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A note on variability in R0 calculated from an individually based baleen whale energetic 
model. 

William de la Mare, 
Australian Antarctic Division, Channel Highway, Kingston, Tasmania, Australia, 7050. 

 
Abstract 
An individual based energetic model is used to derive possible relationships between the observed rates of 
increase of whale populations at low population sizes and observed levels of variability in fecundity. 

Introduction 
At the MSYR workshop held in March 2013 in La Jolla (SC/65A/Rep05), I presented a model based on 
individual animals that uses a detailed energy budget to determine reproductive success and mortality in an 
environment where food has a patchy spatial distribution (de la Mare, 2013). The model will not be described 
further here. 
    The calculation of maximum sustainable yield rate (MSYR) from the rate of recovery of depleted whale 
populations needs to take into account the effects of environmental variability on both birth-rates and deathrates 
(Cooke, 2012). Counting calves on the breeding grounds provides information on the first source of variability, 
but direct observation of variability in death rates is not practical. However, birth-rates and death rates are both 
consequences of the amount of energy available to animals in the population. A reasonably comprehensive 
energetic model enables the calculation of plausible relationships between birth-rates, death rates and realised 
rates of population increase. The energetic model is used here to predict variability in the realised rate of 
increase (r0) in a generic depleted whale population given estimates of the variability and autocorrelation in 
birth-rates. The variability in the model’s realised rates of increase is subject to the variability in death rates 
because the model links deathrates to birth-rates through the energetic requirements of the animals. The results 
are provided in the form used in the meta-analysis of (MSYR) according to the methods described in Punt 
(2012). 

The calculations 
 Variability in births and deaths in a population is modelled as a consequence of a variable food supply. The 
realised rates of increase depend both on the average amount of food available and the variability in the food 
supply. A wide range of variations in the food supply is modelled so as to produce a range of variations in birth-
rates, deathrates and r0. The results of the simulations are used in a linear model to predict the variability in r0 
conditioned on given values of variability in birth-rate (σf) and its autocorrelation (ρf). 
    The procedure for the calculations starts with setting a number of scenarios for the prey population and 
running a single realisation of the population model for 1500 years to stabilise the composition of the population 
so that it is at carrying capacity (K) and adapted to each particular prey scenario.  The population is then reduced 
to about 1% of K over a 50 year period with a constant harvest rate. This provides a starting point from which 
the population is allowed to recover with the numbers of animals alive in each year being used to calculate the 
rate of increase and the inter-annual variability in the rate of increase. The recovery trajectories are generated 
from the common starting point multiple times. The population is allowed to increase for 20 years before rates 
of increase and variability are calculated from the next ten years of population statistics. The 20 year period 
prior allows for the randomisation of the population statistics at the outset of the calculations. The calculation 
period is kept down to 10 years to ensure that the population statistics still reflect those of a population 
increasing well below K. The recovery period is repeated 200 times thus giving a total simulated time series of 
2000 years.  
   For each 10 year replicate the rate of increase is estimated as: 
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where Ny is the total abundance in year y. 
 
Equation (1) has the effect of de-trending the numbers so that the coefficient of variation (CV) of the annualised 
rate of increase is standard deviation. The birth-rates (per mature female) and death rates (per total abundance) 
are analysed in a similar way. The summary statistics from the set of simulations are given in Table 1. 
    Unfortunately, the execution time for the model can be long and so it proved impractical in the time available 
after the workshop to condition the model to specific values of σf and ρf.  Instead I attempted to condition the 
model statistically by running the model for a range of prey conditions that vary in abundance and variability. 
This produces a range of r0/rmax values from around 0.1 to 1. along with variations in σf as shown in Fig. 1.  
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    Fig 2 shows the relationship between CV(r0) and1 -  r0/rmax with a fitted regression line through the origin. 
The regression line is: 
 

𝐶𝑉(𝑟0) = −0.0441 �𝑟0 𝑟𝑚𝑎𝑥 − 1� �    (2) 
 
   The CV can be rescaled to rmax simply by dividing by the rmax value, which in these simulations is 0.118. 
    I then fitted linear regressions to predict values of r0/rmax, CV(r0) and serial correlation in abundance using σf 
and ρf as independent variables. The regression for r0/rmax used log(r0/rmax) as the dependent variable and the 
regression line was forced to include the origin so that r0/rmax = 1. when there is no variability in fecundity. Figs 
3 to 8 show the relationships between the mean values of r0/rmax, CV(r0) and ρ(N) for the mean values of σf and 
ρf. The relationships from the full 200 replicates of each prey scenario are shown in figs 9 to 14. The results 
using these a linear model fitted to these results on the MSYR Working Group’s selected stocks are given in 
Table 2. 
    The results show that in this particular set of trials that values for the mean variability in fecundity were lower 
than some of the values included in the table of selected stocks. This has had the consequence that the 
conditional mean values of r0/rmax are quite low in those cases where σf is substantial. 
    The results for r0/rmax and CV(r0)for the specified values of σf and ρf for the various stocks are shown in table 
2.  Table 3 is based on regressions in which the values where the mean values of r0/rmax less than 0.4 are 
excluded. Table 4 is based on the regressions using the total set of 5800 values, except that values where r0/rmax 
< 0 are excluded. The results in the three tables are similar, so it is not simply the case that the more extreme 
values of r0/rmax are driving the results. 
    The current simulations are generally inconsistent with relatively high values of r0/rmax co-occurring with the 
observed high variability in fecundity. However, in the total set of results high levels of variability in σf are 
found in some trials in these simulations and these higher values attained in the simulations are consistent with 
the higher values assigned to the selected stocks. The variability in death rates is higher than that of the birth-
rates and adjusting some parameters of the energetic model might allow for the two sources of variability to be 
partitioned differently. The results suggests that uncertainty in the variability in fecundity and its unobserved 
relationship with variability in deathrates may be more important for the meta-analyses than has been considered 
so far, particularly considering that only 5 of the 13 stocks have direct estimates of σf and ρf. In addition, the 
statistical uncertainties in the estimates of σf and ρf are not taken into account in the meta-analysis. 

The resultant yield curves 
The model with the various prey scenarios is used to calculate the corresponding yield curves by running it 
forward from the unexploited state (after 1500 years) for a further 50 years to randomise the starting state, and 
then for a further 400 years at various constant exploitation rates. The average catch and abundance in the last 
200 years are taken as estimates of the long-term equilibrium yield and abundance. These simulations are 
replicated 25 times with the yields thus averaged over 5000 simulation years.  A Pella-Tomlinson model is fitted 
to the simulated yields to estimate MSYR and MSYL. 
    These computations are very time consuming and several model scenarios were still running when this note 
was drafted. The results from those cases which were completed are shown in Table 4. An example of a fitted 
yield curve is shown in Fig. 15. 
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Table 1. Statistics from the 29 different prey abundance and variability scenarios 

Scenario Prey 
abund. 

Prey 
CV K CV(K) r0 CV(r0) ρ(N) σ(ρ(N)) σf σ(σf) ρf σ(ρf) σd σ(σd) ρd σ(ρd) ρbd σ(ρbd) 

1 10000 0. 56665 0.003 0.0950 0.00582 -0.0492 0.3015 0.0325 0.0099 -0.3695 0.2694 0.0775 0.0189 -0.1112 0.2804 0.1136 0.3359 

2 10000 0.5 48976 0.217 0.0968 0.0061 0.0072 0.2832 0.0328 0.0098 -0.3925 0.2543 0.0805 0.0204 -0.1007 0.2768 0.0806 0.3455 

3 10000 0.7 42759 0.271 0.1014 0.0056 -0.0255 0.2982 0.0286 0.0086 -0.4139 0.2182 0.0718 0.0197 -0.0437 0.2866 0.1462 0.3284 

4 10000 0.9 37827 0.333 0.1111 0.0056 0.0682 0.2743 0.0226 0.0083 -0.3076 0.2736 0.0803 0.0584 -0.0016 0.3115 0.0788 0.3626 

5 5000 0.5 23023 0.198 0.0962 0.0091 -0.1171 0.2982 0.0482 0.0150 -0.4678 0.2313 0.1244 0.0348 -0.1043 0.2921 0.1062 0.3861 

6 5000 0.7 19184 0.242 0.0838 0.0134 -0.0963 0.3012 0.0811 0.0266 -0.4234 0.2528 0.1926 0.0551 -0.0799 0.2693 0.1236 0.3555 

7 5000 0.9 16825 0.313 0.0964 0.0134 -0.0274 0.3210 0.0651 0.0233 -0.4565 0.2528 0.1768 0.0563 -0.0301 0.2933 0.0316 0.3682 

8 3000 0.5 10777 0.234 0.0791 0.0181 -0.0862 0.3070 0.0968 0.0321 -0.4652 0.2427 0.2377 0.0720 -0.0714 0.2941 0.1160 0.3763 

9 3000 0.7 8233 0.324 0.0695 0.0194 0.0158 0.2943 0.1065 0.0335 -0.4085 0.2481 0.2673 0.0872 0.0244 0.2985 -0.0068 0.3438 

10 3000 0.9 5957 0.429 0.0564 0.0268 0.0540 0.2933 0.1420 0.0521 -0.3197 0.2432 0.3386 0.1408 0.0791 0.3093 -0.0229 0.3588 

11 2500 0.5 6897 0.285 0.0658 0.0191 0.0441 0.3007 0.1007 0.0321 -0.3687 0.2570 0.2441 0.0746 0.0577 0.3229 0.0285 0.3403 

12 2500 0.7 4880 0.423 0.0601 0.0293 0.0873 0.2748 0.1316 0.0463 -0.3490 0.2847 0.3292 0.1273 0.0952 0.3222 -0.0658 0.3631 

13 2500 0.9 5957 0.429 0.0637 0.0294 0.0754 0.2981 0.1254 0.0482 -0.3297 0.2739 0.3390 0.1463 0.0613 0.3361 -0.0324 0.3568 

14 3000 0.5 42677 0.210 0.0659 0.0127 0.2371 0.2960 0.0728 0.0215 -0.4159 0.2212 0.1645 0.0507 0.0025 0.3230 0.0267 0.3418 

15 3000 0.7 39118 0.291 0.0586 0.0174 0.0463 0.2938 0.0992 0.0345 -0.3524 0.2452 0.2212 0.0708 0.0163 0.3222 0.0189 0.3641 

16 3000 0.9 26921 0.304 0.0545 0.0226 0.1089 0.3004 0.1100 0.0382 -0.2931 0.2650 0.2699 0.1172 0.0854 0.3169 0.0854 0.3486 

17 2500 0.5 30225 0.250 0.0549 0.0173 0.0695 0.2687 0.0961 0.0307 -0.3517 0.2316 0.2054 0.0607 0.0381 0.2965 -0.0042 0.3413 

18 2300 0.9 20749 0.457 0.0563 0.0287 0.1301 0.2723 0.1226 0.0541 -0.2853 0.2838 0.3151 0.1294 0.0936 0.2897 -0.1187 0.3658 

19 2300 0.7 30538 0.325 0.0582 0.0193 0.1177 0.2858 0.0957 0.0297 -0.3225 0.2676 0.2224 0.0884 0.0894 0.3123 -0.0317 0.3579 

20 2500 0.7 52260 0.256 0.0622 0.0115 0.0697 0.2771 0.0641 0.0193 -0.3399 0.2573 0.1538 0.0600 0.0801 0.3328 -0.0189 0.3227 

21 2500 0.9 40879 0.359 0.0641 0.0172 0.1362 0.2922 0.0666 0.0305 -0.2831 0.3113 0.1994 0.1111 0.1659 0.3023 -0.1033 0.3847 

22 2000 0.9 15975 0.343 0.0509 0.0324 0.1325 0.2679 0.1385 0.0613 -0.2745 0.2867 0.3252 0.1342 0.0852 0.3157 -0.0736 0.3485 

23 1800 0.9 7551 0.552 0.0386 0.0368 0.1328 0.2684 0.1884 0.0741 -0.2980 0.2356 0.4018 0.1403 0.0857 0.2850 -0.0774 0.3394 

24 1600 0.9 2087 0.328 0.0287 0.0455 0.1667 0.2672 0.2176 0.1107 -0.2688 0.2743 0.4427 0.1499 0.1045 0.3008 -0.1076 0.3094 

25 1500 0.9 829 0.313 0.0171 0.0444 0.2025 0.2580 0.2144 0.0911 -0.2276 0.2762 0.4351 0.1560 0.1315 0.3212 -0.1291 0.3471 

26 1800 0.9 2179 0.452 0.0085 0.0410 0.1942 0.2538 0.2117 0.0950 -0.2270 0.2394 0.4113 0.1411 0.1173 0.3188 -0.0927 0.3172 

27 1800 0.0 136635 0.034 0.0439 0.0061 -0.0363 0.2488 0.0391 0.0114 -0.3950 0.2174 0.0620 0.0161 -0.1401 0.2725 0.1023 0.3712 

28 2500 1.0 48077 0.336 0.0665 0.0158 0.0245 0.2930 0.0826 0.0299 -0.3899 0.2456 0.2096 0.0892 0.0362 0.3073 0.0092 0.3455 

29 1800 0.5 57669 0.187 0.0357 0.0206 0.2068 0.2475 0.0938 0.0290 -0.1635 0.2811 0.2025 0.0690 0.1349 0.3004 -0.1623 0.3446 
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Table 2. Predicted from the regressions on the means with predicted ρ(r) truncated at 0.5 

 Variation in fecundity and mortality 
 σf ρf rmax r0/rmax CV(r) ρ(r) 

Blue       

   Central North Atlantic 0.380 -0.181 0.114 0.0451 0.0794 0.299 
   Southern Hemisphere 0.380 -0.181 0.114 0.0451 0.0794 0.299 
   Eastern North Pacific 0.380 -0.181 0.114 0.0451 0.0794 0.299 
Fin       

   North Norway 0.765 0.636 0.114 0.0013 0.1626 >1 (0.50) 
   Eastern North Pacific 0.765 0.636 0.114 0.0013 0.1626 >1 (0.50) 

Humpback       

   Western Australia 0.135 0.320 0.103 0.288 0.0293 0.715 (0.50) 
   Eastern Australia 0.135 0.320 0.103 0.288 0.0293 0.715 (0.50) 
   Eastern North Pacific 0.135 0.320 0.103 0.288 0.0293 0.715 (0.50) 
   Hawaii 0.135 0.320 0.103 0.288 0.0293 0.715 (0.50) 
Bowhead       

   Bering-Chukchi-Beaufort 0.995 0.065 0.043 0.0002 0.2093 0.724 (0.50) 
Southern Right       

   SE Atlantic 0.042 0.170 0.076 0.6606 0.0093 0.541 (0.50) 
   SW Atlantic 0.308 -0.074 0.076 0.0789 0.0645 0.382 
   SE Indian 0.042 0.170 0.076 0.6606 0.0093 0.541(0.50) 
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Table 3. Predicted from the regressions on the means, omitting cases where r0/rmax < 0.4, with 
predicted ρ(r) truncated at 0.5 

 Variation in fecundity and mortality 
 σf ρf rmax r0/rmax CV(r) ρ(r) 

Blue       

   Central North Atlantic 0.380 -0.181 0.114 0.0990 0.0836 0.309 
   Southern Hemisphere 0.380 -0.181 0.114 0.0990 0.0836 0.309 
   Eastern North Pacific 0.380 -0.181 0.114 0.0990 0.0836 0.309 

Fin       

   North Norway 0.765 0.636 0.114 0.0091 0.1735 >1 (0.50) 
   Eastern North Pacific 0.765 0.636 0.114 0.0091 0.1735 >1 (0.50) 

Humpback       

   Western Australia 0.135 0.320 0.103 0.433 0.0317 0.772 (0.50) 
   Eastern Australia 0.135 0.320 0.103 0.433 0.0317 0.772 (0.50) 
   Eastern North Pacific 0.135 0.320 0.103 0.433 0.0317 0.772 (0.50) 
   Hawaii 0.135 0.320 0.103 0.433 0.0317 0.772 (0.50) 
Bowhead       

   Bering-Chukchi-Beaufort 0.995 0.065 0.043 0.0023 0.2218 0.738 (0.50) 
Southern Right       

   SE Atlantic 0.042 0.170 0.076 0.769 0.0102 0.588 (0.50) 
   SW Atlantic 0.308 -0.074 0.076 0.153 0.0682 0.403 
   SE Indian 0.042 0.170 0.076 0.769 0.0102 0.588(0.50) 
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Table 4. Predicted from the regressions on all values with predicted ρ(r) truncated at 0.5 

 Variation in fecundity and mortality 
 σf ρf rmax r0/rmax CV(r) ρ(r) 

Blue       

   Central North Atlantic 0.380 -0.181 0.114 0.0749 0.0777 0.260 
   Southern Hemisphere 0.380 -0.181 0.114 0.0749 0.0777 0.260 
   Eastern North Pacific 0.380 -0.181 0.114 0.0749 0.0777 0.260 

Fin       

   North Norway 0.765 0.636 0.114 0.0046 0.1622 >1 (0.50) 
   Eastern North Pacific 0.765 0.636 0.114 0.0046 0.1622 >1 (0.50) 

Humpback       

   Western Australia 0.135 0.320 0.103 0.374 0.0298 0.375 
   Eastern Australia 0.135 0.320 0.103 0.374 0.0298 0.375 
   Eastern North Pacific 0.135 0.320 0.103 0.374 0.0298 0.375 
   Hawaii 0.135 0.320 0.103 0.374 0.0298 0.375 
Bowhead       

   Bering-Chukchi-Beaufort 0.995 0.065 0.043 0.001 0.2065 0.658 (0.50) 
Southern Right       

   SE Atlantic 0.042 0.170 0.076 0.728 0.0097 0.264 
   SW Atlantic 0.308 -0.074 0.076 0.121 0.0634 0.275 
   SE Indian 0.042 0.170 0.076 0.728 0.0097 0.264 
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Table 5. Yield curve parameters for the mature population. The blank entries correspond to cases 
where the simulations have yet to finish. 

Model 
number K r0 MSYR MSYL MSYR/r0 

1      
2      
3      
4      
5      
6      
7 11275 0.118 0.0681 0.533 0.579 
8 8160 0.117 0.0536 0.485 0.459 
9 5692 0.089 0.0472 0.511 0.527 

10 3491 0.068 0.0437 0.564 0.643 
11 4799 0.092 0.0445 0.493 0.483 
12 2928 0.073 0.0435 0.543 0.599 
13 3956 0.090 0.0410 0.484 0.457 
14      
15      
16 19921 0.076 0.0300 0.464 0.397 
17 22514 0.065 0.0339 0.508 0.521 
18 14103 0.066 0.0311 0.491 0.475 
19 22106 0.065 0.0352 0.515 0.539 
20      
21      
22 12884 0.065 0.0283 0.477 0.437 
23 8376 0.057 0.0203 0.452 0.358 
24      
25 1581 0.050 0.011 0.413 0.215 
26 4818 0.012 0.0055 0.485 0.459 
27      
28      
29      
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Fig 1. Rates of increase r0/rmax for the different models (sorted by mean values of r0/rmax) (upper), and 
lower corresponding distributions of σf. 
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Fig 2. Relationship between CV(r0)/rmax and r0/rmax. The intercept is 0,0 and the slope is -0.0441. The 
value of rmax is 0.118.  

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.
0

0.
1

0.
2

0.
3

0.
4

r0/rmax- 1

C
V

(r)
/rm

ax



10 
 

 

 

 
Fig 3. Regression relationship between mean(σf) and log(r0/rmax).  
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Fig 4. Regression relationship between mean correlation coefficient (ρf) and log(r0/rmax).  
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Fig 5. Regression relationship between mean(σf) and CV(r0).  

0.05 0.10 0.15 0.20

0.
01

0.
02

0.
03

0.
04

mean sigma(f)

C
V

(r)



13 
 

 

 
Fig 6. Regression relationship between mean(ρf) and CV(r0).  
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Fig 7. Regression relationship between mean(σf) and correlation coefficient ρ(r0).  
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Fig 8. Regression relationship between correlation coefficient (ρf) and correlation coefficient ρ(r0). 
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Fig 9. Regression relationship between σf and log(r0/rmax).  
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Fig 10. Regression relationship between correlation coefficient (ρf) and log(r0/rmax).  
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Fig 11. Regression relationship between σf and CV(r0).  
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Fig 12. Regression relationship between ρf and CV(r0).  
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Fig 13. Regression relationship between σf and correlation coefficient ρ(r0).  
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Fig 14. Regression relationship between correlation coefficient (ρf) and correlation coefficient ρ(r0). 
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Fig. 15. Example of a fitted yield curve. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
00

0.
02

0.
04

0.
06

0.
08

Exploitable population

Y
ie

ld




