2γ9	$2\gamma_{34}$	
	Jul		2	2					2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ6	γ_7	$2\gamma_9$	$2\gamma_9$	2γ ₃₄	
	Aug		2	2					2	4γ ₂₉	2γ3	2γ5						γ6	γ7	2γ9	2γ9	$2\gamma_{34}$	
	Sep		2	2					2	$4\gamma_{29}$		$2\gamma_5$						γ ₆	γ7	2γ ₉	$2\gamma_9$	$2\gamma_{34}$	
	O-D		2	2					2	$4\gamma_{29}$	2γ ₃	$2\gamma_5$						γ_6	γ_7	2γ ₉			
Ad.M	J-M		2	1					4	4γ ₂₉	$2\gamma_1$	2γ4						γ6	γ7				
	Apr		0	1					2	$2\gamma_{29}$	$4\gamma_1$	$2\gamma_4$						γ6	$2\gamma_7$	γ_8	γ_8	γ ₃₄	
	May		0	1					2	$2\gamma_{29}$	$4\gamma_2$	$2\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$	2γ ₃₄	
	Jun		0	1					2	2γ29	$2\gamma_3$	$4\gamma_4$						$2\gamma_6$	2γ7	γ9	2γ9	$2\gamma_{34}$	
	Jul		0	1					2	$2\gamma_{29}$	$2\gamma_3$	4γ ₅						γ6	γ_7	γ9	2γ9	2γ ₃₄	
	Aug		0	1					2	2γ29	2γ ₃	4γ5						γ6	γ7	γ9	$2\gamma_9$	2γ ₃₄	
	Sep		2	1					4	$4\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ6	γ_7				
	O-D		4	1					2		2γ ₃	2γ ₅											
Ad.F	J-M		2	1					4	$4\gamma_{29}$	γ_1	γ_4						γ6	γ_7				_
	Apr		0	1					2	2γ ₂₉	$2\gamma_1$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{10}	γ10	γ ₃₄	
	May		0	1					2	$2\gamma_{29}$	$2\gamma_2$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{11}	$2\gamma_{11}$	2γ ₃₄	
	Jun		0	1					2	$2\gamma_{29}$	γ3	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{12}	$2\gamma_{12}$	$2\gamma_{34}$	
	Jul		0	1					2	$2\gamma_{29}$	γ ₃	γ5						γ_6	γ_7	γ_{12}	$2\gamma_{12}$	$2\gamma_{34}$	
	Aug		0	1					2	$2\gamma_{29}$		γ5						γ_6	γ_7	γ_{12}	$2\gamma_{12}$	2γ ₃₄	
	Sep		2	1					4	$4\gamma_{29}$		γ5						γ6	γ_7				
	O-D		4	1					2		γ3	γ5											

34

Trial 18 (Substantially more O-Stock ages 1-4 are found in sub-areas 2R, 3 & 4 year-round): Hypothesis A

J-Stock as for Baseline A (Matrix J-A)

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M			γ13	4	4	4				4	γ16	0	0	0	0	0		γ30	0	0	0	
	Apr			γ_{14}	44	44	44				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ ₁₉	γ_{20}	0		$2\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	May			γ_{14}	44	44	44				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	γ_{21}		$2\gamma_{30}$	γ22	γ23	γ24	
	Jun			γ_{14}	44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	γ_{21}		$4\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	Jul			γ15	44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	Aug			γ_{15}	44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	γ ₂₁		$4\gamma_{30}$	γ22	γ23	γ24	
	Sep			γ_{15}	44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}		$4\gamma_{30}$	γ_{22}	γ23	γ24	
	O-D			γ15	4	4	4				4	$2\gamma_{16}$	0	0	0	0	0		$2\gamma_{30}$	0	0	0	
Ad.M	J-M			γ13	4	4	4				1	γ_{16}	0	0	0	0	0		γ30	0	0	0	
	Apr			γ_{14}	2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0		$2\gamma_{30}$	γ_{22}	γ ₂₃	$3\gamma_{24}$	
	May			0	0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$2\gamma_{30}$	γ_{22}	γ ₂₃	$6\gamma_{24}$	
	Jun			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ22	γ23	6γ ₂₄	
	Jul			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$		$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ_{22}	γ ₂₃	$6\gamma_{24}$	
	Aug			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		$4\gamma_{30}$	γ22	γ23	6γ ₂₄	
	Sep			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ_{21}		$4\gamma_{30}$	γ_{22}	γ ₂₃	$3\gamma_{24}$	
	O-D			γ15	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	
Ad.F	J-M			γ_{13}	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	
	Apr			γ_{14}	2	2	2				1	γ16	$2\gamma_{17}$	$2\gamma_{18}$	$2\gamma_{19}$	$2\gamma_{20}$	0		γ30	γ_{22}	γ_{23}	$3\gamma_{24}$	
	May			0	0	0	0				1	γ_{16}	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$		γ_{30}	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Jun			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Jul			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Aug			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Sep			0	0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ20	$2\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	
	O-D			γ15	4	4	4				1	γ_{16}	0	0	0	0	0		γ ₃₀	0	0	0	

Trial 18 (Substantially more O-Stock ages 1-4 are found in sub-areas 2R, 3 & 4 year-round): Hypothesis B Y-Stock and J-Stock: As for Baseline B (Matrix Y-BE and J-BE)

O-Stock Trial B18 (Matrix O-AB18) as above

Trial 18 (Substantially more O-Stock ages 1-4 are found in sub-areas 2R, 3 & 4 year-round): Hypothesis E

Y-Stock, J-Stock and P-Stock: as for Baseline E (Matrix Y-BE, J-BE & P-E)

O-Stock Trial E18 (Matrix O-E18) Differences from the Baseline trial are highlighted in blue.

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M				4	4	4				4	γ16	0	0	0	0	0			0	0	0	
	Apr				44	44	44				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	0			γ ₂₂	γ_{23}	γ_{24}	
	May				44	44	44				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ ₂₁			γ22	γ23	γ ₂₄	
	Jun				44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ ₂₂	γ23	γ ₂₄	
	Jul				44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ ₂₂	γ_{23}	γ_{24}	
	Aug				44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ ₂₂	γ23	γ ₂₄	
	Sep				44	44	44				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	γ_{21}			γ_{22}	γ ₂₃	γ_{24}	
	O-D				4	4	4				4	$2\gamma_{16}$	0	0	0	0	0			0	0	0	
Ad.M	J-M				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	
	Apr				2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0			γ_{22}	γ ₂₃	$3\gamma_{24}$	
	May				0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ_{22}	γ ₂₃	6γ ₂₄	
	Jun				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ22	γ23	6γ ₂₄	
	Jul				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ_{22}	γ ₂₃	6γ ₂₄	
	Aug				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			γ22	γ23	6γ ₂₄	
	Sep				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ_{21}			γ_{22}	γ ₂₃	$3\gamma_{24}$	
	O-D				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	
Ad.F	J-M				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	
	Apr				2	2	2				1	γ16	$2\gamma_{17}$	$2\gamma_{18}$	2γ19	$2\gamma_{20}$	0			γ22	γ23	$3\gamma_{24}$	
	May				0	0	0				1	γ_{16}	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$			γ_{22}	$2\gamma_{23}$	$9\gamma_{24}$	
	Jun				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Jul				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	γ_{20}	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Aug				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ_{20}	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Sep				0	0	0				1	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	γ ₂₀	$2\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	
	O-D				4	4	4				1	γ_{16}	0	0	0	0	0			0	0	0	

Trial 19 (no age 1-4 whales in sub-area 9 / 9N): Hypothesis A

J-Stock as for Baseline A (Matrix J-A)

O-Stock Trial A19 (Matrix O-AB19) Differences from the Baseline trial are highlighted in blue.

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M			γ13	4	4	4				4	γ16	0	0	0	0	0		γ30	0	0	0	
	Apr			γ_{14}	2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0		$2\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	May			γ_{14}	2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	0	0		$2\gamma_{30}$	γ22	γ23	γ24	
	Jun			γ_{14}	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ_{19}	0	0		$4\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	Jul			γ15	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0		$4\gamma_{30}$	γ_{22}	γ ₂₃	γ_{24}	
	Aug			γ15	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0		4γ ₃₀	γ22	γ23	γ24	
	Sep			γ15	2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0		$4\gamma_{30}$	γ_{22}	γ23	γ24	
	O-D			γ15	4	4	4				4	$2\gamma_{16}$	0	0	0	0	0		2γ ₃₀	0	0	0	
Ad.M	J-M			γ13	4	4	4				1	γ16	0	0	0	0	0		γ30	0	0	0	
	Apr			γ ₁₄	2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	0		$2\gamma_{30}$	γ ₂₂	γ ₂₃	$3\gamma_{24}$	
	May			0	0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ ₁₉		$2\gamma_{21}$		$2\gamma_{30}$	γ ₂₂	γ ₂₃	6γ ₂₄	
	Jun			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		4γ ₃₀	γ22	γ ₂₃	6γ24	
	Jul			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$		$2\gamma_{21}$		4γ ₃₀	γ ₂₂	γ ₂₃	6γ ₂₄	
	Aug			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$		4γ ₃₀	γ22	γ ₂₃	6γ24	
	Sep			0	0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ ₁₉	4γ ₂₀	γ ₂₁		4γ ₃₀	γ ₂₂	γ ₂₃	3γ ₂₄	
	O-D			γ ₁₅	4	4	4				1	γ ₁₆	0	0	0	0	0		γ ₃₀	0	0	0	
Ad.F	J-M			γ ₁₃	4	4	4				1	Υ ₁₆	0	0	0	0	0		γ ₃₀	0	0	0	
	Apr			γ_{14}	2	2	2				1	γ 16	$2\gamma_{17}$	$2\gamma_{18}$	2γ19	$2\gamma_{20}$	0		γ30	γ ₂₂	γ ₂₃	$3\gamma_{24}$	
	May			0	0	0	0				1	Υ16	Υ17	γ ₁₈	γ ₁₉	γ ₂₀	$4\gamma_{21}$		Υ30	$2\gamma_{22}$	$2\gamma_{23}$	9γ24	
	Jun			0	0	0	0				1	$2\gamma_{16}$	γ ₁₇	γ18	γ19	γ ₂₀	$4\gamma_{21}$		$2\gamma_{30}$	$2\gamma_{22}$	$2\gamma_{23}$	9γ ₂₄	
	Jul			0	0	0	0				1	$2\gamma_{16}$	Υ17	γ ₁₈	γ19	γ ₂₀	$4\gamma_{21}$		$2\gamma_{30}$	2γ ₂₂	$2\gamma_{23}$	9γ ₂₄	
	Aug			0	0	0	0				1	$2\gamma_{16}$	Υ ₁₇	γ ₁₈	γ19	γ ₂₀	$4\gamma_{21}$		$2\gamma_{30}$	2γ ₂₂	$2\gamma_{23}$	9γ ₂₄	
	Sep			0	0	0	0				1	$2\gamma_{16}$	Υ ₁₇	γ ₁₈	γ19	γ ₂₀	$2\gamma_{21}$		2γ ₃₀	2γ ₂₂	$2\gamma_{23}$	3γ ₂₄	
	O-D			γ ₁₅	4	4	4				1	Υ ₁₆	0	0	0	0	0		γ ₃₀	0	0	0	

Trial 19 (no age 1-4 whales in sub-area 9 / 9N): Hypothesis B

Y-Stock and J-Stock: As for Baseline B (Matrix Y-BE and J-BE) O-Stock Trial B19 (Matrix O-AB19) as above

Trial 19 (no age 1-4 whales in sub-area 9 / 9N): Hypothesis E

Y-Stock, J-Stock and P-Stock : as for Baseline E (Matrix Y-BE, J-BE and P-E)

O-Stock Trial E19 (Matrix O-E19)) Differences from the	Baseline trial are	highlighted in blue.
----------------------------------	------------------------	---------------------------	----------------------

Age/	Mon										Sub -	Area											
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M				4	4	4				4	γ_{16}	0	0	0	0	0			0	0	0	
	Apr				2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0			γ ₂₂	γ ₂₃	γ24	
	May				2	2	2				8	$2\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0			Υ22	γ ₂₃	γ ₂₄	
	Jun				2	2	2				4	$4\gamma_{16}$	γ_{17}	γ_{18}	γ19	0	0			Υ22	γ ₂₃	γ ₂₄	
	Jul				2	2	2				4	$4\gamma_{16}$	γ 17	γ_{18}	γ ₁₉	0	0			Υ22	γ23	γ ₂₄	
	Aug				2	2	2				4	$4\gamma_{16}$	γ17	γ ₁₈	γ19	0	0			γ ₂₂	γ ₂₃	γ ₂₄	
	Sep				2	2	2				4	$4\gamma_{16}$	γ17	Υ18	γ ₁₉	0	0			γ ₂₂	γ ₂₃	γ ₂₄	
	O-D				4	4	4				4	2γ ₁₆	0	0	0	0	0			0	0	0	
Ad.M	J-M				4	4	4				1	γ ₁₆	0	0	0	0	0			0	0	0	
	Apr				2	2	2				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ19	$4\gamma_{20}$	0			γ ₂₂	γ ₂₃	$3\gamma_{24}$	
	May				0	0	0				2	$2\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ ₁₉	$4\gamma_{20}$	$2\gamma_{21}$			Υ ₂₂	γ ₂₃	6γ ₂₄	
	Jun				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ19	$4\gamma_{20}$	$2\gamma_{21}$			Υ22	Υ23	6γ ₂₄	
	Jul				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	4γ ₁₉	$4\gamma_{20}$	$2\gamma_{21}$			Υ ₂₂	γ ₂₃	6γ ₂₄	
	Aug				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	$2\gamma_{21}$			Υ22	γ ₂₃	6γ ₂₄	
	Sep				0	0	0				2	$4\gamma_{16}$	$4\gamma_{17}$	$4\gamma_{18}$	$4\gamma_{19}$	$4\gamma_{20}$	γ ₂₁			Υ22	γ ₂₃	$3\gamma_{24}$	
	O-D				4	4	4				1	γ16	0	0	0	0	0			0	0	0	
Ad.F	J-M				4	4	4				1	γ ₁₆	0	0	0	0	0			0	0	0	
	Apr				2	2	2				1	γ ₁₆	$2\gamma_{17}$	$2\gamma_{18}$	2γ ₁₉	$2\gamma_{20}$	0			γ ₂₂	γ_{23}	$3\gamma_{24}$	
	May				0	0	0				1	Υ ₁₆	γ 17	γ ₁₈	γ19	γ20	$4\gamma_{21}$			γ22	$2\gamma_{23}$	9γ24	
	Jun				0	0	0				1	$2\gamma_{16}$	γ17	γ ₁₈	γ19	γ ₂₀	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Jul				0	0	0				1	2γ ₁₆	γ17	γ18	γ19	γ ₂₀	$4\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Aug				0	0	0				1	$2\gamma_{16}$	γ17		γ19	γ ₂₀	4γ ₂₁			$2\gamma_{22}$	$2\gamma_{23}$	$9\gamma_{24}$	
	Sep				0	0	0				1	$2\gamma_{16}$	γ17	γ ₁₈	γ19	γ ₂₀	$2\gamma_{21}$			$2\gamma_{22}$	$2\gamma_{23}$	$3\gamma_{24}$	
	O-D				4	4	4				1	Υ ₁₆	0	0	0	0	0			0	0	0	

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M	2	2	2γ35				2	2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ_6	γ7				
	Apr	2	2	2γ35				2	2	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ_6	γ7	$2\gamma_8$	$2\gamma_8$		
	May	2	2	$2\gamma_{35}$				2	2	$4\gamma_{29}$	$2\gamma_2$	$2\gamma_4$						γ_6	γ_7	$2\gamma_8$	$2\gamma_8$		
	Jun	2	2	2γ ₃₅				2	2	4γ ₂₉	$2\gamma_3$	$2\gamma_4$						γ_6	γ7	2γ9	2γ9		
	Jul	2	2	$2\gamma_{35}$				2	2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ_6	γ_7	2γ9	$2\gamma_9$		
	Aug	2	2	2γ ₃₅				2	2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ_6	γ7	2γ9	2γ9		
	Sep	2	2	2γ35				2	2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ_6	γ7	2γ9	2γ9		
	O-D	2	2	2γ ₃₅				2	2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ_6	γ_7	2γ ₉			
Ad.M	J-M	2	2	γ35				2	4	4γ ₂₉	$2\gamma_1$	$2\gamma_4$						γ6	γ7				
	Apr	0	0	γ35				2	2	2γ ₂₉	$4\gamma_1$	$2\gamma_4$						γ_6	$2\gamma_7$	γ_8	γ_8		
	May	0	0	γ35				2	2	$2\gamma_{29}$	$4\gamma_2$	$2\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$		
	Jun	0	0	γ35				2	2	2γ ₂₉	2γ ₃	$4\gamma_4$						$2\gamma_6$	$2\gamma_7$	γ9	$2\gamma_9$		
	Jul	0	0	γ35				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ_6	γ_7	γ9	2γ9		
	Aug	0	0	γ35				2	2	$2\gamma_{29}$	$2\gamma_3$	$4\gamma_5$						γ_6	γ_7	γ9	2γ ₉		
	Sep	2	2	γ35				2	4	4γ ₂₉	$2\gamma_3$	$4\gamma_5$						γ_6	γ7				
	O-D	4	4	γ35				2	2		2γ ₃	$2\gamma_5$											
Ad.F	J-M	2	2	γ35				2	4	$4\gamma_{29}$	γ_1	γ_4						γ_6	γ_7				
	Apr	0	0	γ35				2	2	$2\gamma_{29}$	$2\gamma_1$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{10}	γ_{10}		
	May	0	0	γ35				2	2	$2\gamma_{29}$	$2\gamma_2$	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{11}	$2\gamma_{11}$		
	Jun	0	0	γ35				2	2	$2\gamma_{29}$	γ3	γ_4						$2\gamma_6$	$2\gamma_7$	γ_{12}	$2\gamma_{12}$		
	Jul	0	0	γ35				2	2	2γ ₂₉	γ3	γ5						γ_6	γ7	γ ₁₂	$2\gamma_{12}$		
	Aug	0	0	γ35				2	2	$2\gamma_{29}$	γ3	γ5						γ_6	γ_7	γ_{12}	$2\gamma_{12}$		
	Sep	2	2	γ35				2	4	4γ ₂₉	γ3	γ5						γ_6	γ_7				
	O-D	4	4	γ35				2	2		γ3	γ5											

O-Stock: as for Baseline A (Matrix O-AB)

J-Stock Baseline A (Matrix J-A) Differences from the Baseline trial are highlighted in blue.

Trial 20 (Number 1+ whales in 2009 in sub-area 2C in any month <200): Hypotheses B & E

Age/	Mon										Sub -	Area											
Sex		$1 \mathrm{W}$	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8	9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M		2	2γ35					2	4γ ₂₉	$2\gamma_1$	2γ4						γ6	γ7				
	Apr		2	$2\gamma_{35}$					2	$4\gamma_{29}$	$2\gamma_1$	$2\gamma_4$						γ ₆	γ7	$2\gamma_8$	$2\gamma_8$		
	May		2	2γ35					2	4γ ₂₉	$2\gamma_2$	$2\gamma_4$						γ6	γ7	$2\gamma_8$	$2\gamma_8$		
	Jun		2	2γ35					2	4γ29	2γ ₃	$2\gamma_4$						γ6	γ7	2γ9	2γ9		
	Jul		2	$2\gamma_{35}$					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉	$2\gamma_9$		
	Aug		2	2γ35					2	4γ29	2γ ₃	2γ5						γ6	γ7	2γ9	2γ9		
	Sep		2	$2\gamma_{35}$					2	$4\gamma_{29}$	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉	$2\gamma_9$		
	O-D		2	2γ ₃₅					2	4γ ₂₉	$2\gamma_3$	$2\gamma_5$						γ ₆	γ7	2γ ₉			
Ad.M	J-M		2	γ ₃₅					4	4γ ₂₉	$2\gamma_1$	2γ ₄						γ6	γ7				
	Apr		0	γ ₃₅					2	$2\gamma_{29}$	4γı	2γ ₄						γ6	$2\gamma_7$	γ_8	γ_8		
	May		0	γ ₃₅					2	2γ ₂₉	4γ ₂	2γ ₄						$2\gamma_6$	$2\gamma_7$	γ_8	$2\gamma_8$		
	Jun		0	γ35					2	2γ ₂₉	2γ3	$4\gamma_4$						$2\gamma_6$	2γ7	γ9	2γ9		
	Jul		0	γ ₃₅					2	2γ ₂₉	2γ ₃	4γ ₅						γ6	γ7	γ9	2γ9		
	Aug		0	γ ₃₅					2	$2\gamma_{29}$	2γ3	4γ5						γ6	γ7	γ9	2γ ₉		
	Sep		2	γ35					4	4γ ₂₉	2γ ₃	4γ ₅						γ6	γ7	•	•		
	O-D		4	γ35					2		2γ ₃	$2\gamma_5$						••	•				
Ad.F	J-M		2	γ35					4	4γ ₂₉	γ1	γ ₄						γ6	γ7				
	Apr		0	γ ₃₅					2	2γ ₂₉	$2\gamma_1$	γ4						$2\gamma_6$	2γ7	γ 10	γ 10		
	May		0	γ ₃₅					2	$2\gamma_{29}$	$2\gamma_2$	γ4						$2\gamma_6$	2γ ₇	γ ₁₁	$2\gamma_{11}$		
	Jun		0	γ ₃₅					2	2γ ₂₉	γ3	γ4						$2\gamma_6$	2γ7	γ ₁₂	$2\gamma_{12}$		
	Jul		0	γ ₃₅					2	$2\gamma_{29}$	γ3	γ5						γ6	γ7	γ ₁₂	2γ12		
	Aug		0	γ ₃₅					2	$2\gamma_{29}$	γ3	γ5						γ ₆	γ7	γ ₁₂	2γ ₁₂		
	Sep		2	γ ₃₅					4	4γ ₂₉	γ3	γ5						γ ₆	γ7	,12	1.2		
	O-D		4	γ ₃₅					2	12)	γ3	γ5						10	• '				

Y-Stock, P-Stock and O-Stock: as for Baseline B & E (Matrix Y-BE, P-E, O-AB & O-E) J-Stock Baseline B (Matrix J-BE) Differences from the Baseline trial are highlighted in blue.

Trial 23 (No 'C' animals in sub-area 12NE): Hypothesis E

Age/	Mon										Sub -	Area										
Sex		1W	1E	2C	2R	3	4	5	6W	6E	7CS	7CN	7WR	7E	8 9	9N	10W	10E	11	12SW	12NE	13
Juv	J-M														0	0						1
	Apr														0	0						1
	May														0	0						1
	Jun														0	0						1
	Jul														0	0						1
	Aug														0	0						1
	Sep														0	0						1
	O-D														0	0						1
Ad.M	J-M														0	0						1
	Apr														γ3	3 0						2
	May														γ3	3 γ31						1
	Jun														γ3	3 γ31						0
	Jul														γ3	3 γ31						0
	Aug														γ3	3 γ31						0
	Sep														γ3	3 γ31						0
	O-D														0	0						1
Ad.F	J-M														0	0						1
	Apr														2γ	₃₃ 0						2
	May														γ3	₃ 3γ ₃₁						1
	Jun														γ3	₃ 3γ ₃₁						0
	Jul														γ3	₃ 3γ ₃₁						0
	Aug														γ3	₃ 3γ ₃₁						0
	Sep														γ3							0
	O-D														0							1

Y-Stock, J-Stock, P-Stock and O-Stock: As for Baseline E (Matrix Y-BE, J-BE, P-E & O-E) C-Stock Trial E23 (Matrix C-E23) orange shows the difference from Trial 2

Adjunct 3

Calculation of stock mixing proportions, including correction for "missing alleles":

Unpooled results for sub-area 6W

CL de Moor

This adjunct is based on de Moor (2014) and de Moor (2011), and details the calculation of the stock mixing proportions by month and sex used for conditioning the 2013 *Implementation Simulation Trials* of western North Pacific common minke whales (Allison *et al*, 2014).

In calculating the mixing proportions in sub-area 6W, samples representative of 'pure' Y-stock and J-stock animals were taken as follows:

Stock	Location / months to define pure sample	Haplotypes Sample Size	Loci Sample Size
Y-stock	5 (all months)	58	58 58 58 58 58 58 56 58 58 58 54
J-stock	6E (all months)	392	392 392 392 392 392 392 392 392 392 392
			392 392 392)

Mixing proportions in sub-area 6W were calculated from 415 samples from bycatch data only.

Hyp B and E: H	Proportion of	Sample Size	Proportion	SE	Sample Size (x11)	Proportion	SE
J mixing	with Y		Haplotypes			Loci	
Jan-Mar	Males	83	0.555	0.142	83 with 81 in 11 th	0.745	0.050
Apr		37	0.449	0.253	37 with 36 in 1st	0.963	0.083
May		41	0.749	0.243	41 with 40 in 8 th	0.926	0.062
Jun		43	0.534	0.245	43	0.787	0.080
Jul		21	0.830	0.38	21	0.788	0.089
Aug		16	1.000	0.004	16 with 15 in 11 th	0.726	0.137
Sep		20	0.533	0.335	20 with 18 in 11 th	0.475	0.107
_					97 with 96 in 7th and		
Oct-Dec		97	0.629	0.140	94 in 11 th	0.859	0.049
Jan-Mar	Females	13	0.730	0.314	13 with 12 in 6 th	0.284	0.128
Apr		3	0.002	0.139	3	0.751	0.301
May		7	0.000	0.006	7	0.529	0.148
Jun		10	0.364	0.309	10	0.583	0.167
Jul		1	1.000	0.009	1	0.999	0.000
Aug		4	1.000	0.024	4	0.457	0.323
Sep		6	0.415	0.636	6 with 5 in 9 th	0.773	0.143
Oct-Dec		13	0.409	0.455	13 with 12 in 11 th	0.806	0.130
Summary:	all data	415	0.625	0.069	415 with 414 in 1 st , 6- 9 th and 406 in 11 th	0.776	0.109
			I	Pooled Data			
Jan-Mar	M F	96	0.584	0.131	96 with 95 in 6 th , 94 in 11 th	0.672	0.047
Apr-Jun	M F	141	0.496	0.126	141 with 140 in 1st , 8th	0.812	0.04
Jul-Aug	M F	42	1.000	0.004	42 with 41 in 11 th	0.749	0.077
Ũ					136 with 135 in 7th, 9th, 130		
Sep-Dec	M F	136	0.593	0.123	in 11 th	0.761	0.04

Notation:

In most cases samples are obtained from 16 loci. In sub-area 6W samples from the first 11 loci only were available to be used in the calculation of the mixing proportions, denoted by (x11) in the above table. In some cases there was a missing value in a sample at a particular loci. Thus, for example if the total sample size were 50, for one of the loci (the 10th) the sample size is 49. This is noted by saying e.g. "50 with 49 in 10th".

References

Allison, C., de Moor, C.L. and Punt, A.E. 2014. Report of the Scientific Committee. Annex D1. Report of the Working Group on the Implementation Review for Western North Pacific Common Minke Whales. Appendix 2. North Pacific minke whale Implementation Simulation Trial specifications. J. Cetacean Res. Manage. (Suppl.) 15:133-80.

de Moor, C.L. 2011. Calculation of stock mixing proportions, including correction for 'missing alleles': unpooled results. Paper SC/D11/NPM4rev presented to the First Intersessional Workshop for the *Implementation Review* of western North Pacific common minke whales, 12-16 December 2011, Tokyo, Japan (unpublished). [Paper available from the Office of this Journal].

de Moor, C.L. 2014. Report of the Scientific Committee. Annex D1. Report of the Working Group on the Implementation Review for Western North Pacific Common Minke Whales. Appendix 2. North Pacific minke whale Implementation Simulation Trial specifications. Adjunct 3. Calculation of stock mixing proportions, including correction for 'missing alleles': unpooled results.

J. Cetacean Res. Manage. (Suppl.) 15:167-80.