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Abstract

We estimate the total abundance of the Bering-Chukchi-Beaufort Seas population of bow-
head whales (Balaena mysticetus) in 2011 from large datasets of visual sightings and acoustic
locations. A Horvitz-Thompson type estimator is used, based on the numbers of whales counted
at ice-based visual observation stations. It divides sightings counts by three correction factors.
The first adjusts for detectability using the results of Givens et al. (2012), who estimate detec-
tion probabilities and their dependence on offshore distance, lead condition, and whale group
size. The second correction adjusts for availability using the acoustic location data to estimate
a time-varying smooth function of the probability that animals pass within visual range of the
observation stations. The third correction accounts for missed visual watch effort. The mean
correction factors are estimated to be 0.501 (detection), 0.619 (availability) and 0.520 (effort).
The resulting 2011 abundance estimate is 16,892 with a 95% confidence interval of (15,704,
18,928). We also insert this estimate into a time series of past visual abundance estimates to
estimate the rate of increase of the population. The annual increase rate is estimated to be
3.7% with a 95% confidence interval of (2.8%, 4.7%). These abundance and trend estimates
are consistent with previous findings and are indicative of very low conservation risk for this
population under the current indigenous whaling management scheme.

1 Introduction

In the spring of 2011, a major multi-faceted program of research for the Bering-Chukchi-Beaufort
Seas population of bowhead whales (Balaena mysticetus) was undertaken, including ice-based visual
counting, underwater acoustic monitoring, aerial photo-identification, satellite tagging and biopsy
sampling. In this paper, we use the visual and acoustic data to estimate total bowhead population
abundance and update the estimate of population increase rate.
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Our presentation is organized as follows. In the next section, we describe the available data.
Detailed exposition of the survey protocols and available datasets are given by George et al. (2013)
and Clark et al. (2013). Our statistical methods are explained in Section 3. Some portions of
our approach rely on estimators whose statistical properties are derived in a technical appendix to
avoid interrupting the flow of the paper. Analysis results follow in Section 4. The final section of
the paper provides discussion and context for our findings.

2 Datasets

Our analyses use two datasets collected in the spring of 2011. The visual dataset was collected
by ice-based observers sighting whales as they migrated to the northeast past Barrow, Alaska.
Observers saw 3379 ‘New’ and 632 ‘Conditional’ whales from the primary observation perch!. The
acoustic dataset was derived from continuous sound recordings from an array of 4 (initially) to 6
(later) passive underwater recorders placed on the seafloor in the vicinity of the visual observation
perches and recovered later that summer. From these recordings, a subsample of time periods
were examined to estimate whale locations from their calls and song. A total of 22,426 bowhead
vocalizations yielding location estimates were collected.

The 2011 visual and acoustic data collection season ran from April 4, when the first visual
watch was conducted on the ice edge, until July 27 when 6-channel acoustic recording ended. The
first bowhead whale was seen on April 9. Our analyses are limited to a shorter season described
below that includes the vast majority of sightings.

Figure 1 summarizes the visual and acoustic data used in our analyses. The horizontal dimension
of this figure is time, which is indexed by hour on the bottom axis and calendar date on the top
axis. The dual axes are for convenience: the two axes match and either may be used everywhere
in the figure. The top portion of the plot shows the acoustic data. Only data within the aperture
zone not excluded for data quality reasons are shown (see Figure 2). Each point corresponds to
one acoustic location at a particular time and a particular distance from the ice edge. The shaded
vertical stripes are times when the recordings were analyzed to estimate locations (blue). About
28% of the analyzed season was examined. The bottom portion of the plot shows the visual data.
Counts of sighted whales are summarized by a (upside-down) histogram. The histogram bins are
6 hours wide. The shaded vertical stripes correspond to periods with qualifying watch effort from
the primary perch (red). About 45% of the analyzed season was covered with qualifying primary
perch effort (see Section 3.1). Only sightings made from the primary perch during these times
are counted in the abundance estimate. When the histogram bin edges extend outside the shaded
stripes, it should be understood that all the sightings within the bin occurred within the stripe.

2.1 Acoustic Data

The acoustic data are used to estimate the proportion of whales that migrate within visual range.
This analysis provides an important correction factor for the total abundance estimate. The nature
of the data is that whale calls are converted to estimated spatial locations and corresponding
heuristic 95% confidence regions using the methods of Clark et al. (2013). Hereafter, we refer to
the data as ‘acoustic locations’.

!George et al. (2013) explain the distinction between New and Conditional sightings, which we revisit later.
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Figure 2: Layout of the 2011 visual and acoustic survey. The six acoustic recorders are stars and
the two visual perches are squares. See the text for a full description. This diagram is only a sketch:
for precise scale and orientation information see Clark et al. (2013).

During the season, six underwater acoustic recorders were deployed near the ice edge. Clark et
al. (2013) describe the details. Figure 2 sketches the survey layout. Although this figure is only
roughly scaled and oriented, true north is towards the top and the ice edge is represented by a line
that runs from southwest to northeast. Migration proceeds roughly parallel to the ice edge. The
two perches are shown as small squares, and the six acoustic recorders are stars.

The larger semicircle in Figure 2 is 20 km from the array centroid. When an acoustic location
was estimated to be more than 20 km offshore, the offshore distance was set equal to 20 km. This
was done because the estimator was considered to provide a very imprecise (and large) distance
for such cases, even though the bearing estimate would be reliable. The array axis is defined by
the line between the southwestern-most and northeastern-most recorders. The region within 30
degrees of the array axis and beyond the ends of the array is called the endfire zone. Locations
in the endfire zone produce highly uncertain distance estimates due to the geometry involved, and
those data are discarded.

The north-easternmost and southwestern-most recorders also determine the aperture of the
acoustic array. Roughly, the array aperture is defined to be the segment of the array axis between
the ends of the array. The actual southwestern end of the aperture does not extend quite that far
for technical reasons (Clark et al., 2013). The two parallel dotted lines that extend the aperture
outward, perpendicular to the ice edge, define a strip called the aperture zone. Data within the
aperture zone play an important role in the analysis below.
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There are three slightly different notions of the ‘ice edge’. First is the actual nonlinear contour
where the water meets the shorefast ice. Second is the array axis. Since two additional recorders
were added partway through the season, there were actually two different array axes. Third is the
line connecting the two recorders deployed partway through the season. Unlike the earlier recorders
deployed by boat, these two were dropped from the ice edge. Thus, the line between them defines
another notion of the ice edge. For further explanation of these concepts, see Clark et al. (2013).

For our purposes, we ignore the distinction between these ice edge definitions. The slight
misalignments between these artificial lines and the real ice edge are ignorable because, inter alia,
the difference is small within the aperture itself and the real ice edge is not perfectly linear anyway.
For the purposes of analysis, the third definition above is the one used to compute offshore distances
for the acoustic dataset.

The smaller semicircle in Figure 2 is 4 km from the perches. This represents the practical
limit of visual range, and only the sightings within this range are analyzed to estimate detection
probability (Givens et al., 2012) and abundance (here). Although this semicircle is unrelated to
the acoustic survey, it is shown in the figure to facilitate later discussions.

2.2 Visual Data

The visual survey data have been used to estimate the probability of detecting a whale or group
given that it is present (Givens et al., 2012). They also provide the counts that are the foundation
of our total abundance estimate.

George et al. (2013) explain the details of the visual survey. Briefly, two visual observation
perches were erected on a pressure ridge on the shore-fast ice near the water edge. The perches
were 39.4 meters apart, which was sufficiently distant that observers on one perch operated wholly
independently from those on the other. The south perch was designated primary, and we attempted
to staff it with rotating teams of at least 3 observers at all times, except as limited by safety concerns
and weather. The north perch was staffed intermittently for periods of ‘independent observer’ (10)
effort. Figure 3 shows when each perch was operational.

For the purpose of analysis, the 2011 visual census is defined to have begun at 14:35 local time
on April 13, 2011, and ended at 16:00 on June 1, 2011. These are, respectively, the beginning of
the first watch session (from the primary perch) and the end of the last one during which a whale
was seen. Many of our plots display data by hours of the year; in these units the season ran from
2462.583 to 3640.

3 Methods

3.1 Overview

Visual sightings data refer to groups of whales, although 83% of these groups were size 1. The groups
are conceived as being defined when they pass the perches. Group size uncertainty and transitory
memberships are accounted for in the detection probability analysis (Givens et al., 2012). Denote
the unknown total population size as N. Let us write N = Zlcil ¢; where the ¢; represent group
sizes for groups indexed by i = 1,...,G.

Let §; = 1 if the ith group is seen by observers, and §; = 0 otherwise. The total number of
whales seen by observers is therefore n = Zlel d;¢c; and the total number of observed groups is



SC/65a/BRGO1

i: t L
Al ]
ILI; I IIIII 1141

D e T T e e T T Sy

Figure 3: Effort for 2011 visual survey. Black lines represent time with 2-perch IO effort. The
boundaries of these periods are indicated with an ‘x’. Gray (or red) lines indicate periods when
only the primary perch was used. Effort during periods when only binoculars were used have been
removed from the figure.

G

g= 2121 dj.
In the remainder of the paper our indexing of the counts ¢; is contextual (i = 1,. .., g for sighted
groups or i = 1,...,G for all groups). In other words, we use the same notation‘c;’ to represent

counts without adding the notational complexity necessary to keep the subscripting consistent
across the two contexts. The intent will be obvious in every case. In our expressions for estimated
abundance, we use only the counts from the primary perch; see Section 5 for discussion of this.

Whales are very difficult to see beyond 4 km, although some sightings can be made if visibility
conditions are nearly perfect. Our analysis assumes that bowheads are only available to be seen
by observers when they swim within the 4 km radius visual detection zone. More distant sightings
are ignored in the analysis. Let a; denote the probability that the ith group was available. If the
group is available for visual detection, it may or may not actually be seen from the primary perch.
Define the detection probability p; to be the conditional probability that the ith group was seen
given that it was available. Let @; and p; denote estimators for a; and p;.

During some portions of the season, there was no observer effort because the perch was not
staffed, visibility was poor or unacceptable, or the lead was closed (i.e., no open water). Let
S = 1177.417 denote the total number of hours during the season (i.e., from hour 2462.583 to
3640), and let W denote the total number of those hours for which observer watch effort was
maintained during qualifying conditions. Since W < S, the abundance estimator must correct for
periods of missed survey effort.

Our abundance estimator employs a scaled modified Horvitz-Thompson approach (Borchers
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et al., 2002; Horvitz and Thompson, 1952). Informally, the abundance estimate is

(1)

N = correction for
missed effort

g
Z; correction for a; and p;
1=

For some past years, bowhead abundance has been estimated using an approach called Ny/P;
(George et al., 2004). The number of whales passing within a 4 km radius visual detection zone is
termed Ny. The total abundance estimate is obtained by dividing an estimate of N4 by an estimate
of the proportion of whales swimming within the visual zone, termed P,. Those authors estimated
detection probabilities and P4 over blocks of time, then estimated N4 separately for each day, finally
summing the daily totals and correcting for missed effort.

Due to changes in survey design, increased acoustic sampling and improved analytic methods,
we do not exactly replicate the N/ Py approach. Our abundance estimate retains the same general
philosophy, except that the detection probability and availability correction factors are estimated
for each individual whale rather than for large temporal blocks. Conceptually, we replace the
estimate of Ny with the set of ¢;/p;, and we replace the estimate of Py with the set of @;. Although
the methods used to implement this change are necessarily different than previous approaches, we
have intentionally tried to avoid changing the principles of those earlier analyses. For example, our
definitions of visual and acoustic range, detection and availability, and so forth are the same.

3.2 Detection probability estimation

Givens et al. (2012) describe estimation of the p;. This approach and the results were reviewed by
the IWC Scientific Committee in 2011 and 2012.

Those authors apply a weighted Huggins (1989) model to capture-recapture data from a two-
perch independent observer experiment. A critical component of their analysis is matching, i.e., the
determination of whether a whale seen at one perch was the same individual as a sighting from the
other perch. This process is described by George et al. (2012) and Givens et al. (2012), but is not
relevant to the analyses in this paper beyond its contribution to detection probability estimation.

The estimation approach models the ith group as having a detection probability p;. Then
the conditional probability of sighting the group only at the primary perch is p;(1 — p;)/d; where
d; =1 — (1 —p;)? is used because the model is conditioned on seeing the group at least once (since
we have no data about unseen whales). The probability of sighting the group only at the second
perch is the same, and the probability of sighting the group at both perches is p? /d;.

Several covariates are recorded along with each sighting. We can express these data in a
(transposed) model matrix X with the ith column X; corresponding to the ith sighting. After
excluding data from the worst two visibility categories, the only covariates that significantly affected
p; in 2011 were distance of the sighting from the perch, lead condition, and number of whales in
the group. A generalized linear model is used to model the dependence:

g { 7| = X1 2

where 3 is a parameter column vector to be estimated. Estimated detection probability for a
sighting, p;, is derived from the parameter estimates:

__ exp{XIB}
1+ exp{X78}

3)

7
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Givens et al. (2012) used a weighted estimation method, extending the basic model to account
for three uncertainties:

e Some sightings at one occasion may be unintentional resightings of a group already seen at
the same occasion (‘Conditional’” whales).

e The identification of a recapture is uncertain and is given a confidence rating. When a recap-
ture is falsely declared, the constituent data actually comprise two non-recaptured sightings.

e Sightings do not enjoy equal opportunity to be discovered as recaptures because the process of
identifying matching whales lacks data on potential matching sightings during periods when
the second observer team was not operating.

Despite these additional complexities, the logit-linear model for detection probabilities remains as
equation (2). A weighted fit to the model yields parameter estimates 3 and the asymptotic result

B~ N(B,®). (4)

An estimate of the covariance matrix ® is obtained as part of fitting the detection probability
model; denote this ®. See Givens et al. (2012) for further details of the detection probability
analysis.

3.3 Availability estimation

We use acoustic location data to estimate the a;. The raw acoustic data are filtered to exclude
the endfire regions, locations whose 95% confidence intervals for bearing extend greater than 22.5
degrees from the corresponding point estimate, rare location estimates falling on the grounded ice
or land, and locations identified during additional pre-processing by Clark et al. (2013) as very
likely being additional calls from the same whale. Here we examine only locations within the array
aperture zone, at any distance from the ice edge (see Figure 2). Only these data are displayed in
Figures 1 and 6.

These data include offshore distances d; (meters) and times ¢; for ¢ = 1,..., L total locations.
Each point is assigned a binary outcome b; that equals 1 if d; < 4000 and 0 otherwise. Clark et
al. (2013) describe how a confidence region is estimated for each location, and how this is converted
to a confidence interval for each d;.

We use these confidence intervals to calculate a weight w; for each b;. Specifically, we assign to
each location a normal distribution, centered at d;, with variance corresponding to the calculated
confidence interval. We then define w; = ‘P [d; < 4000] — 0.5‘. Thus the weights are intended to be
proportional to the probability that b; is correct considering the inherent variability in the location
estimates.

Our goal is to estimate the proportion of whales that are available to be visually detected within
visual range. To be available, the whale must surface at least once within the 4 km semicircle in
Figure 2. Conceptually, we estimate this by examining the proportion of acoustic locations inside
the aperture zone that are within 4 km of the ice edge. The boundaries of the aperture zone are
designated in Figure 2 by the two long dotted parallel lines passing through the array ends and
perpendicular to the ice edge. These lines define a strip, and the innermost 4 km of this strip
defines a rectangular box where whales may swim through the visual detection zone. Graphically,
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our estimate compares the numbers of acoustic locations in this box to whales in the entire strip.
In concept, this comparison is the same one used by George et al. (2004).

Our use of the acoustic data and the aperture zone relies on several assumptions. We assume
that “on average, the number of locations at any distance is proportional to the number of whales
passing at that distance” (George et al., 2004, p. 762). Note that this does not imply that each whale
is represented by only a single call in the dataset, although Clark et al. (2013) attempted to remove
duplicates as much as possible. We also assume that calling behavior does not systematically vary
with distance offshore or vary between whales in any way that would bias estimation of the a;.

A whale just less than 4 km from the ice edge has some nonzero probability of passing through
the aperture zone yet never surfacing in the visual detection zone, since nearest 4 km of the aperture
zone is a box but the visual detection zone is semicircular. In fact, every whale has some chance of
doing this if it can hold its breath long enough. In a Monte Carlo experiment not described here, we
simulated whales and their swim rates, swim angles, dive times and frequencies, offshore distances,
and other aspects of bowhead migratory behavior to assess the frequency with which b; = 1 but the
whale never surfaced in the visual detection zone. Over a variety of simulation scenarios, we found
that the frequency of such cases was about 2%. Therefore, we ignore this complexity hereafter and
treat b; as the availability indicator. This decision will introduce a slight downward bias in our
final population abundance estimate.

We adopt a weighted quasi-binomial generalized additive model (GAM) for the b; data (Wood,
2004, 2006, 2011). The model was fit using the mgcv package in the R computing language (R
Development Core Team, 2012). Letting a; = P[b; = 1], we model

log { 1 ia} — () (5)
where f, is a penalized regression spline formed from a thin plate regression spline basis, which is the
default in the mgev package. The model fitting employed our weights w;. The number of knots was
set at k=20, which allows good fidelity to the data at a temporal frequency and resolution consistent
with observer opinions about the rate at which the offshore distribution of whales changes, without
over-fitting. Also, in a plot of k versus the unbiased risk estimator criterion, there is a clear,
abrupt ‘knee’ at k = 20, which we interpret as an empirical indicator of a good choice. The default
generalized cross-validation method was used to choose the smoothness penalty.

This model can be re-expressed in terms of the underlying spline basis functions. Let Z represent
the (transposed) model matrix fashioned from the basis, with one row per basis function and the
ith column Z; corresponding to the ith case. Then we may write the model as

og {2} =2la (6)

1—0,1'

where « is a column vector of parameters. Fitting equation (5) amounts to estimating &. The
asymptotic distribution of the parameter estimates & can be summarized by

& ~ N(a, ). (7)

Technically, this is a limiting Bayesian posterior distribution, but no prior information about «
or the a; is incorporated in the analysis beyond the smoothness penalty; see Wood (2006). A
covariance matrix estimate W is obtained while fitting this generalized additive model.
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Figure 4: Horvitz-Thompson contribution, h;, of each sighting (units are whales). The shaded bars
correspond to periods of qualifying visual effort.

3.4 Effort estimation

Figure 1 shows the periods of visual effort during the season during qualifying visibility and lead
conditions. To correct for periods without effort, it does not suffice to add up missed clock time—we
must account also for the passage rate of whales during the missed periods.

To do this, we begin by recalling from equation (1) that N involves a sum of terms

h; = ¢;/{correction for a; and p;},

which we call Horvitz-Thompson contributions. The exact form of these h; is explained in Sec-
tion 3.5. The h; represent the estimated number of whales that the ith sighting contributes to the
overall abundance estimate (unscaled by effort). Figure 4 plots the Horvitz-Thompson contribu-
tions against time during the season. Note that whale abundance is symbolized in this plot by both
the density of points and the magnitudes of individual points.

Let f,(t) denote the passage rate of whales past the census area, so that the total number of
whales passing the perch at any distance, detected or unseen, between time ¢; and t5 is fttf fr(t)dt.

10
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Let S and W denote the sets of time periods corresponding to the total analyzed survey season
and periods of qualifying watch effort, respectively. Then the proportion of the total population
passing Barrow during the season that passed during periods of qualifying watch effort is

= [ nva/ [ o ®)

and the desired correction factor in the conceptual estimator of abundance in equation (1) is 1/E.
This approach relies on the assumption that passage rate does not depend on observer presence.
We also assume that the model of a smoothly varying passage rate curve over all periods of the
day is reasonable.

To estimate f, and hence E, we bin the h; into 12-hour time blocks, By, ..., Big1 and define H;
to equal the sum of all h; that occurred during block B;. Thus, H; is the total Horvitz-Thompson
contribution for the jth block, i.e., an estimate of the total number of whales passing during
that block during times of qualifying effort. Let T; denote the amount of qualifying watch effort
during the jth block and let the blocks be referenced by their temporal midpoints ¢;. Then define
R; = H;/Tj to be the block passage rate: the number of passing whales per qualifying watch hour.

We adopt a quasi-Poisson generalized additive model with log link to model the block passage
rates according to R; ~ Poisson()\;) and

log Aj = f:(t)) (9)

where f, is a smooth passage rate function. We use the same GAM fitting tools and technical
assumptions as previously used for modeling availability. Points are weighted proportionally to the
T;.

This model can be re-expressed in terms of a matrix U with one row per spline basis function
and the jth column representing the jth block, using

log \j = U;*-F’y. (10)
The column vector of parameter estimates 4 has a limiting posterior distribution

¥~ N, A) (11)

in the same sense as above. The covariance matrix estimate A is estimated during model fitting.
Having obtained an estimated smooth function f, in this way, what remains is to estimate E.

We set
E:/Wﬁ(t)dt//sﬁ(t)dt (12)

where the integrals are approximated using Simpson’s rule (e.g., Givens and Hoeting 2013).

Let var{1/E} denote the estimated variance of the correction factor estimator 1/E. We estimate
the variance using the parametric bootstrap approach recommended by Wood (2006, p. 202-3).
Briefly, the GAM is first fit to the original data, then bootstrap iterations proceed as follows.
Using the estimated mean function from the original fitted model, bootstrap response data are
generated from the parametric (Poisson) model. A new GAM is fit to these data to obtain a
bootstrap estimate of the smoothing parameter. Next, a GAM is fit to the orlglnal data using
the bootstrap smoothing parameter value. This produces one set of estimates 4™ and A" We

11
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performed 2000 bootstrap iterations. Then, to simulate from the bootstrap distribution of 1/ E,
we may select at random one of the 2000 distributions N (5%, K*) and sample a value v** from it.
This value is used to obtain a bootstrap value B via equation (12). Finally, the sample variance
of the values of 1/E* is computed to produce var{1/E}.

Note that 1/ E and its variance estimator are not statistically independent of the other key
estimators (a;, p; and 6;) in this paper. However, the nature of E as an integral of a smooth
function of the huge set of those quantities renders this inconsequential: it is very reasonable to
treat E as independent of our other estimators for our purposes.

3.5 Abundance estimation

We write the total abundance estimate as N = N / E where N is the estimated total abundance of
animals passing during times of observer (visual) effort, and 1/E is the estimated effort correction
factor. Define

(13)

and let é\z denote an estimator for 6;,. Then

o N 1& - 1 &
N====> 6cli==> cb; (14)
E EiS B3

using only the counts ¢; from the primary perch. Since
~ g ~
N=> cb; (15)
i=1

the distributions of N and N depend on the distribution of the (/9;, and hence on ,@ and .

In this section, we describe the major points of the abundance estimation method. Our point
estimate, N, is a Horvitz-Thompson type estimator (Borchers et al., 2002; Horvitz and Thompson,
1952). The abundance estimator and its theoretical mean and variance are derived as extensions
to the results of Steinhorst and Samuel (1989). Our approach to variance estimation extends
that of Wong (1996); see also Fieberg (2012). It provides an asymptotically unbiased variance
estimator to replace the more familiar biased estimator of Steinhorst and Samuel (1989). The full
technical justification our approach and derivation of our mathematical results are postponed to
the appendix.

We begin with consideration of the 6;. As shown in the appendix,

6 = (1+exp{—fii — 6:/2}) (1 + exp{—7s — 1:/2}) (16)
(17)

is asymptotically unbiased for @-, where

B = X?ﬁ
no= Z’Zl“a
¢ = X[®X;
v = ZIWZ,.

12
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The result that N

E60; =0; (18)
asymptotically follows from properties of the lognormal distribution and treating ® = & and
U = ¥ as known for large samples. This treatment of covariance matrices is why we do not place
hats on ¢; and 1;. We also use the fact that 9 and 7; are independent because they arise from
parameter estimates ,6 and a which are estimated from two entirely separate datasets. If ,6, a, <I>
and W are consistent estimators, then so are the estimators discussed here.

We estimate the variance of 8; using

var{0;} = exp{—2fi; —26;} (1 + 2exp{—20; — 7 — 2¢; — i }) (exp{¢i} — 1) +
exp{—27; — 2¢;} (1 4 2exp{—[; — 27 — ¢; — 24 }) (exp{eyi} — 1) +
exp{—2ft; — 21 — 2¢i — 2} (exp{di + i} — 1). (19)
We show in the appendix that R R
E@‘{Hi} = var{@i} (20)
asymptotically. Similarly, the estimator
{00} = Ko (exp{—fii — i — Gy} ) (1+ exp{—ih —i/2} + exp{ =7, — ¥;/2}) +
Ky (eXP{—ﬁz‘ - — Jiﬁ) (1 +exp{—fi — ¢i/2} + exp{—[; — ¢;/2}) +
(exp{¢ij + ¥} — 1) exp{—f; — fij — i — j — bij — Vij} (21)
where
Ky = (exp{oy}—1)
Ky = (exp{¢}—1)
¢ = X]®X,;
Yij = Z;‘i’zj-
Gij = 0i/2+ 0j/2+ by
Vij = Ui/24+05/2 4+ 1y

(22)
can be shown to be asymptotically unbiased:
Ecov{6;,0;} = cov{d;,0;}. (23)

These variance and covariance estimators are necessary for estimating the variance of the abundance
estimator.
The appendix proves that
@ {N} = T+ 7 (24)

is an asymptotically unbiased estimator of var{ﬁ7 }, where

oo Y (0 (i)

=1
Vo = > cvar{f;} + > > cicjcov{,6;}.
i=1 i#j
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_ In Section 3.4 we described how to estimate the variance of 1 / E and the justification for treating
E and N as independent. Now since

N=N / E (25)
we can estimate the variance of N as the variance of the product of independent random variables:

G@r{N} = ;@{N} + N2Gr{1/E} + var{N}var{1/E}. (26)

Wong (1996) has demonstrated (for a simpler case than ours) that it is better to estimate a con-
fidence interval by applying a normal approximation to log abundance and then back-transforming

the result. If we define OV = var{N}/N2?, the 95% confidence interval for N is
(N exp{—1.960V}, Nexp{1.96517}) . (27)

We adopt that strategy in this paper.

The counts ¢; we use for this abundance estimate include both New sightings (whales definitely
seen for the first time) and Conditional sightings (whales seen a second time from the same perch and
observers are unsure whether the whale has been previously seen). Previous abundance estimates
have always treated Conditional whales as half a whale each; we continue that tradition here.

The counts also include some sightings made only with binoculars. Note that about half of
the whales are initially spotted with binoculars, at which point the observers use a theodolite to
record bearing and vertical angle data from which whale location can be estimated. About 10%
of the time, no theodolite sighting is obtained due to the absence of the device or an operator,
or the failure to find the whale with the device despite binocular detection. Unfortunately, such
‘binocular-only’ data do not provide sufficiently precise estimates of range for our analyses, and the
detection probability p; cannot be estimated for these sightings. Like George et al. (2004), we do
not exclude these cases. When the detection probability is not available we can scale the sighting
by 1/a; while setting p; = 1. This corrects for the proportion of whales swimming beyond visual
range while making no correction for detectability. Note that this approach is conservative because
we know that for every whale, a; < 1 and p; < 1. Therefore, the partial corrections described
here will scale up the sighting less than any full correction would. For this reason, the abundance
estimator will be lower than if a complete correction was available.

An estimate of a; is not available for two sightings outside the time period of the season we
have defined. We included these cases by setting a; equal to the mean of the season.

We do not include whales seen only at perch 2. The reason for this is explained in Section 5.

3.6 Trend estimation

The Ny and Py estimates summarized by Zeh and Punt (2005) for 11 years between 1978 and 2001
comprise a valuable time series from which we may estimate population rate-of-increase, or trend.
An independent abundance estimate for 2004 based on photo-id data is not included because it
does not produce N4 and P, estimates. To estimate the trend, we replicate the method previously
used for this population (Cooke, 1996; Punt and Butterworth, 1999; George et al., 2004; Zeh and
Punt, 2005).

The surveys between 1978 and 2001 are correlated because they share information about avail-
ability: the P4 values for certain years are used to make abundance estimates for other years when
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no separate estimate of Py is available. The approach we describe here accounts for the resulting
correlation. It is a two-step procedure.

The first step is to estimate indices of abundance for all years when Ny estimates are available
(regardless of whether a corresponding Py is available). This estimation proceeds by fitting a model
having three components. First, each observed log abundance is assumed to equal the sum of the
true total log abundance in that year, the log proportion of the population within visual range in
that year, and an independent normal error. Second, each observed log proportion within visible
range is assumed to equal the sum of the corresponding true log proportion within visible range for
that year and an independent normal error. Third, the true log proportion within visible range is
assumed to equal a grand mean log proportion plus normal error. The second and third components
introduce interannual process error. The overall model combining these three components is fit by
restricted maximum likelihood. It is important to stress that the resulting abundance indices are
not considered to be the ‘official’ abundance estimates for the corresponding years. Rather, they
are indices created to ‘share information’ about Py for years in which no P, was directly estimated.

The second step of the process is to estimate trend using the fitted abundance indices. The
trend can be estimated by fitting an exponential growth model using generalized least squares,
incorporating the variance-covariance matrix of log abundances estimated in step 1 as the weighting
matrix. A confidence interval for the trend estimate is calculated using asymptotic results.

Incorporating our new 2011 estimate into this procedure is not entirely straightforward because
our approach does not estimate the quantities P4 and N4. To obtain Ny, we replicated the entire
analysis in this paper, ignoring the a; factors. This provides an estimate of total abundance that is
not corrected for the proportion of whales swimming within 4 km of the perch. Additional technical
details about this analysis are given in the appendix. George et al. (2004) define Py to be “the
proportion of the acoustic locations directly offshore from the hydrophone array that fall within 4
km offshore from the perch” (p. 761). We compute this proportion and estimate its variance using
a block bootstrap, where the blocks are chosen to be the discrete acoustic sampling periods (e.g.,
Givens and Hoeting 2013).

4 Results

4.1 Detection probabilities

The detection probability estimates of Givens et al. (2012) are shown in Figure 5. Let r;, ¢;
and s; denote the distance, lead condition and group size for the ith sighting, respectively, and
define I(s; = 1) = 1 for group sizes equaling 1 (a single whale) and 0 otherwise. Similarly, let
I(¢; = ‘wide open’) and I(¢; = ‘patchy’) indicate specific lead conditions. Then the 2011 detection
probabilities p; are modeled as

logit{p;} = Bo + B1ri + B2l (s; = 1) + B3I ({; = ‘patchy’) + B41(¢; = ‘wide open’). (28)

Data with lead conditions of ‘wide open’, ‘continuous’, and ‘patchy’ were used to fit the model and
the effect of ‘continuous’ leads is subsumed into the intercept. ‘Poor’ and ‘unacceptable’ visibil-
ity sightings and binocular sightings were excluded from this analysis. Table 1 shows parameter
estimates for this model and Table 2 gives the corresponding covariance matrix of the estimates,
namely D
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Estimated Detection Probability
0.4

0.2

Distance from Perch (km)

Figure 5: Estimated detection probabilities from the analysis of Givens et al. (2012) for the 2011
visual survey. Solid lines correspond to single animals; dotted lines are for larger groups. For each
line style, there are 3 colors: continuous leads (green), patchy leads (red), and wide open water
(blue). In black and white, these are in the same top-to-bottom order for both single animals and
groups. Individual 95% confidence intervals for the estimates are shown as vertical lines at integer
km distances, but horizontally offset so they can be distinguished.

Table 1: Parameter estimates for the model of 2011 detection probabilities.
Bo B B Bs By
1.4712 -0.0004399 -0.5752 -0.1274 -0.3603

Table 2: Variance-covariance matrix for (BO, Bl, 32, 33, 54) from estimation of the 2011 detection
probabilities.
3.790553e-03  -6.968852e-07 -2.071643e-03 -9.416339%e-04 -1.052317e-03
3.334503e-10  6.295729e-08  8.984788e-08  1.107493e-07
2.453591e-03 -3.181631e-05  5.646251e-05
2.766833e-03  8.217309e-04
2.190653e-03
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Figure 6: The bottom panel shows the estimate and 95% confidence bounds for the availability
logit™' f, (t) over the course of the season. Recall that availability is defined to be the probability
that a whale swims within 4 km of the ice edge and is estimated from only the acoustic data. The
top panel shows the raw acoustics data: each point represents one acoustic location at a specific
time and distance from the ice edge. When whales are far offshore, they are not available to be
seen by observers.

4.2 Availability

Figure 6 shows the estimated availability curve, f;(t) The top panel of this figure displays one
point for each acoustic location in the same manner as Figure 1. Availability is defined to be the
probability that a whale swims within 4 km of the ice edge, and is fit with a spline on the logit
scale; see equation (5). The solid line in the bottom panel is the fitted curve on the probability
scale, i.e., exp{fa(t)}/(1 4+ exp{fa(t)}). The dotted lines correspond to 95% pointwise confidence
intervals for each time. Averaging across time, the mean availability is 0.581; averaging across
whales it is 0.619.

Although this fitted curve looks quite wiggly and spans a large range of probabilities, the time
span covered by this graph is 50 days, so the temporal variation in availability is not as rapid as
it may appear. Further, the rate of variation is consistent with observer impressions of migratory
behavior, and slower than what can be caused by changes in ice conditions. The very large amount
of acoustic data allows us to reliably estimate f,(¢) at this temporal resolution.
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Figure 7: Estimated passage rate, exp{]/‘“;(t)}. Block passage rates R; (whales/hour) are shown
with the circles, with area proportional to Tj. The fit to these points using the quasi-Poisson GAM
spline is shown with the the heavy line. Ten bootstrap replicates are also shown.

4.3 Effort

The estimation of effort is based on the individual Horvitz-Thompson contributions h; (i =1,...,9)
and their block totals H; (j = 1,...,101). Figure 4 plots the h; against time. Recall that the value
of h; is a number of whales, and that overall whale density and passage rate are determined by both
the density of dots and the individual magnitudes of the h;. The periods of qualifying visual effort
are indicated by the shaded bars.

Figure 7 consolidates these data as described in Section 3.4. The total Horvitz-Thompson
contribution for the jth twelve-hour block is divided by the amount of qualifying watch effort
during the block to create an hourly passage rate R; = H;/T; for j = 1,...,101. Figure 7 plots
the R; using one circle per block. The area of a circle is proportional to Tj (which are used as
weights for fitting). The heavy curve is the (back-transformed) spline fit for the passage rate, i.e.
exp{f;(t)}. Also shown with thinner (red) lines are 10 random block bootstrap pseudo-fits.

Figure 8 a histogram of the 2000 bootstrap estimates £*, which is roughly symmetric and cen-
tered on the point estimate of 0.520 with a bootstrap standard error of 0.015, yielding a correction
factor of 1/E = 1.921 with a bootstrap standard error of 0.055.

4.4 Abundance

The point estimate of N , uncorrected for effort, is equal to the sum of the Horvitz-Thompson
contributions, i.e., the sum of the h; values in Figure 4. This is 8,971 whales. Adjusting for
qualifying effort yields the fully corrected abundance estimate N = 16, 892.
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Figure 8: Histogram of block bootstrap estimates E*, the proportion of the season with qualifying
visual effort.

Variance calculations yield V; = 184.852, V5 = 398.73% and var{N} :A439.502. Applying
equation (26) to incorporate variability due to the effort correction yields var{ N} = 975.402. Thus,
the confidence interval for the estimate is (15,074, 18928).

4.5 Trend

The results are shown in Figure 9. Each abundance index is represented by its point estimate
(dot) and 95% confidence interval (vertical line). The estimated exponential growth model (curve)
indicates an annual rate of increase of 3.7% with a 95% confidence interval of (2.8%, 4.7%).

A pointwise 95% confidence band is also shown. This was obtained by drawing samples from
the joint asymptotic distribution of the fitted parameter estimates, constructing the corresponding
fitted curves, and calculating pointwise quantiles.

5 Discussion

Here we address some choices made during the analysis. We also examine our results in a broader
context.

5.1 Exclusion of perch 2 data

Both our estimators ignore the 340 whales seen only at perch 2. The reason for this is that including
these sightings as random variables would require a change to the definition of detection, which in
turn would greatly complicate variance estimation.
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Figure 9: Estimated abundance indices, fitted curve, and pointwise 95% confidence band for the
trend estimate using the time series from 1978-2011.

If we were to include these whales, the detection probability portion of the Horvitz-Thompson
correction would need to represent P[seen from at least one perch] = 1 — (1 — p;)? when IO is
operational and P[seen at perch 1] = p; when it is not (Borchers et al., 1998). This differs from our
current approach that uses only the primary perch data and the corresponding probabilities p;. The
change would introduce a quadratic function of p; into 6; and the denominator of the abundance
estimator. For variance estimation we would need to consider expectations of exponentiations of
squares of normal random variables. Compensating for this is possible, however the estimators
and proofs of their asymptotic properties would be more complicated. It is not clear that the
approach would make a substantial difference. We defer consideration of this alternative as a topic
for possible future research.

5.2 Bias and variance results

Our approach treats & and W as if they are the true values of the corresponding covariance matrices.
The adequacy of this approximation has been simulation tested in a wide range of scenarios (Wong,
1996). Generally, the results showed good bias and variance performance, even with sample sizes
nearly 20 times smaller than ours. We conclude that the approximation used here has negligible
impact on the results.
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5.3 Whales migrating outside the analyzed season

Anecdotal evidence suggests that our estimate excludes some periods when whales passed Barrow.
Although the first bowhead was seen on April 9, our analyzed season does not begin until April 13.
During this period, a few whales were seen during sporadic effort with poor to fair visibility. In
recent years, we have seen a surprising number of whales pass Barrow very early in the season (in-
cluding before April 9), and the limited evidence we have from 2011 suggests that this phenomenon
continues.

Acoustic recording continued after June 1, when the visual survey was ended due to safety
concerns caused by degrading ice. No systematic sampling of the post-season acoustic data has
been done. However, casual inspection of a few hours of data after June 1 indicates that calls still
occur. Most times, call rates appear to be much lower than typical days during the visual survey
season. However, there are brief periods (e.g., a two-hour block on June 2) where a large number of
calls are detected. After June 15, few calls were found. An acoustic survey in 2009 found over 2000
bowhead calls in 13 hours of sampling after June 1 (BRP, 2010). The number of whales producing
these vocalizations is highly uncertain, however, because the vocalization pattern of an individual
bowhead ranges from a single call to up to 400 calls per hour (Zeh et al., 1993)2.

These sources of evidence suggest that some whales—perhaps a significant number—passed
Barrow outside the analyzed season in 2011. Since we have ignored these whales in our analysis,
this omission is a source of downward bias in the total abundance estimate.

5.4 Comparison with past work

The most recent abundance estimate is 12,631 in 2004 (95% CI (7,900, 19,700)) from photo-
identification work (Koski et al., 2010). The most recent ice-based visual survey estimate is 10,545
in 2001 (95% CI (8,200, 13,500)) and the estimated rate-of-increase for 1978-2001 is 3.4% (1.7%,
5%) (Zeh and Punt, 2005). Our estimate for 2011 is consistent with these estimates (Figure 9).
In other words, our new abundance estimate is about what would have been expected before con-
ducting the 2011 survey. The new estimate of trend has a narrower confidence interval because a
new point has been added to the abundance time series. The uncertainty estimates for the 2011
abundance estimate are comparable to those for some of the best previous estimates.

Givens et al. (2012) note that their estimated 2011 detection probabilities are somewhat lower
on average than estimates for other years, and a bit less dependent on sighting distance. The 2011
standard errors are considerably smaller due to larger sample sizes and improved methodology.
These tendencies would favor a larger and more precise abundance estimate.

Using data from 1978-1985, Zeh and Punt (2005) estimate the interannual mean Py to be 0.701,
compared to our time-averaged 2011 mean of 0.581. For eight years between 1979 and 2001, Zeh
and Punt (2005) estimate P4 to be 0.405, 0.479, 0.567, 0.740, 0.750, 0.850, 0.862, and 0.933 (sorted).
Clearly the interannual variation is considerable. Our estimate for 2011 is not unusual, although
perhaps a bit lower than average and much lower than the largest past values. Low availability
values produce higher abundance estimates.

In 2011, there were 50 days from the date when the first whale in the analyzed season was seen
until watch effort ended. For 11 previous seasons when N4 has been estimated, the median is 47

2Recall that the acoustic data used in our analysis have been filtered to remove such duplicate calls (Clark et al.,
2013).
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with a range from 30 to 55. In 2011, the total number of hours of watch of any kind (including poor
and unacceptable visibility) at the primary perch in the analyzed season was 859. The median of
the past seasons is 996 with a range from 448 to 1130 hours. Perhaps the two most successful past
seasons, 1993 and 2001, are most comparable to 2011. These had season days of 49 and 54, and
watch hours of 1067 and 1130. These numbers illustrate that the 2011 effort was not exceptional
by either standard.

The estimated standard error of our abundance estimate is slightly smaller than for some his-
torical estimates. This is particularly noticeable when expressed as a CV since the 2011 abundance
estimate is the largest ever. One reason for the reduced uncertainty is that the survey benefited
from relatively consistent good viewing conditions during the season. There were no long periods
without effort. This limits the variability of the estimated passage rate curve and hence the E
correction factor. The variance of the detection probability estimates has also been reduced com-
pared to past years due to improved methodology. Finally, we simply have an unprecedentedly
large amount of data: over 4,000 New and Conditional whale sightings and over 22,000 acoustic
locations.

Finally, it is important to look at the big picture. In this section we have described ways in
which our results differ a bit from past results. The overall impression, however, is that these
differences are quite small compared to the interannual variation in such estimates and our findings
are not unusual or surprising considering what we have seen over the last 30 years.

5.5 Management implications

Indigenous hunting quotas for this population are recommended using the Bowhead Strike Limit
Algorithm (SLA). This procedure was adopted by the IWC after rigorous simulation testing cov-
ering a wide range of trial scenarios (International Whaling Commission, 2003). An important
consideration in that testing was the population increase rate, both in terms of the theoretical
maximum sustainable yield rate (MSYR) and the empirical trend estimate.

The rate-of-increase estimate following the 2001 survey was 3.4% (1.7%, 5%) (Zeh and Punt,
2005). Our updated rate-of-increase estimate is 3.7%, which is wholly consistent with the past
estimate and has lower confidence bound (2.8%) further above zero than for 2001. This suggests that
the range of values of MSYR considered during Bowhead SLA trials continues to be appropriate. If
anything, our new results indicate that the larger trial values of MSYR were likely more plausible
than the lowest. Bowhead SLA performance on trials with medium and high MSYR values was
extremely good.

At the time that the Bowhead SLA was adopted, the most recent abundance estimate was
10,545 in 2001 (95% CI (8,200, 13,500)). Our new estimate for 2011 is 16,892 (95% CI (15,074,
18,928)). Clearly the population size has continued to grow substantially under the Bowhead SLA
quotas since 2003, and there is no evidence that the population size is above the maximum net
productivity level or near carrying capacity.

We conclude that the 2011 abundance and trend results provide no reason to question the suit-
ability of the Bowhead SLA. If anything, these results provide greater evidence that the Bowhead
SLA will meet IWC conservation goals than had previously been understood.
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Appendix: Statistical Results

Abundance Estimate

Recall that the total abundance estimate is N = N / E where N is the estimated total abundance
of animals passing during times of observer effort, and 1/E is the estimated effort correction factor.

Define
1

0. — 29
" ap (29)
and let 51 denote an estimator for 6;. Then
~ a 9
~ N 1 ~ 1 ~
E B3 E=

using the notation of Section 3, including that §; = 1 if the ith group is sighted (and zero otherwise)
so Ed; = 1/0;. Since

g
N = Zciﬂi, (31)
=1

the distributions of N and N depend on the distribution of the @, and hence on the parameter
estimates B and @& from the models in equations (2) and (6).

Using the logit link relationships in our availability and detection probability models, properties
of the lognormal distribution, the asymptotic normality of 3 and &, and the approximation that ®
and ¥ can be treated as known for large samples, one can find asymptotically unbiased estimators
of all important quantities needed to produce a total abundance estimate. If ,B, Q, ® and ¥ are
consistent, then so are the estimators discussed below.

The goal of this appendix is to show that N is asymptotically unbiased for NN, and to find an
asymptotically unbiased estimate of its variance and hence a confidence interval. To do this, we
first explore how to estimate N and its variance.

For notational simplicity, it is useful to define some terms related to the linear predictors and
covariance matrices in the generalized additive models for the visual and acoustic data. Specifically,

define

iio= X[B
o= Zia
pi = X7
N = Z;-ra
¢ = XI®X;
v = ZIWZ,
¢ij = XI®X;
vy = ZTWZ;.

bij = ¢i/2+¢j/2+ ¢ij
Yij = if/24+95/2 + i
(32)
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using the notation developed previously in this paper. Note that terms like ¢; and ;; denote
projections and quadratic forms related to the estimated covariance matrices, not individual terms
therein. Since we treat these matrices as known, we don’t put hats on these expressions. Note
that ¢;; = ¢j and v¢;; = ;. Finally, note that 25@« = (X; + Xj)T<i>(Xi + X;) and Q@Zij =
(Zi + Z;)"®(Zi + Z;).

Now we estimate the correction factor 8;. We begin by showing that

0 = (1+exp{—fii — ¢:/2}) (1 + exp{~7i — 1/2}) (33)
is an asymptotically unbiased estimator for #;. Expanding @ as
6 = 1+ exp{—7ii — ¢i/2} + exp{—T — $i/2} + exp{—F; — 0 — (i +v1)/2} (34)

we can see that the unbiasedness follows from properties of the lognormal distribution. Specifically,
recall that if Y ~ N(u,0?) then Eexp{Y} = exp{u + 02/2} and var{exp{Y}} = exp{2p + 202} —
exp{2p + 02}. Now consider the expectation of the first random component of 6; in equation (34):

Eexp{—fi — ¢:/2} = exp{—¢:;/2} Eexp{—fi}
= exp{—¢i/2} Eexp{—X] B}
= exp{—0i/2} Eexp{—X] B + ¢;/2}
= exp{—p} (35)

since fi; is normal because B is normal. The other portions of the expectation work out similarly.
Combining pieces like this,

Ef; = 1+exp{—u}+exp{—n} +exp{—p; —mi}
= (1+exp{—pi}) (1 +exp{—n;})

pia;
= 6 (36)
so the asymptotic unbiasedness of é\z has been shown.

Now we derive var{é\i}. Again concentrating on the first random term in the estimator in
equation (34), note that

var{exp{—fi; — ¢i/2}} = exp{—¢i}var{exp{—pi}}
= exp{—¢i} (exp{—2u; + 20} — exp{—2u; + ¢i})
= exp{—2u;} (exp{ei} — 1) (37)
recalling that exp{—f;} ~ lognormal(—p;, ¢;) and using properties of this distribution. The other
variance parts work out similarly. Next, consider the covariance between the first and third random

terms in equation (34). Here, we use the property that for constants u and v and random variables
R and S, cov{uR,vSR} = uwv(E S)var{R}. Now

cov{exp{—i; — ¢i/2},exp{—p; — i — (¢i + i) /2}}
= exp{—¢i/2} exp{—(#i + ¢i)/2} (Eexp{—7);}) var{exp{—7i; }}
= exp{—¢; — ¥i/2} exp{—m; + i /2} (exp{—2u; + 2¢i} — exp{—2p; + ¢})
= exp{—2u; — ni} (exp{di} —1). (38)
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A key step in this result follows from the fact that f; and n; are independent because they arise from
parameter estimates 3 and a which are estimated from two entirely separate datasets. Computing
all the relevant variance and covariance terms analogously to equations (37) and (38), one can show

var{0;} = exp{—2u} (1 + 2exp{-n:}) (exp{ei} — 1) +
exp{—2n;} (1 + 2exp{—pu;}) (exp{¢yi} — 1) +
exp{—2u; — 2n;} (exp{¢; + i} — 1). (39)

Deriving the covariance between (9\1 and é\j relies on similar lognormal calculations and the indepen-
dence between visual and acoustic datasets. The result is

cov{0;,8;} = (exp{dy} — 1) (exp{—p: — u;}) (1 + exp{—m;} + exp{—n;}) +
(exp{®ij} — 1) (exp{—n; — n;}) (1 + exp{—p;} + exp{—p;}) +
(exp{ij + ij} — 1) exp{—p; — pj — mi — n;}. (40)

Now we need to find asymptotically unbiased estimates for these quantities. Let us estimate
the variance using the estimator

xﬁx\r{@} = exp{—2u; —2¢;} (1 + 2exp{—211; — 7 — 2¢; — Vi }) (exp{di} — 1) +
exp{—27; — 2¢;} (1 4+ 2exp{—[t; — 27 — ¢; — 24 }) (exp{eyi} — 1) +
exp{—2fl; — 20; — 2¢; — 2¢;} (exp{¢; + ¥} — 1). (41)

Similar methods to those above can be used to prove
Evar {0} = var{f) (42)
asymptotically. Similarly, the estimator
{00} = Ky (exp{—fi — iy — Gy} ) (1+ exp{—ih —vi/2} + exp{—7; — ¥;/2}) +
Ky (exp{=7 — ) — Dig}) (1+ exp{~7s — 63/2) + exp{~; — 6;/2}) +
(exp{oij + i} — 1) exp{—fii — fij — 0 — 1 — bij — Vi } (43)
where

Ky = (exp{¢ij} —1)
Ky = (exp{ty}—1)

can be shown to be asymptotically unbiased:
Ecov{0;,0;} = cov{d;,0;}. (44)

We are now able to derive the variance of
~ G ~
i=1
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using the conditional variance formula. We obtain
var {N} = varg {IE §|5N} +Es {V&I‘é\wﬁ}

= varg{Zécz alsbi }—i—IEg Z(char9|50 —l—ZZééch]cove‘é{Hz,H}

i#]

G
= Z c20vars{6;} + Z R 5{(5¢}V&I‘{§i} + Z Z Cicj E(g{csiéj}cov{é\i, 53}

i=1 7]
_ z 2,2 1 _ 2t S i :
22910 1 +ngar{¢9}+zz‘9 iy U
i=1 i=1 " ]
€ G 2
= -0+ |3 Gy ar{H}—l—ZZe i\ 0,
i=1 i=1 " i#]
= Vi+te (46)
Let us define ’
=Y (§2 — 0; — var{0 }) (47)
=1
Then
g
E‘/}l = EZC? <A;2 —0; — V&I‘{@})
=1 o
= EsEg, {Z 8ic? (? —0; — Var{91}> }
=1
a
— Es)_ 8t (Eqy02 —Egsbi —Egar{d})
=1
a
= Es Y _0ic}(07 —0;)
i=1
G
_ Y S
lzl
= Zc?(&z -1)
i=1
- W (48)

so V is asymptotically unbiased for V;. Since \7371"{51} and C/CW{@, é\]} are asymptotically unbiased,

we can define
g

g
Vo= cfvar{fi} + ) cicjcov{f;, 05} (49)

i=1 i#£]
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as the asymptotically unbiased estimator of V5. This can be proven using the same conditional
expectation approach employed for Vi. Thus, define

Gar{N} = Vi + Vs (50)
as the asymptotically unbiased estimate of the sampling variance of N.
In Section 3.4 we described how to estimate the variance of 1/E and the justification for treating
FE and N as independent. Now
N=N / E (51)
and we can estimate the variance of N as the variance of the product of independent random

variables: )
var{N} = ﬁ@{N} + N?var{1/E} + var{N}var{1/E}. (52)

Wong (1996) has demonstrated (in the simpler case described in the next section) that it is better
to estimate a confidence interval for N by applying a normal approximation to log abundance and

then back-transforming the result. If we define C'V ? var{N}/N2, the estimated 95% confidence
interval for N is R L -
(N exp{—1.96CV }, Nexp{1.96CV}) . (53)

Estimation of N, for Trend

In Section 3.6 we note that an estimate of N4 is needed for 2011 in order to include the 2011
abundance estimate in an updated trend estimate replicating past methods. Since our abundance
estimation approach does not produce ]\74, we must find an equivalent.

We take the approach of setting N4 equal to the abundance estimate that we would have
obtained if no corrections a; for availability were made. This mimics the notion that N4 is an
abundance index that does not correct for Pj.

In this case, the results of Steinhorst and Samuel (1989) and Wong (1996) apply directly. If we
re-define

0; =1/pi
and interpret the remaining notation accordingly, then our estimate of Ny is
N 1 < -
Ni==)cib; (54)
BT
where
0, = 1+exp{—fii — 6i/2}. (55)

The variance and covariance estimators for 6; are

ar{fi} = exp{-271; —26i} (exp{o:} — 1)
and
cov{0:, 03} = exp{—fii 7 — dis} (exp{oi} 1)
(Steinhorst and Samuel, 1989). Wong (1996) shows that the variance component estimates should

remain as in (47) and (49) with the obvious reinterpretation of the notation. The results in (50),
(51) and (52) also still pertain. Finally, we set N, = N with variance as in (52).
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