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Abstract

Certain facets of the population dynamics of a species are hard to quantify. In particular
stock boundaries are often hard to estimate. This document discusses the application of a
recent tagging method applicable when breeding populations overlap on feeding grounds and
extends upon . The tagging is augmented with information on genetically determined close
relatives. The proposed tagging method is studied using simulations. Statistics which can be
used to compare these rivalling stock structure hypotheses, are introduced and contrasted.
The simulation emulates competing stock structure hypotheses for North Atlantic–Fin whales
(Balaenoptera physalus).

The results show that, in the case of North Atlantic–Fin whales, an acceptable level of
discriminatory power is reached with 100 effective samples.

Introduction
When managing a marine resource a number of complicated processes interact. The management
typically encompasses diverse economical and political objectives such as the maximization of the
resources yield and maintaining employment security. Politics and economics aside a rational
utilization of the marine resource is often desired, e.g. how much of the resource can be reliably
harvested sustainably (Baldursson et al., 1996). For the exploitation of fish and marine mam-
mals managers have, historically, focused typically on issues pertaining to stock assessment while
important questions regarding stock structure and distribution remain unanswered.

Stocks have often been defined by management boundaries. These management boundaries
set according to the distribution of the key species of commercial interest Halliday and Pinhorn
(1990) potentially. This could lead to separate advice given to the same stock depending on
the management area for obvious reasons. Therefore, when dealing with fish stocks, numerous
methods have employed to test the accuracy of stock definition and borders. Tagging, both
mark recapture (Rayner, 1940; Chenuil et al., 2000; Laurenson et al., 2005; Peakall et al., 2006;
Hannesson et al., 2008) or satelite tracking (Mate et al., 2007; Víkingsson and Heide-Jörgensen,
2012; Horton et al., 2011; Matthews et al., 2011), is commonly used to identify individual and
stock movement between (and within) areas. Mark–recapture experiments are however not always
suited to track individual movements. For instance fish may not survive the marking, marks do not
survive a moulting period (i.e. crablike animals) or larval straying between populations. There are
also factor not directly connected to the biology of the species, for instance baleen whales where a
moratorium has been in place since 1986 which has, for obvious reasons, made traditional mark–
recapture analysis (almost) impossible. Satellite tracking methods have their own deficiencies. In
Víkingsson and Heide-Jörgensen (2012) the longest tag duration for a minke whale was less than
4 months and therefore not suitable to monitor annual migration patterns.
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Even when tagging is possible it is not always sufficient to detect separate breeding populations.
Breeding stocks can overlap on feeding grounds, as suggested by an analysis of otolith classification
or genetic structure (Reynolds and Templin, 2004; Wennevik et al., 2008; Jónsdóttir et al., 2007).
These results indicate that, if neglected, managing two (or more) separate breeding populations
could have adverse effects, such as an overexploitation of one breeding population, without being
detected by conventional assessment methods.Genetic differences have been used to determine
separate breeding populations of marine mammals (Andersen et al., 1997; Bérubé et al., 2002;
Parsons et al., 2006; Fontaine et al., 2007; Pampoulie et al., 2008). Despite considerable efforts
through decades (Donovan, 1991), traditional population genetic studies have in many cases failed
to give unequivocal answers to important questions concerning cetacean stock structure. A major
obstacle for interpretations of these studies has been the fact that for most baleen whales the
breeding grounds are unknown and sampling has thus been restricted to the summer feeding
grounds. Furthermore, large baleen whales, such as the North Atlantic Fin whales, do not often
exhibit sufficient genetic variability to detect separate breeding populations (Bérubé et al., 1998;
Pampoulie et al., 2008). The possibility of two or more breeding populations can, however, not be
ruled out as the hypothesized split occurred relatively recently and the stocks have not had time
to detectably differentiate (Pampoulie et al., 2008).

In the absense of detectable genetic structures genetic tagging (as described by Palsbøll, 1999)
or other genetic methods such as information on close relatives could be used to answer question
related to stock structure (Skaug, 2001; Palsbøll et al., 2010; Nielsen et al., 2001), for instance
the effect of larval drift between different breeding stocks Planes et al. (2009). A simulation ex-
periment of its potential application in management of marine mammals can be found in Økland
et al. (2010) where managment units are defined for geographically segregated stocks using genet-
ically determined close relatives. The authors, however, note that their method would hardly be
applicable to stocks that overlap on feeding grounds whilst separate on breeding grounds, as is
common for baleen whales, due low discriminatory power.

Here a simulation study of a (genetic) mark–recapture experiment, that has been augmented
using information on genetically determined close relatives, is described. The simulation is based
on a marine mammal population, the North Atlantic Fin whales, where it is assumed that the
animals migrate between feeding and breeding grounds where they overlap to some degree. The
tagging experiment aims to answer important management questions regarding stock structure.
Relevant stock structure hypothesis are introduced and constrasted using three test statistics.
The resulting analysis provides a power analysis of the comparison of the competing hypotheses
as function of sample size

Methods

The setting
The North Atlantic Fin whale is spread out accross the whole of the North Atlantic and in a
recent TNASS survey (Pike et al., 2008) the total abundance in the Irminger sea was estimated
to be around 25.000 (95% C.I. 18.186 – 30.214) animals in 2001. Commercial fin whale operations
started in the late 19th century, however after, according catch series data, a collapse in fin whale
abundance the Icelandic parliament issued a ban on all whaling activities in 1914. When whaling
resumed in 1948 the fin whale stocks in Icelandic waters had made a significant recovery.Since
1986 a whaling moratorium has been in place. In 2009 the Icelandic government lifted the ban on
commercial fin whaling and began issuing an annual quota of 150 fin whales.

Tagging studies in Icelandic on the North Atlantic Fin whales have suggested that fin whales
exhibit some site fidelity between year. For management areas in and adjacent to the Irminger sea,
that is East–Greenland (EG), West–Iceland (WI) and East–Iceland (EI), To two different stock
structures hypotheses have been suggested that could explain the fin whale distribution. The
first is a mixing hypothesis where it is assumed that the fin whales in the waters around Iceland
and East–Greenland originate from three separate breeding stocks with no dispersion (no genetic
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BG1 BG2 BG3 BG1 BG2 BG3

EG WI EI EG WI EI

Figure 1: An overview of the competing stock structure hypotheses for the North Atlantic Fin
whales in the Irminger sea. The figures illustrate three isolated breeding stocks with breeding
grounds BG1, BG2 and BG3 that migrate to feeding grounds East of Greenland (EG), West (WI)
and East of Iceland (EI). The figure on the left illustrates the mixing stock structure, where there
is no gene sharing with some degree of overlap on the feeding grounds. The dashed line indicate
movement from the breeding grounds to a feeding ground adjacent to the one which the majority
of the substock population migrates to. The figure on the right shows the dispersion hypothesis,
i.e. genetic sharing between the breeding stocks.

sharing) on the breeding grounds. It is assumed that the whales choose the next years feeding
ground independently, i.e. with no memory, of where they were this year. The other hypothesis
assumes that there is some degree of dispersion on the breeding grounds. Under this hypothesis
whales choose their feeding ground based on last years feeding ground. An illustration contrasting
the different feeding migrations patterns is shown in figure 1.

To compare the two stock structure hypotheses, dispersion and mixing hypothesis, a genetic
tagging experiment (biopsy collection) in the East–Greenland subarea has been suggested. During
which time, for a ten year period, a quota of 150 fin whales annually has been set in the West
Iceland subarea. The tagging experiment is designed is order to reject the mixing hypothesis in
favor of the dispersion hypothesis, if possible.

Simulation
The stock dynamics in this study were implemented in a computer program, Rgadget (Elvarsson
et al., 2011), set up in such a way as to closely mimic the dynamics of the Baleen II model as
described in Punt (1999). In the analysis which follows comparison will be made on the basis
of two possible stock structures, mixing or dispersal type, as shown in figure 1. When mixing
dynamics are assumed, separate breeding stocks overlap (to some fixed degree) on the feeding
grounds, while dispersion denotes the permanent migration between breeding stocks.

The general dynamics of the population is (as in Punt, 1999) governed by the following. The
stock size is determined by the following equations:

Ngj,t+1,0 =
bj,t+1

2

Ngj,t+1,a = e−M
∑
j 6=j′

[
(1−Djj′)(Ngjt,a−1 − Cgjt,a−1) +Dj′,j(Ngj′t,a−1 − Cgj′t,a−1)

]

Ngj,t+1,x = e−M
∑
j 6=j′

[
(1−Djj′)(Ngjt,x−1 − Cgjt,x−1 +Ngjtx − Cgjtx)+

Dj′j(Ngj′t,x−1 − Cgj′t,x−1 +Ngj′t,x − Cgj′tx)

]
(1)
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where Ngjta is the number of animals of gender g, age a < x, x = 25+ is the maximum age and
stock j at the start of year t. Cgjta is the catch in numbers, bjt the number of calves,M = 0.08 the
natural mortality and Djj′ is the stock dispersions from stock j to j′. Furthermore it is assumed
that the stock are at their equilibrium density.

The stock distribution on feeding grounds is defined by a so called mixing matrix V = Vjk
where Vjk denotes the proportion of stock j that migrates to area k annually. Under the mixing
hypothesis it is assumed that the central sub–stocks, even though separate on the breeding grounds,
overlap on the feeding grounds. The feeding grounds have been split up into three distinct subareas.
The subareas represent the main feeding ground for each of the central stocks. While 90% of the
stocks individuals migrate to their own feeding ground, regardless of where they were last year, 5%
migrate to each of the areas adjacent to their native feeding ground. The dispersion hypothesis
assumes that individuals stray between sub–stocks while the sub–stocks migrate to a fixed area.
In general the stock overlap (mixing) is according to:

V =


C1 C2 C3

EG 1− α α 0
WI α 1− 2α α
EI 0 α 1− α

 (2)

where the columns represent the breeding stocks (C1, C2, C3) and the rows feeding areas (EG, WI,
EI). Under the mixing hypothesis α = 0.05 while under the dispersion α = 0. Under the dispersion
α = 0.05 while the annual straying between three sub–stocks is set according the following schema:

C1←C2 C2→C3 C1↔C3
0.05 0.3 0

with straying from C1 and C3 to C2 defined to maintain equilibrium on feeding grounds.
where straying the reverse direction is then defined and estimated in order to to maintain equilib-
rium in the stocks sizes.

The recruitment to the stock is determined by the number of mature females in the stock
population.

bjt = BjNfjt

[
1 +Aj

(
1−

(
Nfjt
Kfj

)zj)]
(3)

where Bj is the average number of births per mature female and year in stock j, Aj and zj are the
resilience and compensation parameters, Nfjt =

∑x
a=am

Nfjta is the number of mature females
in stock j, am = 6 the age of first parturition and Kfj is the number of mature females in the
pristine population. Values for the recruitment parameters are chosen such that the MSYR is 0.01
and is obtained at 0.72Kj , where Kj the carrying capacity of stock j.

Commercial catches from the stocks are calculated in the usual manner:

Cgjta =
∑
k

FgktVjktSgaNgjta

Fgtk =
Cgkt∑

j′ Vj′kt
∑
a′ Sga′Ngj′ta′

(4)

where Fgkt is the harvest rate, Sga is the gender specific selectivity formulated as Punt (1999):

Sga =
1

1 + e−(a−ag50)/δg
(5)

and Vjkt is the proportion of stock j in area k at year t. The values of the gender specific selection
parameters are:

Selection: Male Female
δf 0.57 1
a50 3.6 4.5
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Tagging can, as noted above, be used to estimate stock migrations. Although here it is assumed
that all tagging is made using data collected using genetic material such as skin samples it can fit
well in with conventional mark–recapture analysis (Palsbøll, 1999) .The dynamics of the tagged
sub–population in the simulations is the same as for the untagged population. For the sake
of simplicity only a single tagging experiment, conducted in a single area, is considered in this
analysis. The initial (t = 0) number of tagged animals is distributed for each stock j and each age
a according to the equation:

Tgj0a =
Ngj0a ∗ φ0∑
gjaNgj0a

, (6)

where φ0 is the total number of tagged animals. The expected number of animals recaptured is a
function of the dynamics applied to the population, both tagged and untagged. The recaptures,
Ût, were considered to be distributed according to

∏
t

Γ(Ut + Ût)

Γ(Ût + 1)Γ(Ut)

(
λ

1 + λ

)Ut
(

1

1 + λ

)Ût

, (7)

i.e. a negative binomial distribution with a dispersion1 parameter Ut defined to be the predicted
number of animals recaptured by commercial whaling fleets and λ = 2 controls the detection
probability. Using a negative binomial distribution for the tag-recaptures, instead of a more
commonly used poisson model, intended to allow for greater variation.

Comparing hypotheses
In the setting described above two different stock structure hypotheses are to be contrasted. To
compare these stock structure hypotheses three potential methods of comparison are studied here.

• Time–trend analysis using regression.

• Total number of recaptured animals by area.

• Number of recaptured animals by area in relation to number of intra–related individuals
within the catch.

To compare the two hypotheses using direct (genetic) tagging a negative binomial regression
model for a time trend in the dispersion parameter can be fitted. The resulting model can be
compared, using a likelihood ratio test, with a model with no time trend. The the rejection
interval was set such that the type I error, i.e. the rejection probability when mixing is the true
stock structure, was either 5% or 10%.

In genetic tagging augmented with information regarding genetically determined close relatives,
such as described in Skaug (2001), a skin sample from a single whale can, in the case of NA–fin
whales, effectively tag 2.5 – 3.5 other whales, as shown in Gunnlaugsson (2011 (submitted)). Using
information on close relatives time trends in occurrance at feeding grounds are harder to detect.
Intuitively this can be explained by noting that with a dispersing stock relatives are already present
at both feeding grounds at the time of tagging. The total number of caught aninmals that are
related to tagged individuals, i.e.

Tk =
∑
t

∑
j∈J

Tjkt (8)

where Tjkt is the number of animals related to the tagged animals from stock j, caught in area k
at time t and J denotes the set of breeding stocks. Tk should, given a similar degree of dispersion
and mixing, be somewhat higher for dispersing stocks than mixing due to a similar argument as
before.

1Not to be confused with stock dispersion
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Untagged whales caught are also a source of information regarding the stock structure. The
unobservable magnitude of genetic relatedness detected between all whales caught of stock j,
denoted Rk, in area k is expected to be:

Rjk =
cjk(cjk − 1)

2nj
(9)

where cjk is number of animals caught in area k from stock j and where it is assumed one genetic
relation can be detected per individual within a stock j of total size of nj . Note that Rjk tends be
smaller as nj grows larger and the total number of relations detected

(∑
j Rjk

)
becomes smaller

with fixed abundance as the number of breeding stock decreases.
Using the information on related individuals one can augment equation 8 by calculating the

following ratio for each area:

ρk =

∑
t

∑
j∈J Tjkt∑

j∈JRjk
(10)

The above quantity should become larger for dispersing stocks as there is genetic interchange,
even if the total number of effectively tagged individuals is similar.

For each of to the stock structure hypothesis the number of simulated datasets per hypothesis
was 1000 for each number of tags. The number of tags in this experiment varied between 100
to 1500. The tag–recaptures were simulated using equation 7. The stock proportions within the
catch (cj from equation 9) were simulated using a multinomial distribution parametrised by the
expected value of number of individuals caught from each stock. The distribution of the three test
statistics was analysed and for the Null hypothesis, which is in this case the mixing hypothesis,
the rejection interval was chosen in such a way that it would have a rejection probability of 0.05.
Using simulated data based on the alternative hypothesis, which is the dispersion hypothesis, the
power of the test was calculated as a function of the number of tags.

Results
The discriminatory performance of the various statistics discussed above are shown in figures 2, 3
and 4. Trend analysis using a negative binomial regression model, which assumes direct tagging
of individuals, appears to have substantial problems with detecting the difference between the two
hypotheses at these low numbers of tagged whales and mixing. Figure 2 shows that even with 400
direct tags the power to differentiate between the two is relatively low. In fact, in table 1 it can
be seen that in order to get a power of 80% with a chance of Type I error of 5% a little over a
thousand direct tags are needed. If, however, the requirement on type I error is loosened to 10%
the the required number of tags to get a power of 80% is 700.

The other two metrics, the total number of recaptured animals (direct or related to tagged
animals) as described by equation 8 and the ratio ρ of that to relatives in the catches (equation
10), show greater discriminatory power. The number of recaptured animals has the ability to
distinguish between the mixing and dispersion hypotheses with close to 200 effective tags (1̃00
biopsy samples) with a power of > 80, as illustrated in table 2.

The ρ ratio adds information on the relatives in the catches. Figure 4 shows the discriminatory
power to be fairly good, even with as few as 100 samples. According to the results in table 3 the
power is well in excess of 80%.

Discussion
The analysis presented here illustrates a potential use of genetically determined close relatives
when determining management units for large baleen whales. It adds to an already described
methodology illustrated in Økland et al. (2010) by allowing for stock overlap in the feeding grounds.
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When studying the NA–fin whale the methods described here compare favorably to conven-
tional mark–recapture methods simply through the increase in effective number of samples. Ge-
netically closely related individuals (matched pairs) may have split and dispersed over a longer
period than the time lapse between the collection of the samples. This was not modeled here but
would give additional strength.

Two sources of potential biases need to be mentioned regarding this study. Firstly it is assumed
that the simulated whale populations are at their carrying capacity. This assumption is made
merely out of convenience, as the whale populations are considered to be close to it, and should
not influence the results dramatically. The simulated time period is relatively short compared
to the lifespan of the whales, who enter the harvest at the average age of around 4 years and
the production of the stock is rather low. The second source of bias is the fact that the stock
abundances are assumed to be known that could, when included into the simulation study, decrease
the power of the tests.

The level of the stock overlap, i.e. mixing rate, influences the results. At these really low levels
the test statistics described in equations 8 and 10 perform considerably better than a regression
model with a time trend. However it is expected that as the mixing rate increases the power of the
time trend analysis would stay fixed while at the same time the power of the other two statistics
would decrease. The effect on management in this particular case would however be reduced as
the qouta assigned in the area West of Iceland would increase under the mixing hypothesis (IWC,
2012).

With close kin relationships such as utilized here one needs to take considerable care when
deciding what level of close relation are included. On one hand it is a question of feasibility as the
number of alleles needed for accurate detection of increases substantially as the order of relation
increases. On the other hand it depends on the stock structure hypotheses under scrutiny. In this
case it is expected, as noted earlier, that in the case of the North Atlantic fin whale the effective
number of tags lies between 2.5 and 3.5 per skin sample which could increase the power of the
tests by a similar factor. However if one were to study hypotheses such as male mediated DNA
one would need to focus on mother offspring pairs.
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Figure 3: Histogram of the proportion of tags recovered in under the two different stock structure
hypotheses faceted by the number of tags released.
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Figure 4: Histogram of the ratio of recovered tags to the number of genetic relations found in the
catch under the two different stock structure hypotheses. The results are faceted by the number
of tags released.
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Table 1: The probability of rejecting H4 conditioned on the stock hypotheses using a direct tag-
recapture experiment. The rejection interval was chosen such that the probability of type I error
was either 5% or 10%.

Stock- Number of tags
Hypo. 100 200 300 400 500 600 700 800

H4 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
H3 0.47 0.56 0.62 0.66 0.74 0.74 0.81 0.85
H4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
H3 0.40 0.48 0.49 0.54 0.64 0.62 0.72 0.75

Number of tags
900 1000 1100 1200 1300 1400 1500

H4 0.10 0.10 0.10 0.10 0.10 0.10 0.10
H3 0.86 0.88 0.92 0.94 0.93 0.94 0.96
H4 0.05 0.05 0.05 0.05 0.05 0.05 0.05
H3 0.75 0.79 0.86 0.86 0.82 0.88 0.92

Table 2: The probability of rejecting H4 conditioned on the stock hypotheses using a genetic
tag-recapture experiment based on number of recaptures (or captured relatives). The rejection
interval was chosen such that the probability of type I error was 5%.

Stock Effective number of tags
hypo. 100 200 300 400 500

H3 0.740 0.915 0.982 0.988 0.999
H4 0.046 0.038 0.033 0.031 0.039

Table 3: The probability of rejecting H4 conditioned on the stock hypotheses using a genetic
tag-recapture experiment based on ρ as defined by equation 10. The rejection interval was chosen
such that the probability of type I error was 5%.

Stock Effective number of tags
hypo. 100 200 300 400 500

H4 0.05 0.05 0.05 0.05 0.05
H3 0.94 0.99 1.00 1.00 1.00
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