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ABSTRACT 
The age-, sex-, and season-structured population dynamics model developed to assess North Pacific sei 
whales is updated based on intersessional work and the discussions of the intersessional correspondence 
group on North Pacific sei whales. Compared to the version of the model presented to SC68A, the revised 
model  includes options for time-varying carrying capacity, distribution and natural mortality, and density-
dependent distribution, as well as natal homing, and dispersal. The model can now utilize low abundance 
estimates, and tags for which the effective number of animals marked is unknown. Estimates of absolute and 
relative abundance can be subject to additional variance related to changes in distribution among surveys. 
Base-case models are undertaken for single-stock and multi-stock hypotheses and the results are summarized 
using numerical and graphical diagnostics.  

 
INTRODUCTION 
The Scientific Committee of the IWC is conducting an in-depth assessment of North Pacific sei whales (e.g. IWC 
2016, 2017, 2018, 2019, In press). To date this work has led to identification two broad hypotheses regarding stock 
structure (a single stock in the entire North Pacific and a multi-stock hypothesis), along with boundaries for data 
analysis. The data available for assessment purposes are catches, indices of absolute abundance (including some that 
are zero and/or minimum estimates), indices of relative abundance, as well as mark recapture data. The model that has 
been developed to analyze these data is a deterministic spatial-, age- and sex-structured model that tracks the 
population numbers by stock, sex, and age, and the number of marked animals by stock, age, sex.  

IWC (In press) noted that the model developed by Punt (2019) had difficulty reconciling the high recent estimate 
of absolute abundance in the Pelagic sub-area (see Fig. 1 for the sub-areas considered in the models) from the POWER 
cruises (2010-12) with a historical depletion of the Pelagic sub-area, as evidenced by the relative abundance data from 
scouting, the mark-recapture data, etc. IWC (In press) noted to the discrepancy could be ameliorated by allowing for 
additional variance, but this did not remove the fundamental problem of systematic patterns in the residuals to the fits 
to the relative and absolute abundance data.  

IWC (In press) made several suggestions for possible modifications to the assessment method, including a revised 
way to include zero observations (Cooke, et al., In press-a), and a way to include “type B” recoveries (recoveries when 
the effective number of marks is unknown; type A recoveries are those recoveries for which the number of effectively 
marked animals is known). IWC (In press) also suggested that scenarios in which distribution changes (slowly) over 
time be considered. The intersessional correspondence group on North Pacific sei whales reviewed the results of 
further analyses (Punt, 2020) and suggested that the model should include the option for natal homing within a single-
stock content and dispersal within a multi-stock context. 

This paper provides a consolidated set of mathematical specifications for the models and the results of preliminary 
models runs for two potential base-case models that are based on (i) a single-stock hypothesis, and (ii) the hypotheses 
that there are five stocks of sei whales in the North Pacific.  
 
MATERIALS AND METHODS 
The Data 
Catches, abundance and marking data are used when applying the modelling framework to estimate population 
numbers by stock, year, sex, season and feeding ground (when there is more than one feeding ground and one breeding 
stock). The raw data have to be adjusted prior to inclusion in the model, as outlined below. 

Catch data 
The catch data (J.G. Cooke, pers. comm) are catches by year, sex, and sub-area (see Figs 1-3). All catches are assumed 
to be taken during the summer season (and hence recaptures of marked animals only occur in summer). Also available 
are the catches by year, sex and sub-area that could have reported recaptures of marked sei whales (J.G. Cooke, pers. 
comm). 
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Abundance estimates 
“Best” estimates of absolute abundance (with sampling CVs) are available for the Pelagic, East Coastal, and West 
Coastal sub-areas (two for the West Coastal sub-area). There are also three ‘low’ estimates (for the Aleutian, Mixed, 
and the Eastern North Pacific sub-areas) (Table 1). Time-series of relative abundance estimates based on scouting data 
are available for all sub-areas (Cooke, 2019). 
 
Mark-recapture data 
Marking data are available from summer and winter marking cruises. The analyses of this paper use the data from 
winter markings by assuming that distribution of stocks in winter is the same as in summer for the single-stock 
hypothesis. IWC (in press) recommended that for the multi-stock hypothesis, the Japanese marks placed  in winter 
would be assigned to the Pelagic stock while the US marks placed in winter would be assigned to the Eastern North 
Pacific migratory stock. 

The marking data set (Cooke et al., in press-b) is now in the form of numbers of marked animals by year by the 
number of hits on each whale. The data for a given year, season, and sub-area are combined over hits by weighting 
each hit by its reporting rate (J.C. Cooke, pers. commn). The Type A and B recapture data indicate for each recaptured 
animal the season (years and summer/winter) of marking and recapture, the sub-area of marking and the sub-area of 
recapture, sex (male, female, unknown) and number of hits on the whale. The marking data pertain to the Type A tags. 
For Type B marks, the number of marks placed is treated as unknown; inference for population modelling is 
conditional on the mark being recovered (see the ‘Likelihood Function’ section below). 

The Model 
The model distinguishes ‘breeding stocks’ and ‘feeding grounds’. Breeding stocks are demographically independent 
and multiple breeding stocks may be found on each feeding ground (see Fig. 1 for the feeding grounds). There is no 
dispersal between breeding stocks. The year is divided into two seasons, nominally ‘summer’ and ‘winter’ to account 
for within-year recaptures from the lower latitudes to the higher latitudes (all catches and hence recaptures occur 
during summer). 

Each breeding stock is found in a set of feeding grounds, each of which may have catches, and indices of relative or 
absolute abundance.  

Basic Population Dynamics 
The population dynamics are based on a two-season (w=winter; s=summer) version of the standard age- and sex-
structured model used by the IWC Scientific Committee, with the ‘start of the year’ defined as the start of winter. 
Equation 1.1a shows the basic dynamics model and Equation 1.1b shows an extension to allow for dispersal: 
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t aN  is the number of males/females of age a in breeding stock i at the start of the winter season of year t; 
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s, / ,
,

m f i
t aN  is the number of males/females of age a in breeding stock i at the start of the summer season of year t; 

, / ,
,
s m f i
t aC  is the catch of males/females of age a in breeding stock i during season s of year t (whaling is assumed to 

take place in a pulse at the start of summer); and 
 St,a is the annual survival rate of animals of age a (assumed to be the same for males and females) during year 

t: 
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S1906,0 is the calf survival rate in 1906 (the first year in the model); S1906,1+ is the survival rate for animals aged 1 and 
older in 1906; i

tB is the number of births to breeding stock i during year t; and x is the maximum (lumped) age-class 
(all animals in this and the x-1 class are assumed to be recruited and to have reached the age of first parturition). x is 
taken to be 15 (this value must be above the ages at full recruitment and full maturity). 

,i jχ  is the proportion moving from population i to population j. To ensure that the populations remain in equilibrium 
(and would return to equilibrium were catches to be removed forever), the dispersal parameters for each combination 
of populations between which there is dispersal are linked as follows: 

1 ,w , 1 ,w ,, ,i j

t t

i j j iK Kχ χ+ +=       (1.3) 

The modifications to the basic dynamics equations are also applied to the equations for the marked animals (not y 
shown here) so the model can be fitted to the mark-recapture data. In addition, to simplify the code (and avoid cases 
where populations are depleted by movement), dispersal is “sequential”, with the equation 1.1b applied sequentially 
for each dispersal option 

Births and density-dependence 
The number of births at the start of year t for breeding stock i, i

tB , is given by: 

f ,i i i
t t tB b N=       (2.1) 

where 
f ,i
tN  is the number of mature females in breeding stock i at the start of the winter season of year t: 

f , w ,f ,
,

m

x
i i

t t a
a a
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αm is the age-at-maturity (the convention of referring to the mature population is used here, although this actually 
refers to animals that have reached the age of first parturition); i

tb  is the probability of birth/calf survival  for breeding 
stock i in year t: 

1 ,w, 1 ,w,max(0, {1 (1 ( / ) })
ii i i i z

t K t tb b A N K+ += + −    (2.3) 

bK is the average number of live births per year per mature female at carrying capacity; and Ai  is the resilience 
parameter for breeding stock i, and zi  is the degree of compensation for breeding stock i. The number of 1+ animals 
in breeding stock i at the start of season s of year t is given by: 
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1 , ,s i

tK +
 is the carrying capacity for breeding stock i at the start of season s: 
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, ,A s i
tX  is the proportion of animals of breeding stock i that are found in feeding ground A during season s of year t. 

Catches 
The catch by breeding stock is determined by apportioning the catches by feeding ground, taking account of mixing 
(i.e. exposure to harvesting) matrices, according to: 
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where AΩ  is a factor to avoid occasional unrealistically high exploitation rates ( AΩ =3 for all sub-areas except the 
Pelagic sub-area for which AΩ =1; Punt, 2019), ,m/f ,s A

tE  is the exploitation rate (constrained to lie between 0 and 1), 
and only animals of age 1+ and older are subject to removal by whaling. The values for the fishing mortality rates are 

selected so that the observed and predicted values for 
,m/ f ,s A

tC , the number of males/females caught in feeding ground 
A during season s of year t, are matched exactly, i.e.: 
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Initialising the parameter vector 
The numbers at age in the pristine population are given by: 
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The value for 1906,0
iN  is determined from the value for the pre-exploitation size of the 1+ component of breeding stock 

i using the equation: 
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Model variants 
The reference model assumes that carrying capacity, survival, and the distribution of stocks is time-invariant. The 
model variants extend the reference model in several ways: 

Time-dependent carrying capacity 
Time-dependent carrying capacity is modelled by allowing carrying capacity to change over time, i.e.: 

1 ,w, 1 ,w,
1906

i
ti i

tK K eχ+ +=      (5.1) 

where i
tχ  is the factor to allow carrying capacity to change over time ( 1906 1iχ = ), modelled as a piecewise linear 

function of time. 

Time-dependent survival 
Time-dependent survival is modelled by allowing natural mortality to change in a piecewise linear fashion, i.e.: 

, 1906,exp( n( ))t a t aS Sχ=        (5.2) 
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Time-dependent distribution 
Two options are available to define time-dependent spatial stock distribution, both of which involve modifying the 
proportion of a stock in the Pelagic sub-area. The first option allows for density-dependence in the parameter 
determining the proportion of a stock in the Pelagic sub-area, i.e.: 
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The second option allows for time-dependence in the parameter determining the proportion of a stock in the Pelagic 
sub-area, i.e.: 
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Natal homing 
The following models explore “natal homing” (although the first is really a simple multi-stock model). The models 
are based on separate populations (six), one in each of the sub-areas and ignore movement among sub-areas following 
birth (and selection of a sub-area). Given the lack of movement, the model runs ignore the mark-recapture data, but 
fit to the absolute and relative abundance data. Three options (A, B, and C) are considered, all related to how calf 
production is modelled. 

• (A) Fully-separate populations. In this case, the number of calves that recruit to population i is given by 
f , 1 , , 1 , ,max(0, {1 (1 ( / ) })z
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where i
tB  is the number of births to population (stock) i during year t, f ,i

tN  is the number of mature females 
in population i at the start of the winter season of year t, 1 ,w,i

tN +  is the number of 1+ animals in population i 

at the start of the winter season of year t, 1 , w , i

t
K +   is the carrying capacity for population i at the start of the 

winter season, A is the resilience parameter, and z is the degree of compensation. 
• (B) Density-dependence depends on the total number in the population, with the proportion recruiting to each 

population dependent on the number of mature females in the population: 
f , 1 , , 1 , ,max(0, {1 (1 ( / ) })z

K
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where 1 ,w,T
tN +  is the total number of 1+ animals at the start of the winter season of year t, and 1 , w ,T

t
K +   is the 

total carrying capacity at the start of the winter season. 
• (C) Density-dependence depends on the total number in the population, with the proportion recruiting to each 

population dependent on the proportion of mature females in the pre-exploitation state: 
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where ,f T
tN  is the total number of mature females at the start of the winter season of year t.  

 

Likelihood function 
Absolute abundance estimates 
Under the assumption that the estimates of absolute abundance for the sub-area A are log-normally distributed, the 
negative of the logarithm of the likelihood function for the absolute abundance estimates (“best”) for sub-area A and 
year t is given by: 
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where ,obsA
tN  is the survey estimate of abundance for feeding ground A during year t: 
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and A
tσ  is the CV of  ,obsA

tN .  

Some of estimates of abundance could be“minimum” estimates. Such estimates provide some information on the 
lower bound for abundance but not the upper bound. These estimates are included in the negative log-likelihood in 
the form of the mixture of a log-normal and a uniform distribution (Punt, 2019). A “smoothing function” is used to 
transition between the two components of the negative log-likelihood to avoid (additional) problems with 
differentiability. 
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where ∆ is a “large” number (here 30). 

Some of the estimates of abundance are zero (or very close to zero) estimates. These estimates are included in the 
negative log-likelihood under the assumption of an over-distributed Poisson (Cooke et al., in press-a): 
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where ,A Obs
tn  is the number of animals seen in the survey conducted in feeding ground A during year t, A

tβ  is the 
product for feeding group A and year t of the track length and the effective search width divided the area of feeding 
ground A; and A

tϕ  is the modified CV parameter for feeding group A and year t. 
Relative abundance estimates 
The estimates of relative abundance (assumed to relate the middle of each period for which data are available) are also 
assumed to be log-normally distributed. However, account needs to be taken of the variance-covariance structure of 
these data (see Cooke [2019]), i.e.: 
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where 
,obsA

tN  is the relative abundance for feeding ground A during year t, V is the variance-covariance matrix for the 
relative abundance indices (Table 5 of Cooke [2019], with an (estimable) additional variance parameter on the 
diagonal of V), Aq  is the catchability coefficient for sub-area A, and  τ is the parameter that governs the non-linearity 
between the index and population size. 

Mark-recapture data: Type A tags 
The mark-recapture data are incorporated in the likelihood function by tracking the number of marks in each breeding 
stock that were marked in each year, i.e.: 
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t a tN  is the number of marked males / females of age a in breeding stock i at the start season s of year t 
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tT  is the number of animals that were marked in sub-area A 
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The model estimate of the number of recaptures of animals originally marked on feeding ground A’ during season s’ 
of year t’ that were recaptured in feeding ground A during season s of year t (excluding within-season recaptures), 
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where s,m/f , A
tC  is the catch of males/females in sub-area A during year t that could have reported a recapture (Figs 2 

and 3).  

The log-likelihood for the marking data, under the assumption of a Poisson recapture process, is given by: 
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where , ', , '
, '
s s A A
t tR  is observed the number of recaptures of animals originally marked on feeding ground A’ during season 

s’ of year t’ that were recaptured in feeding ground A during season s of year t. 

Mark-recapture data: Type B tags  
The likelihood function is: 

,

,

,s,
( ) ( )

3 ,s,
( ) ( )

R ji i i

C R

R ji

C R

C C j
t i t i t

j
b k k j

i t i t i t
k j

E P X
L

E P X
=

∑
∏ ∑ ∑




     (6.10) 

where iR  is the sub-area in which animal i was released, iC  is the sub-area in which animals i was recaptured, ,m j
tP  is 

probability that a randomly sampled animals in sub-area j during year t is from stock m: 
 

1 , ,s,
,

1 , ,s,

j m j
m j t t

t k m k
t t

k

N X
P

N X

+

+=
∑

      (6.11) 

1 , j
tN +  is the number of 1+ animals in stock j during year t, A

tE  is the effective exploitation rate in sub-area A during 
year t: 
 

s,m/f ,

m/f
, , 1 ,

A
t

A
t A s j j

t t
j

C
E

X N +=
∑

∑



      (6.12) 
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, / ,s m f A
tC  is the catch during year t in sub-area A of males/females that could have reported recaptures of marked sei 

whales. 

Penalities 
A penalty is placed on the deviations over time that determine time-varying parameters, i.e.: 

2
3 i

i
P χ= Ψ∑       (7.1) 

Where Ψ determines the extent of the smoothing penalty. 

Example application (base case models) 
Model structure assumptions 
Two stock hypotheses are explored: 

A. there is a single-stock of sei whales across the North Pacific (see Table 2a for the mixing matrices); the 
reporting rates are 0.63, 0.86 and 0.95 (J.C. Cooke, pers. Commn); and 

B. there are five stocks of sei whales across the North Pacific (see Table 2b for the mixing matrices); the 
reporting rates are 0.63, 0.86 and 0.95. 

 
The base-case model assumed that (a) all of the parameters are stationary, (b) the relative abundance indices are related 
linearly to 1+ abundance with non additional variance, (c) there is no dispersal or natal homing, (d) catchability (qA) 
is the same for all sub-areas and (d) there is no additional variance associated with the estimates of absolute abundance. 
The pre-specified parameters of the base-case model are: 

• Age-at-maturity: 5 years.  
• Natural mortality rate: 0.05yr-1 (equivalent to S=0.951) 
• Density-dependence parameters (A=0.8190; z=2.0930) chosen so that MSYRmat=2% and MSYLmat=0.6 

RESULTS 
Table 3 lists the contributions to the objective function by the absolute abundance estimates, the relative abundance 
data, the mark-recapture data, and the catch penalty by sub-area for the base model. Figure 4-6 shows the fits to the 
data for base model. Figures 7 and 8 show time-trajectories of summer 1+ numbers by stock (Figure 7) and by sub-
area (Figure 8), with asymptotic 95% CIs.  
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Table 2. Summary of abundance estimates for use in population assessment 
 

       With  additional variance 

   Variance-related parameters 
base case (σ = 

0.30) high case (σ = 0.5) 
Subarea Year Estimate CV n φ β CV φ CV φ 
WC 2006 416 0.482     0.568   0.694   
WC 2010 444 0.561     0.636  0.751   
Pel 2010 29 818 0.209     0.240  0.287   
Alt 2010 189   4 0.217 0.02115   0.370   0.545 
Mix 2012 0   0 0.234 0.01126   0.380   0.552 
ENP 2012 298   4 0.234 0.00859   0.380   0.552 
EC 2011 896 0.410       0.462   0.541   

 
Table 2. The catch mixing matrices (IWC, 2018). The γ-values are the estimated parameters, whereas the remaining 
values are pre-specified. 

 West Coastal Aleutians Pelagic Mixed ENP East Coastal 
(a) Single stock    
 γ1 γ2 1 γ3 γ4 γ5 
(c) Five stocks 
Stock A 1 0 0 0 0 0 
Stock B γ1 1 0 γ2 0 0 
Stock C γ3 γ4 1 γ5 γ6 γ7 
Stock D 0 0 0 γ8 1 γ9 
Stock E 0 0 0 0 0 1 

 
Table 3. Contribution of the various data sources to the objective function by sub-area (and in total). The sum row 
denotes the contribution of all four sources to the objective function.  
 

 
Component 

West 
Coastal Aleutians Pelagic Mixed 

Eastern 
North Pacific 

East 
Coastal Total 

Single-stock        
Absolute abundance 0.05 10.38 2.44 5.77 0.00 2.29 20.92 
Relative abundance 16.36 9.31 12.94 1.60 0.53 8.35 49.09 
Marking 23.46 71.74 80.88 20.04 8.38 8.72 213.21 
Catch 1.24 0.00 0.00 0.00 0.00 0.00 1.24 
Sum 41.10 91.42 96.26 27.41 8.91 19.36 284.47 
Multi-stock        
Absolute abundance 4.02 11.42 2.76 5.54 0.00 0.96 24.70 
Relative abundance 6.14 8.40 10.36 1.60 0.55 4.52 31.57 
Marking 19.12 70.26 64.67 19.39 6.20 7.81 187.44 
Catch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Sum 29.28 90.07 77.79 26.53 6.75 13.29 243.71 
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Figure 1. Lines (black lines) for dividing data into sub-areas for the in-depth assessment of North Pacific sei whales. 
Red words indicate name of the sub-areas. Numbers indicate locations of the lines (Figure 1; IWC 2019). 
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Figure 2. Catches by sub-area and year for females. The upper panels show the time-series of catches aggregated over 
fleet, while the lower panels show the percentage of the annual catches considered to be capable of reporting the 
recapture of a marked animal. Missing values in the lower panels for each sub-area are years for which the catch is 
zero. Source: J.G. Cooke (pers. commn). 
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Figure 3. Catches by sub-area and year for males. The upper panels show the time-series of catches aggregated over 
fleet, while the lower panels show the percentage of the annual catches considered to be capable of reporting the 
recapture of a marked animal. Missing values in the lower panels for each sub-area are years for which the catch is 
zero. Source: J.G. Cooke (pers. commn). 



14 
 

 
Figure 4.  Time-trajectories of summer 1+ abundance by sub-area with the estimates of absolute (open circles) and 
relative (closed circles) abundance. The vertical lines denote 95% confidence intervals based on the sampling CVs. 
Results of shown for the base-case model. 
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Figure 5. Observed (black bars) and model-predicted (gray bars) numbers of Type A recaptures by recapture sub-area by sub-area of marking and the time-
trajectories of observed and model-predicted recaptures by sub-area of marking. The left panels pertain to the single-stock model and the right panels to the multi-
stock model. 
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Figure 6. Observed (black bars) and model-predicted (gray bars) numbers of Type B recaptures by recapture sub-area by sub-area of marking. The left panels 
pertain to the single-stock model and the right panels to the multi-stock model.
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Figure 7. Time-trajectories of summer 1+ abundance by stock for the base model. The results for the single-stock 
hypothesis are shown in the top row and for the multi-stock hypothesis in lower two rows.  
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Figure 8. Time-trajectories of summer 1+ abundance by sub-area for the base model. The results for the single-stock 
hypothesis are shown in the upper two rows and for the multi-stock hypothesis in lower two rows.  
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