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Abstract 

South African coastline surveys conducted since 1972 reveal fluctuations and a recent reversal in a long-running 

increasing trend in regional abundance of southern right whales (Eubalaena australis, hereafter SRWs), whose 

populations have been recovering from historic whaling. Furthermore, the surveys reveal that the typical three-

year calving cycle of female SRWs has shifted to four- or five years, implying either additional resting years 

between successive calving events or calving failure. This study used wavelet analysis, an effective method of 

time series analyses on non-stationary data, to reveal significant synchrony in the cycles of SRW cow-calf pair 

annual counts along the South African coast and various climate indices (Oceanic Niño Index, September 

Antarctic sea ice extent and the Antarctic Oscillation) as well as ocean colour (January chlorophyll a 

concentrations in three postulated SRW feeding grounds). In addition, autoregressive integrated moving 

average (ARIMA) models were used to investigate the potential role played by ocean colour and the various 

climate indices in the inter-annual fluctuations of cow-calf pair counts, as well as the recent reversal in the 

increasing trend of regional abundance. The impacts of climate are thought to be mediated through the 

influence of physical oceanography on SRW prey (krill and copepod) availability, while chlorophyll a 

concentrations have been found to correlate with densities of SRW prey. These aspects ultimately impact 

feeding success and body condition of SRWs, and consequently their reproductive condition and migratory 

behaviour. ARIMA models analysing the recent reversal in the increasing trend of abundance in SRW cow-calf 

pair counts along the coast of South Africa, reveal significant model performance improvement through the 

inclusion of the Oceanic Niño Index, the Antarctic Oscillation and chlorophyll a concentration data from one of 

the three postulated SRW feeding grounds. Results of this study indicate that SRW calf abundance in coastal 

South Africa appear closely influenced by the species’ life cycle, as well as feeding ground productivity and global 

climate indices, similar to findings for other SRW populations. 
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Introduction 

Southern right whales (Eubalaena australis, hereafter SRWs) are baleen whales which range between 20° and 

60°S where they feed on plankton, primarily Antarctic krill (Euphausia superba; hereafter krill) and copepods 

(NMFS 2007, Nicol et al. 2008, Reilly et al. 2013). Being once very abundant, SRWs were strongly reduced in 

numbers by the open-boat whaling industry, which in Southern Africa began in the late 1700s. Only in 1935 did 

the species become internationally protected, when fewer than 1% of their original numbers remained (IWC 

2013). This protection has allowed breeding populations of SRWs in South Africa to increase by as much as 7.1% 

per year (Best et al. 2001). However, the annual abundance of SRWs along the South African coastline has 

recently shown evidence of returning to a decline between 2015 and 2017, after rising for more than three 

decades (Figure 1). Interestingly, in 2018, counts of SRW cow-calf pairs increased substantially, while the counts 

of unaccompanied adults (males and non-calving females) remained low. In conjunction with these fluctuating 

trends of abundance, many female SRW calving intervals have shifted from a three-year reproductive cycle to a 

four- or five-year cycle (Brandão et al. 2018, Vermeulen et al. 2018). 

  

 

 

 

 

 

 

 

 

 

Female SRWs normally calve approximately every three years (Best & Folkens 2007, Brandão et al. 2011). 

Pregnancy and lactation in SRW females are energetically demanding and the reproductive output of this species 

has been found to respond to fluctuations in krill abundance in other breeding grounds (Leaper et al. 2006, 

Seyboth et al. 2016). In fact, several studies have shown suppressed reproduction in cetaceans during periods 

of nutritional stress (Lockyer 1986, Reeves et al. 2000, Greene et al. 2003, Hlista et al. 2009, Ward et al. 2009, 

Williams et al. 2013). The connection between nutrition and the reproductive output of SRWs is found in their 

body condition (i.e. their blubber thickness). Evidence of the existence of prey limited reproduction suggests 

that the increasing calving intervals seen in South African SRWs, as well as the recent large shifts in the annual 

abundance of SRWs in the South African breeding ground, could potentially be linked to changes in prey 

availability and therefore productivity in SRW feeding grounds. This knowledge, combined with the known site 

fidelity of SRW to breeding and feeding grounds (Patenaude et al. 2007, Valenzuela et al. 2008, 2009, Carroll et 

Figure 1. Field counts of southern right whales observed during annual aerial surveys between Nature’s Valley and 

Muizenberg, South Africa, between 1972 and 2018 (MRI unpublished data). Blue line indicates cow-calf pair counts (1972 

– 2018); red line indicates unaccompanied adult counts (1990 – 2018). 



Do not cite without permission of the authors 

 

3 

 

al. 2015) should allow causal links to be made between the conditions of specific feeding regions and observed 

reproductive success. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The South African SRW population is thought to have at least three wide-ranging summer feeding areas in the 

Southern Ocean (see Figure 2). It must be noted however, that the locations of these feeding grounds are based 

largely on illegal Soviet catch data (Tormosov et al. 1998) and Townsend’s (1935) charts of open boat whaling 

catches, and are therefore not directly confirmed (Best & Folkens 2007). In general, relatively little is known 

about the diet of South Africa’s SRWs (Best & Folkens 2007). However, the stomach contents of 249 illegal SRW 

catches in the 1960s showed that 99.4% of SRW samples taken south of 50⁰S had stomach contents containing 

krill. In contrast, 91.7% of samples taken north of 40⁰S contained copepods. Between 40⁰ and 50⁰S, SRWs were 

shown to be feeding on copepods (71.4%), krill (24.3%), or other ‘small crustacea’ (4.3%) (Tormosov et al. 1998). 

Stable isotope analysis on 11 SRWs sampled in South Africa revealed strong seasonality in their feeding, with 

feeding dropping off after May and resuming again in August to December (Best & Schell 1996). 

 

Both breeding and survival success of many species in the Southern Ocean, including SRWs, have been found to 

be influenced by krill abundance (Croxall et al. 1999, Fraser & Hofmann 2003, Forcada et al. 2005, Leaper et al. 

2006, Trathan et al. 2007, Jenouvrier et al. 2009, Trathan et al. 2011, Barbosa et al. 2012, Seyboth et al. 2016). 

Importantly in the context of this study, strong correlations have been found between the breeding success of 

SRWs in Argentina and Brazil with krill abundance in their summer feeding ground off South Georgia (Leaper et 

al. 2006, Seyboth et al. 2016). Krill abundance in South Georgia was found to be driven by SST anomalies and 

global climate indices such as the El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO) 

Figure 2. Summer feeding grounds (illustrated via A, B and C) of the South African population of SRW as suggested by 

Best and Folkens (2007).  Feeding ground A: a section of the southern Atlantic Ocean between 30⁰S and 40⁰S. Feeding 

ground B: a section of the southern Indian Ocean between 40⁰S and 50⁰S around the Crozet islands. Feeding ground C: 

a section of Southern Ocean between 50⁰S and 60⁰S. 
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(Trathan et al. 2003, Leaper et al. 2006, Seyboth et al. 2016). Seyboth et al. (2016) suggests that an increased 

frequency of years with low krill abundance, potentially due to changing marine environments, is likely to have 

adverse impacts on the rebounding SRW populations in the Southern Hemisphere. Baleen whale responses to 

climate change, however, need to be interpreted with caution, since responses are confounded by the fact that 

virtually all populations are recovering from overexploitation (Nicol et al. 2008).  

 

Using a time series analyses approach, this study aims to test for possible links between climatic, oceanic and 

biological factors and the inter-annual fluctuations and longer-term changes in SRW prevalence on the southern 

African coastline. Notably, the term ‘climate variability’ includes both natural variability and possible 

anthropogenic climate change, whose impacts on SRWs are putatively mediated through the influence of 

physical oceanography on plankton (specifically copepods and krill). These impacts are thought to influence the 

body condition of SRWs and thus their reproductive output and migratory behaviour (see Greene & Pershing 

2004). More specifically, this study investigates the influence of chlorophyll a concentrations in three postulated 

summer feeding grounds (Figure 2), as well as relevant climatic factors that may influence SRW food availability 

via effects on physical oceanography.   

 

Materials and Methods 

Photo-ID data collection 

Aerial surveys of SRWs have been conducted annually in October since 1972, with a photo-identification 

component since 1979, between Muizenberg (34°07'29"S 18°29'09"E) and Nature’s Valley (33°59'49"S 

23°33'40" E), South Africa. For detailed methodology, see document SC/68A/SH/01. From these surveys, count 

data of cow-calf pairs (1972-2018) and unaccompanied adults (1990-2018) were obtained for use in this study. 

Given that the count data of SRW unaccompanied whales are substantially shorter in length compared to the 

cow-calf pair data (Figure 1), all time-series data analyses were performed on the SRW cow-calf pair count data 

alone. It needs to be noted that these data refer to counts and not uniquely identified individuals, meaning that 

duplicates may be present within the count data. However, the number of duplicate counts in one given year 

(when comparing count data with the number of uniquely identified individuals) remains relatively stable over 

the survey series, averaging 17%. 

 

Climate indices   

The potential effects of climate on South African SRW counts were investigated using data from various climate 

indices. The El Niño–Southern Oscillation (ENSO), which identifies sea-surface temperature (SST) variability in 

the eastern Pacific Ocean and air surface pressure variability in the western Pacific, has been found to drive 

inter-annual cycles of sea ice extent around Antarctica (Loeb et al. 2009, Loeb & Santora 2015), which is known 

to influence krill densities (larger winter sea ice extent, more krill) (Loeb et al. 1997, Fraser & Hofmann 2003, 

Atkinson et al. 2004, Flores et al. 2012, Trathan et al. 2012). ENSO fluctuates between two phases, El Niño and 

La Niña, which disrupt the typical Pacific oceanic and atmospheric circulations (Salinger et al. 2016). The Niño 

3.4 Index is one of the primary measures of oceanic variation associated with warm El Niño and cold La Niña 
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periods. As such, the Oceanic Niño Index (ONI; the 3-month running mean of the Niño 3.4 Index) was included 

in the analyses. The Antarctic Oscillation (AAO), otherwise known as the Southern Annular Mode, is the leading 

mode of atmospheric variability south of 20⁰S (Pohl et al. 2010, Salinger et al. 2016). The AAO describes the 

north–south movement of the westerly wind belt that encircles Antarctica. A positive AAO phase is characterized 

by the southward shift of the wind belt together with an increased intensity in the winds (Loeb & Santora 2015). 

Over the past 30 years, an increase in the positive phase of the AAO has been noted, which has been partly 

attributed to increased westerly winds resulting from Antarctic ozone depletion (Cai 2006, Flores et al. 2012). 

The increase in the AAO has resulted in increased poleward heat transport and the southward shift of fronts in 

the ACC, which is suggested to have positive and negative impacts on Antarctic ecosystems (Flores et al. 2012). 

As such, the AAO was also included in the analyses. Climate indices were obtained from the database available 

on the NOAA Climate Predict Center (http://www.cpc.ncep.noaa.gov/). Yearly means of the climate indices were 

obtained in the same way as done in a number of other studies dealing with teleconnections, whereby the data 

were averaged from June of the previous year to May of the year being considered (Liu et al. 2002, Leaper et al. 

2006, Seyboth et al. 2016). Given the tight association between krill and winter sea ice extent (see Atkinson et 

al. 2004) and given that links have been made between winter sea ice extent in the Southern Ocean and body 

condition of humpback whales (Megaptera novaeangliae) in Western Australia (Braithwaite et al. 2015), the 

mean September Antarctic sea ice extent (SASIE) was used as the final climatic variable. The month of September 

was chosen specifically, since it is considered the month where the maximum sea ice extent is found in Antarctica 

(Nicol et al. 2008). Data for SASIE were obtained from the National Snow & Ice Data Center (NSIDC) 

(https://nsidc.org/data/seaice_index/).  

 

Ocean colour 

Hlista et al. (2009) used satellite-derived sea-surface chlorophyll concentrations as a proxy for the nutritional 

potential of North Atlantic right whale (Eubalaena glacialis) feeding grounds, and successfully explained 50% of 

the variation in breeding success. Given that chlorophyll a is considered the most common measure of the food 

environment for copepods (Bunker & Hirst 2004) and that studies have found positive relationships between 

chlorophyll a and copepods (Kiørboe & Nielsen 1994, Shreeve et al. 2002) and between chlorophyll a and krill 

(Atkinson et al. 2004, 2008), this study used measures of chlorophyll a concentrations in three postulated 

feeding grounds of SRW (Figure 2) as a proxy for SRW prey availability. The strong seasonality in SRW feeding 

(Best & Schell 1996) indicates that SRWs typically feed during summer. As such, maximum summer chlorophyll 

a concentrations, which typically occur in January (see Constable et al. 2014, Fig. 4) were obtained for the three 

feeding grounds. Chlorophyll a concentration data were obtained from the latest version of the European Space 

Agency (ESA) Ocean Colour Climate Change Initiative (OC-CCI v3.1) (https://www.oceancolour.org/). The Ocean 

Colour CCI produces long-term multi-sensor time series of satellite ocean colour data. The OC-CCI chlorophyll a 

product has the units of mg/𝑚3 and is provided with a horizontal resolution of ~4km/pixel. The January 

chlorophyll a concentration for a random 10% of the available coordinate grid squares were obtained from 

1998–2018 for each of the three feeding grounds. The mean chlorophyll a concentrations for each of the three 

10% samples were then calculated. The map of postulated SRW feeding grounds (Figure 2) was created using 

http://www.cpc.ncep.noaa.gov/
https://nsidc.org/data/seaice_index/
https://www.oceancolour.org/
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QGIS version 2.18.20 (QGIS Development Team, 2009). 

 

Wavelet analyses  

Many correlative techniques used to explore time series data make the assumption of stationarity (Cazelles et 

al. 2008) i.e. statistical properties such as the mean and variance are constant over time. Wavelet analyses, 

which is able to account for non-stationary data, provide an effective method to investigate the cyclicity of a 

univariate time series (i.e. wavelet power), as well as potential synchrony (i.e. cross-wavelet power) between 

two time series (Rosch and Schmidbauer, 2018). Wavelet analyses decomposes a given time series into a 

continuous range of cycles, to investigate firstly, the presence and power of statistically significant cycles in the 

time series, and secondly, the potential cyclicity that is common between two time series (i.e. synchrony). As 

such, wavelet power plots delineate clusters of significant cycles occurring in the time series during a certain 

time interval, whereas cross-wavelet power plots delineate clusters of significant cycles that are common in 

both time series at a certain time interval. Wavelet power spectra were calculated for the cow-calf pair count 

time series and all climate index time series (including chlorophyll a data for the three postulated feeding 

grounds). The cow-calf pair count data were log transformed in order to amplify any cycles found in the time 

series where low population sizes are present (evident in the 1970s-1980s; see Figure 1). In order to prevent the 

overall trends of any time series from interfering with their cyclicity, all time series were also detrended using 

local polynomial regression with high levels of smoothing (LOESS smooth span = 30%). Given the sharp drop and 

increase in the cow-calf pair counts after 2014 (i.e. the “crash”) (Figure 5 A), the wavelet power spectrum for 

the cow-calf pair count time series was computed separately for data including and excluding the “crash” (1972-

2018 and 1972-2014 respectively). This was done to isolate the signal from the strong fluctuations after 2014 

which overwhelms the earlier cycles in the cow-calf pair count time series. Wavelet power spectra were thus 

computed for the log transformed and detrended cow-calf pair counts, including and excluding the crash; as 

well as all detrended climate indices (including chlorophyll a concentrations for the three postulated feeding 

grounds).  

 

Additionally, cross-wavelet power spectra were computed for the log transformed and detrended cow-calf pair 

counts with all climate indices (including chlorophyll a data for the three postulated feeding grounds), including 

and excluding the “crash”. Furthermore, information about the synchronisation of the two series is given in the 

cross-wavelet power plots in the form of arrows, indicating the instantaneous phase difference between the 

two time series. Arrows pointing right or left at 180° indicate two time series that are moving perfectly in phase 

(i.e. when x increases, y increases) or in anti-phase (i.e. when x increases, y decreases) respectively. Two time 

series that move in phase or in anti-phase, but with one time series leading/lagging the other, are represented 

by all other arrow directions, indicating their phase differences. Figure 3 illustrates two time series moving in 

phase and completing a single cycle. From this figure, it is clear that x is leading y by angle a. However, if the size 

of a were to increase, one would be able to interpret the figure as the two series are moving in anti-phase, with 

y leading x. As such, the interpretations of the cross-wavelet arrow directions are cyclic in nature (leading by a 

is equivalent to lagging by 2𝜋 −  𝑎). Wavelet and cross-wavelet power spectra were computed in R version 3.5.1 
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(R Core Team, 2018) using the WaveletComp (version 1.1) package (Rosch and Schmidbauer, 2018).  

 

 

 

 

 

 

 

 

 

 

 

ARIMA modelling 

(i) Environmental variable lag selection 

In order to account for potentially delayed effects between climate indices (and chlorophyll a concentrations) 

and the counts of cow-calf pairs, the various environmental variables were lagged. The quantity of lag to be used 

for each environmental variable was decided based on the phase difference results of the cross-wavelet power 

plots. Figure 4  illustrates a hypothetical scenario of two time series, each completing a cycle with a period of 

2𝜋.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The time series in Figure 4 A are moving perfectly in phase, with neither x nor y leading/lagging. In this scenario, 

no lags exist between the possible effect of x on y. Therefore:  y𝑡  =  𝐴𝑅𝐼𝑀𝐴𝑒𝑟𝑟𝑜𝑟𝑠 + 𝑥𝑡  

The time series in Figure 4 B are moving perfectly in anti-phase, with neither x nor y leading/lagging. In order for 

Figure 3 Schematic diagram illustrating two time series moving in phase and each completing one full cycle. Series x 

currently leads series y by an order of angle a.  

Figure 4 Schematic diagram illustrating two time series (x and y) each completing a cycle with a period of 2𝜋, while 

moving: A) perfectly in phase, with neither series x nor series y leading/lagging; and B) perfectly in anti-phase, with 

neither series x nor series y leading/lagging. 
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the time series in B to reach a perfect synchronisation as seen in A, x needs to be shifted by 𝜋. Thus, 𝜋 represents 

the maximum amount of lag that can occur between two time series which share a common cycle. Therefore: 

y𝑡  =  𝐴𝑅𝐼𝑀𝐴𝑒𝑟𝑟𝑜𝑟𝑠 + 𝑥𝑡−𝜋.  

However, the cross-wavelet power analyses are unlikely to produce results as seen in this hypothetical example. 

Thus, in order to account for all possible lags that can occur within one cycle between the various climate indices 

and the cow-calf pair counts, lags were added to the ARIMA models sequentially, up until the highest possible 

lag. This can be written as: y𝑡  =  𝐴𝑅𝐼𝑀𝐴𝑒𝑟𝑟𝑜𝑟𝑠 +  𝑥𝑡 +  𝑥𝑡−... … +  𝑥𝑡−𝜋 

In other words, when assessing the maximum amount of lag to generate for the potential association between 

cow-calf pair counts and an environmental variable, the highest significant cyclic periodicity found between the 

two time series was taken as 2𝜋. Thus, the maximum amount of lag generated for the association between cow-

calf pair counts and the respective environmental variable would be equal to 2𝜋/2.  

 

(ii) ARIMA models 

The response variable used in the ARIMA models was the deviation of SRW cow-calf pair counts from the 6.9% 

annual population growth rate (i.e. growth rate anomalies), which was valid up until at least 2006 (Best et al. 

2010). Given that the climate index data for the ONI, AAO and SASIE are up to 26 years longer (ONI: 1972-2018) 

compared to that of the chlorophyll data (1998-2018), separate ARIMA models were generated for these two 

sets of data. In addition, cow-calf pair growth rate anomalies including the “crash” (1972-2018) and excluding 

the “crash” (1972-2014) were analysed separately. Therefore, 4 main groups of ARIMA models were 

constructed: (1) Growth rate anomalies and the ONI, AAO and SASIE; including the “crash”. (2) Growth rate 

anomalies and chlorophyll a concentrations from postulated feeding ground A, B and C; including the “crash”. 

(3) Growth rate anomalies and the ONI, AAO and SASIE; excluding the “crash”. (4) Growth rate anomalies and 

chlorophyll a concentrations from postulated feeding ground A, B and C; excluding the “crash”. The ARIMA 

model error structure is in the form of (p, d, q), where p refers to the number of autoregressive terms (AR), d 

refers to the differencing order and q refers to the number of moving average terms (MA). Autocorrelation plots 

(ACF) and partial autocorrelation plots (PACF) of the growth rate anomaly time series were used to determine 

the order of p and q. The PACF is used to determine the AR order which is p, while the ACF determines the MA 

order which is q. The Augmented Dickey-Fuller (ADF) test was then used to determine whether the residuals of 

the chosen model were stationary. If the stationarity test failed, a differencing order of d=1 was applied to the 

growth rate anomalies, and the ACF and PACF were reanalysed to determine the new order of p and q. This 

process was repeated until the correct starting ARIMA model was obtained for each of the four model classes. 

Predictor variables with their respective lags were incorporated into the original model in two different ways: 

firstly, by adding one variable at a time and adding the lags sequentially; and secondly, with all variables at all 

lags included from the start, followed by removing one variable at a time. In order to include predictor variables 

at their maximum lags and, given that the lengths of the climate index data vary, the length of data used in each 

of the model classes was standardized (i.e. the maximum length of data without any missing values was 

included). This was done to allow accurate comparisons between models using the same amount of data. Model 

validation (ACF and PACF of growth rate anomalies, ACF of model residuals and ADF test results) were obtained 



Do not cite without permission of the authors 

 

9 

 

for each model. Finally, in order to assess potential improvement in model performance after adding 

environmental predictor variables, AIC scores and adjusted R2 values were compared between models within 

each model class. Significant model performance improvement was calculated by assessing whether the delta 

AIC was significantly different, based on the one-tail chi-square test (for upper tail) with the dimension n (n 

refers to the difference in parameter numbers between the two models). For example, if a model with no 

predictor variables is compared to a model with 4 predictor variables, then n = 4 and, based on the chi-square 

test, a delta AIC > 9.48 is required for the difference to be significantly different (at the 0.05 significance level). 

ARIMA models were computed using R version 3.5.1 (R Core Team, 2018) using the tseries (version 0.10.46) 

package (Trapletti and Hornik, 2018) and the forecast (version 8.5) package (Hyndman et al. 2019). 

 

Results  

Southern right whale counts 

The counts of unaccompanied adults ranged between 9 and 433 (in the years 2016 and 2008 respectively) while 

the cow-calf pair counts ranged between 21 and 537 (in the years 1973 and 2018 respectively) (Figure 1). The 

clear increasing trends in the count data for both demographic groups of whales deviate for the first time after 

2008, with merely 9 unaccompanied adults counted in 2016. This trend of unusually low numbers of 

unaccompanied adults continues till 2018. In contrast however, counts of cow-calf pairs deviated drastically 

from the trend after 2014, with 55 cow-calf pairs counted in 2016. Counts of cow-calf pairs increased the 

following year, with a record-high number of cow-calf pairs of 537 in 2018.  

 

Wavelet analyses 

(i) Wavelet power 

The counts of cow-calf pairs, excluding the “crash”, fluctuated with a cyclic periodicity of 3-4 years (Figure 5 C). 

This periodicity was not constant over time, with the strongest cycles occurring between 1974 and 1987. The 3-

4-year periodicity was insignificant for a large portion of the remainder of the time series, apart from small 

clusters of significance between 1997-2001 and 2008-2009. In contrast, the counts of cow-calf pairs, including 

the “crash”, fluctuate with much more variance starting from 2009 (Figure 5 B). The first cycle seen in the large 

significant cluster (2009-2016), begins in 2009 and fluctuates at a 5-6-year periodicity. The peak in the cycles 

(i.e. the strongest wavelet power) has a cyclic periodicity of 3-5 years, starting in 2015. The 3-7-year range of 

cyclic periodicity found in this cluster likely overrides the weaker 3-year cycles which can be seen in Figure 5 C. 

Despite the drastic fluctuations in cycles starting in 2009, a small cluster of significance indicating a 3-4-year 

cyclic periodicity is found between 1977-1980 (Figure 5 B).  
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Figure 5 A) Time series of southern right whale cow-calf pair counts (1972 – 2018); shaded area (2014 – 2018) delineates 

the clear “crash” in the time series. B) Wavelet power spectrum of the log transformed southern right whale cow-calf 

pair count time series, including the “crash” (1972 – 2018). C) Wavelet power spectrum of the log transformed southern 

right whale cow-calf pair count time series, excluding the “crash” (1972 – 2014). Data were first log transformed to 

amplify the cyclical signals of the small population size found in the early years of the time series. Both time series were 

detrended using Local polynomial regression (LOESS; 30% smoothing span) to account for any trends in the time series. 

The null hypothesis of “no periodicity” in these plots was tested with simulation algorithms. White contour lines 

delineate areas of significant periodicity (p<0.1). The shaded area indicates the cone of influence, which delimits the 

region not influenced by edge effects.  
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The Oceanic Nino Index (ONI) appears to fluctuate predominantly with a cyclic periodicity of 4-6 years, especially 

between 1975 and 1994 (Figure A1 A). However, cycles with a period of around 3 years can be seen between 

1995 and 2000, and from 2009 onwards. The Antarctic Oscillation (AAO) has two distinct clusters of significant 

cycles (Figure A1 B): a cyclic periodicity of 4-6 years between 1990 and 2000, followed by a more frequent 

cyclicity of 2-3 years between 2000 and 2013. The September Antarctic sea ice extent (SASIE) has a weak but 

significant cyclic periodicity around 7 years from 1999 onwards (Figure A1 C). There are also two cycles with a 

shorter period between 1982 and 1987, and 2008 onwards, at 2-3 years and 4-5 years respectively. The 

chlorophyll a concentrations for postulated feeding grounds A, B and C show similar cyclic periodicity (Figure A1 

D;E;F), with all significant clusters ranging between a periodicity of 2-3 years. The cycles however are not 

constant throughout time; feeding ground A has significant cyclic periodicity between 2000 and 2013; feeding 

ground B has significant cyclic periodicity between 2000 and 2009, and from 2015 onwards; and feeding ground 

C has significant cyclic periodicity between 2002 and 2013.  

  

(ii) Cross-wavelet power 

Synchrony was found between the cycles of cow-calf pair counts (excluding and including the “crash”) and all 

climate indices (including chlorophyll a concentrations).  

ONI: The ONI and cow-calf pair count cross-wavelet results indicate significant synchrony, with the cycles of the 

two time series moving mostly in anti-phase (Figure 6 B,C). Clusters of significant cycle synchrony between the 

ONI and cow-calf pair data excluding the “crash” are found predominantly with a periodicity of 3-4 years, 

between 1975 and 1997, 1995 and 2000, and 2008 and 2011 (Figure 6 C). When including the “crash”, only one 

cluster of significant cycle synchrony is found, with a periodicity of 3-6 years, from 2010 onwards (Figure 6 B).  
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Figure 6 The cycle synchrony between log and detrended cow-calf pair counts, including and excluding the “crash” and 

the Oceanic Niño Index. A) Blue line: time series of southern right whale cow-calf pair counts, including the “crash” (1972 

– 2018); red line: time series of the Oceanic Nino Index (1972 – 2018). B) Cross-wavelet power plot illustrating the 

synchrony in the cycles of southern right whale cow-calf pair counts including the “crash” (1972 – 2018) and the Oceanic 

Niño Index. C) Cross-wavelet power plot illustrating the synchrony in the cycles of southern right whale cow-calf pair 

counts excluding the “crash” (1972 – 2014) and the Oceanic Niño Index. Cross-wavelet power plots identify period bands 

and time intervals within which the cycles of the two time series are synchronised. The shaded area indicates the cone 

of influence, which delimits the region not influenced by edge effects. White contour lines border areas of significance. 

P-values associated with the values within the region delineated by the white contour lines are less than 5%.  
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AAO: The cycles of the AAO are synchronized with that of the cow-calf pair data excluding the “crash” from 1993 

to 2011 (Figure 7 C). The synchrony is found for mostly a 3-year period, with the cycles moving in phase. 

However, when including the “crash”, cycle synchronicity is found from 2012 onwards, with the cycles moving 

in anti-phase (Figure 7 B).  

Figure 7 The association between log and detrended cow-calf pair counts, including and excluding the “crash” and the 

Antarctic Oscillation. A) Blue line: time series of southern right whale cow-calf pair counts, including the “crash” (1980 – 

2018); red line: time series of the Antarctic Oscillation (1980 – 2018). B) Cross-wavelet power plot illustrating the 

synchrony in the cycles of southern right whale cow-calf pair counts including the “crash” (1980 – 2018) and the Antarctic 

Oscillation. C) Cross-wavelet power plot illustrating the synchrony in the cycles of southern right whale cow-calf pair 

counts excluding the “crash” (1980 – 2014) and the Antarctic Oscillation. Cross-wavelet power plots identify period 

bands and time intervals within which the cycles of the two time series are synchronised. The shaded area indicates the 

cone of influence, which delimits the region not influenced by edge effects. White contour lines border areas of 

significance. P-values associated with the values within the region delineated by the white contour lines are less than 

5%.  
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SASIE: The SASIE and cow-calf pair counts excluding the “crash” have two distinct clusters of synchronicity 

(Figure A2 C). The first cluster, between 1981 and 1989, has cycles at a 4-year periodicity moving in phase, while 

at a 2-3-year periodicity, the cycles move in anti-phase. The second cluster, between 1999 and 2011, has one 

predominant cyclic periodicity of 3 years, with the cycles moving in anti-phase. However, when including the 

“crash”, a single cluster of synchronicity is found, with cycles of a 3-7-year period moving in phase (Figure A2 B). 

Chlorophyll a: Cross-wavelet power plots for the chlorophyll a concentrations and cow-calf pair counts excluding 

the “crash” revealed little synchrony in their cycles. Significant synchrony for chlorophyll a in postulated feeding 

ground A is found at a 2-4-year periodicity from 2000-2001, with the cycles moving in phase (Figure A3 C). 

Significant synchrony for chlorophyll a in postulated feeding ground B is found at 2-3-year periodicity from 2000-

2001, with the cycles moving in anti-phase (Figure A4 C). Postulated feeding ground C has only a single year 

(2000) of significant cycle synchrony, with the cycles moving in phase at a 2-3-year periodicity (Figure A5 C). In 

contrast, cycle synchronicity for longer time intervals can be seen in the cross-wavelet power plots for the 

chlorophyll a concentrations and cow-calf pair counts including the “crash”. Chlorophyll a concentration cycles 

from postulated feeding ground A is in synchrony with cow-calf pair counts including the “crash” between 2008 

and 2016, with a cyclic periodicity between 2 and 4 years (Figure A3 B). Phase difference arrows indicate that at 

a 3-4-year periodicity, cycles move in anti-phase, while at a 2-3-year periodicity, cycles move in phase. Postulated 

feeding ground B has a short time interval of cycle synchronicity with cow-calf pair counts including the “crash”, 

with significant anti-phase moving cycles at a 2-3-year period found from 2014 onwards (Figure A4 B). Postulated 

feeding ground C has two clusters of significant cycle synchrony with cow-calf pair counts including the “crash” 

(Figure A5 B): the first, from 2009-2011, has a cyclic periodicity of 3 years and phase difference arrows indicate 

that the synchrony is at the edge of both in phase and anti-phase movement; the second, from 2014-2016, has 

a cyclic periodicity of 2-3-years and phase difference arrows indicate mostly in phase movement.  

 

ARIMA models 

For the first class of ARIMA models (growth rate anomalies and the ONI, AAO and SASIE; including the “crash”), 

an original ARIMA model order of (4,3,6) was computed (Table 1 Model 1). The ADF test of model residuals 

indicated stationarity (p < 0.05). The model explained high amounts of variation in growth rate anomalies (AIC 

= 12.69, adjusted R2 = 0.6961). Lagged climatic variables were added sequentially to this original model; ONI (up 

to 3 years lag), AAO (up to 3 years lag) and SASIE (up to 4 years lag) (Table 1 Model 2-14). Stationarity issues for 

data including the “crash” were expected due to the drastic drop and subsequent rise in the count data. These 

issues are realized through the ADF tests of model residuals indicating stationarity for model 5,6,7,9 and 10 (p < 

0.05) while model 2,3,4,8,11,12,13 and 14 did not pass the test (p > 0.05). A number of models performed 

significantly better than the original model, however. The best performing model for each climate variable 

included model 2 for ONI and model 8 for AAO (see Table 1). The second method of incorporating lags into the 

original ARIMA model yielded models which all outperformed the original model, however only model 27 yielded 

a significant delta AIC (see Table 2). As expected, ADF tests of model residuals indicated non-stationarity for 

models 25-28 (p > 0.05). 
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Table 1 ARIMA model results for the first lag incorporation method. Models 1-14: first class of ARIMA models: growth rate anomalies and the ONI, AAO and SASIE; including the 

“crash”. Models 15-24: second class of ARIMA models: growth rate anomalies and chlorophyll a concentrations from postulated feeding ground A, B and C; including the “crash”. 

Significant model performance improvement compared to the original model (excluding predictors) is indicated via * (0.1 significance level) and ** (0.05 significance level).  
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Table 2 ARIMA model results for the second lag incorporation method. Models 1-28: first class of ARIMA models: growth rate anomalies and the ONI, AAO and SASIE; including 

the “crash”. Significant model performance improvement compared to the original model (excluding predictors) is indicated via * (0.1 significance level) and ** (0.05 significance 

level). 
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For the second class of ARIMA models (growth rate anomalies and chlorophyll a concentrations from postulated 

feeding ground A, B and C; including the “crash”), an original ARIMA model order of (1,0,1) was computed (Table 

1 Model 15). The ADF test of model residuals indicated non-stationarity (p > 0.05), regardless of the differencing 

order applied to the model. As such, results originating from this model should be interpreted with caution 

(Table 1 Model 15-24). The model explained relatively low amounts of variation in growth rate anomalies (AIC = 

10.67, adjusted R2 = 0.4815). Lagged chlorophyll variables, added sequentially to this original model, were 

chlorophyll a from postulated feeding ground A, B and C (each up to 2 years lag) (Table 1 Model 16-24). Two 

models performed better than the original model (Table 1 Model 23;24), however only the model including 

chlorophyll a from postulated feeding ground C (lagged by 1 year) yielded a significant delta AIC (Table 1 Model 

23). Due to the lack of long-term data, the second method of lag incorporation was not computed for this second 

class of ARIMA models.  

 

For the third class of ARIMA models (growth rate anomalies and the ONI, AAO and SASIE; excluding the “crash”), 

an original ARIMA model order of (3,2,6) was computed (Table A1 Model 1). The ADF test of model residuals 

indicated stationarity (p < 0.05). The model explained high amounts of variation in growth rate anomalies (AIC 

= -62.76, adjusted R2 = 0.7779). Lagged climatic variables, added sequentially to this original model, were the 

ONI (up to 2 years lag), the AAO (up to 2 years lag) and the SASIE (up to 2 years lag) (Table A1 Model 2-10). ADF 

tests of model residuals indicated stationarity for all 9 models. The only models which performed better than 

the original model were models including the AAO (Table A1 Model 5;6). However, neither of these models 

yielded significant delta AICs. The second method of incorporating lags into the original ARIMA model was 

unable to improve the model performance (Table A2). ADF tests of model residuals indicated stationarity for 

model 20 and 22 (p < 0.05) while model 21 and 23 did not pass the test (p > 0.05).  

 

For the fourth class of ARIMA models (growth rate anomalies and chlorophyll a concentrations from postulated 

feeding ground A, B and C; excluding the “crash”), an original ARIMA model order of (4,0,0) was computed (Table 

A1 Model 11). The ADF test of model residuals indicated non-stationarity (p > 0.05), regardless of the differencing 

order applied to the model. As such, results originating from this model should be interpreted with caution 

(Table A1 Model 11-19). The model explained high amounts of variation in growth rate anomalies (AIC = -23.31, 

adjusted R2 = 0.7005). Lagged chlorophyll variables, added sequentially to this original model, were chlorophyll 

a from postulated feeding ground A, B and C (up to 2 years, 2 years and 1 year lag respectively) (Table A1 Model 

12-19). Two models performed better than the original model (Table A1 Model 14;17), however neither of these 

models yielded significant delta AICs. Due to the lack of long-term data, the second method of lag incorporation 

was not computed for the fourth class of ARIMA models.  

 

Model validation for all ARIMA models (ACF and PACF of growth rate anomalies, ACF of model residuals) were 

obtained but are not included in this report.  

 

 



Do not cite without permission of the authors 

 

18 

 

Discussion 

Three-year calving cohort 

SRW females have a calving interval of approximately three years and, as such, 3 three-year “cohorts” have been 

observed in the count data, where every three years one of the 3 cohorts will be calving. Since the number of 

females in each cohort varies, so too will the number of calves born each year co-vary, thus maintaining an 

observed 3-year periodicity. Through visual inspection of the count data, a “bumper-cohort” was noted up to 

2010, where every 3 years a larger cohort of females gave birth. However, this “bumper-cohort” signature is 

dissipated after 2010, most likely due to an increasing occurrence of 4- and 5-year calving intervals (as opposed 

to the normal 3-year intervals), which have become the norm since 2015 (Vermeulen et al. 2018). Interestingly, 

the 3-4-year cyclic periodicity found in the cow-calf pair counts excluding the “crash” provides the first statistical 

evidence for this “bumper-cohort” in SRW females, with the large “bumper-cohort” completing a breeding cycle 

every 3-4 years. This 3-4-year cyclical signal, which although not significant throughout, is evident for most of 

the time series (apart from a time interval between 1987 and 1997), with the signal dissipating after 2010. When 

including the “crash” in the analyses, a wide range of cyclic periodicities can be seen from 2009 onwards, with 

the strongest cycles occurring with a period of 3-5-years from 2015 onwards. The first appearance of these 

strong 3-5-year cycles occur within the ‘cone of influence’ and thus can be interpreted with some confidence. 

The cycles suggest a shift in calving intervals from a 3-year cycle a to a 4- and 5-year cycle as found by Vermeulen 

et al. (2018). Thus, the wavelet analyses for the cow-calf pair counts provide evidence for the presence of the 

large “bumper-cohort”, when excluding the “crash”. Secondly, evidence is provided for the dissipation of this 

“bumper-cohort” signal from 2009 onwards, due to an increasing length in calving intervals of SRW females. It 

must be noted that the shift found in calving interval length (Vermeulen et al. 2018), together with the drastic 

fluctuations in the cycles of cow-calf pair counts found in this study, begins around 2009/2010 – the same years 

where the counts of unaccompanied SRW adults dropped sharply. As such, there appears to have been 

synchrony in the timing of the increasing calving intervals of SRW females and the absence of unaccompanied 

SRW adults along South Africa’s southern coast. This synchrony is unlikely to be coincidental and will be 

addressed at a later stage in this discussion.   

 

Influence of environmental variables on cow-calf pair counts 

Results presented in this document reveal that the Antarctic Oscillation (AAO) may play a role in the inter-annual 

fluctuations of SRW cow-calf pair counts. As mentioned previously, the AAO is the leading mode of atmospheric 

variability south of 20⁰S (Pohl et al. 2010, Salinger et al. 2016). Winds associated with the AAO alter the 

circulation patterns of the Southern Ocean which can ultimately influence the abundance of phytoplankton 

(Lovenduski & Gruber, 2005). A large variety of zooplankton (the most common of which are copepods and krill) 

are in turn sustained by phytoplankton (Duxbury, Duxbury and Sverdrup K.A, 1999). Cross-wavelet power results 

for cow-calf pair count cycles excluding the “crash” revealed significant synchrony with the cycles of the AAO 

from 1993 to 2011. The synchronicity spans most of the time series with a cyclic periodicity of 3-years, with what 

appears to be perfect in phase movement. These results suggest a positive association between the AAO and 

cow-calf pair counts without any lags between the signals. Despite no significant model performance 
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improvement being found through the inclusion of any climatic predictor variables when excluding the “crash”, 

the ARIMA model including the AAO𝑡 as the only climatic predictor performed the best out of all potential 

models. Results further suggest that chlorophyll a concentrations in postulated feeding ground A and B may also 

play a role in the inter-annual fluctuations of SRW cow-calf pair counts up to a 2 year lag. Similar findings have 

been seen elsewhere. For example, a study conducted on North Atlantic right whales revealed significant 

correlations between the number of right whale calves born and chlorophyll concentrations averaged over the 

prior 2 years (Hlista et al. 2009). Similarly, Greene et al. (2003) found that the abundance of a copepod species 

(Calanus finmarchicus) was significantly correlated at 0- and 2-year lags to the calving rates of North Atlantic 

right whales. The mechanistic links between chlorophyll and right whale feeding success however, are inherently 

complex and mediated by various environmental and biological processes, such as potentially complex life 

histories of various prey species (Hlista et al. 2009). 

 

As mentioned previously, the El Niño–Southern Oscillation (ENSO) has been found to show strong links with sea 

ice extent in Antarctica (Loeb et al. 2009, Loeb & Santora 2015) and as a result, impacts krill densities (Loeb et 

al. 1997, Fraser & Hofmann 2003, Atkinson et al. 2004, Flores et al. 2012, Trathan et al. 2012). Thus, there is 

cause for concern for the potential role of El Niño events in driving  some of the recent trends in South Africa’s 

population of SRW. The impact of El Niño events on SRWs is thought to be mediated through the effect of 

elevated SSTs (typical of El Niño conditions) on the variation in SRW food availability (Leaper et al. 2006, Seyboth 

et al. 2016). Loeb & Santora (2015) analysed 18 years of krill data near the North Antarctic Peninsula and found 

that the post-larval and larval abundance of four different krill species increased during a time period associated 

with a shift from El Niño to La Niña (or “Niño-neutral”) dominated conditions. Interestingly, wavelet power 

analyses revealed an increased frequency in the cycles of the ONI since 2009. This increased frequency can be 

seen with most of the ONI time series initially being dominated by a 4-6-year cycle up until 2000, with a 3-year 

cycle seen between 1995 and 1999, and from 2009 onwards. This result concurs with models which have 

suggested that El Niño-like conditions are likely to increase in frequency over the coming decades (Holmgren et 

al. 2001). Cross-wavelet power analyses revealed significant synchrony between the ONI and cow-calf pair count 

cycles. When excluding the “crash”, three clusters of significance were found, with the cycles in all three cases 

moving mostly in anti-phase. The cross-wavelet power strength of these clusters indicates high power around 

the years of 1982 and 1998, with weaker power in the third cluster around 2010. All three of these clusters occur 

during times of El Niño conditions. 1982/1983 and 1997/1998 were both periods of very strong El Niño’s, while 

the El Niño of 2010/2011 was moderately strong. The anti-phase movement of the cow-calf pair count and ONI 

cycles suggest a negative association between El Niño conditions and cow-calf pair counts. However, as no model 

improvement was found when including lagged ONI values in the ARIMA model excluding the “crash”, the ONI 

does not appear to have a prominent role in driving inter-annual fluctuations in cow-calf pair counts when 

excluding the “crash”.  

 

When including the “crash” in the data, however, a large cluster of significant anti-phase cycle synchrony can be 

found between the ONI and cow-calf pair counts from 2011 onwards, with the highest cross-wavelet power 
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occurring around 2015. This time interval corresponds to the extreme 2015/2016 El Niño event, which has been 

referred to as a “super El Niño” (Chen et al. 2017). Furthermore, when including ONI values lagged by up to 2 

years in the ARIMA model including the “crash”, significant model performance improvement can be seen. Thus, 

the ONI, and hence El Niño events, with a lag of up to 2 years may have played a role in the “crash” of cow-calf 

pair counts along the South African coast. El Niño events have explained reductions in reproductive success of 

predators in the Antarctic before. For example, the frequent El Niño events between 1987 and 1998 resulted in 

reductions in Antarctic fur seal pup production for more than 20 years (Forcada et al. 2005). While the time scale 

at which these El Niño signals are propagated poleward and the lag times that exist in the system require further 

research (Turner 2004), associations between the ONI and cow-calf pair counts at various lags can be expected. 

This is due to the time delay between elevated SSTs occurring in the Pacific and the El Niño signal being 

propagated into the Southern Ocean, in addition to the time it would take for altered food availability to reflect 

in SRW cow-calf pair counts along a stretch of South African coastline. However, the intense El Niño event of 

1997-1998 was found to have strong, direct effects on the Atlantic region of the Southern Ocean with a lag time 

of less than 6 months (Murphy et al. 2007). This finding illustrates that it is in fact possible for El Niño events to 

impact food availability in the Southern Ocean rapidly after occurring.  

 

Association and causation 

Providing a potential climate-related explanation to the recent “crash” in cow-calf pair counts is expected to be 

fairly intuitive when assessing the data for the climate index which is considered to be ‘responsible’. For 

example, if one were to find fluctuations in the cycles of a climate index which reaches far outside of its historic 

ranges around the time of the “crash” in cow-calf pair counts, then one might be able to suggest a potential 

causative relationship involving that climate index. In this study, while the inclusion of some climate indices were 

able to improve ARIMA model performance, and thus are likely to be playing some role, there are still no clear 

explanations or single climatic drivers which could potentially explain the drastic “crash” in cow-calf pair counts 

along the South African coast. This is illustrated by the ONI for example, whose inclusion in the ARIMA model 

without any lag times yields the best performing model. And while its inclusion appears to improve model 

performance substantially, the result may be largely driven by the synchrony in the timing of the “super El-Niño” 

of 2015/2016 and the extremely low counts of cow-calf pairs in those same years. However, El-Niños of similar 

strength have been recorded before, such as the El-Niños of 1982/1983 and 1997/1998, and in both cases, 

extreme crashes in cow-calf pair counts were not observed. This might well be explained by the already relatively 

low population sizes of SRW occurring during those years (as SRW were still in the initial stages of recovering 

from historic whaling). Nonetheless, the correlative nature of the time series approaches used in this study raises 

some uncertainties regarding the roles that are played by climatic and biological variables in the drastic “crash” 

in SRW cow-calf pair counts along the coast of South Africa. But, despite the lack of causative response models, 

which are arguably only acquired through controlled experiments, investigating the potential associations 

between climate (and biological) variability and the drastic “crash” in cow-calf pair counts is the first step in 

elucidating mechanistic explanations. 
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Influence of combinations of environmental variables on cow-calf pair counts 

ARIMA model results for data including the “crash”, which investigate the potential role of combinations of 

climate indices, reveal the best performing model includes the ONI lagged up to 2 years and SASIE lagged up to 

4 years. The combined effect of a number of climatic drivers leads towards a potential threshold explanation for 

the “crash”, where a combination of drivers such as frequent El Niño’s and the melting of sea ice in parts of the 

Antarctic, may have led to poor feeding conditions in SRW feeding grounds in the Southern Ocean. Given the 3-

year reproductive cycle of SRWs, it is likely that feeding conditions over several years are integrated when 

determining if and when a female SRW might reproduce (Greene et al. 2003). Thus, it is probable that the 

required body condition for successful reproduction is achieved through cumulative energy storage over several 

consecutive years of abundant food (Seyboth et al. 2016). As such, poor body condition, caused by several years 

of poor food availability, may have forced females to take extra years of recovery, allowing more time for them 

to build up sufficient fat reserves for their following pregnancies. This hypothesis is supported by the increasing 

occurrence of 4- and 5-year calving intervals of SRW females (Vermeulen et al. 2018). As such, females may have 

been able to withstand successive years of poor feeding conditions, while continuing to breed, by increasing the 

time taken between each successive calving event, allowing them more time to feed. It is also likely that females 

have made extensive use of their fat reserves to sustain themselves during these periods of poor feeding 

conditions. Evidence of this is provided with recent photo-ID data revealing unusually thin females with calves 

in the 2 years preceding the “crash” of unaccompanied adults and cow-calf pairs (2008 and 2014 respectively; 

see document SC/68A/SH/xx).  

 

The hypothesis of poor feeding conditions and resilient breeding females (up till a point) is given further support 

when also taking the drop in the counts of unaccompanied whales into consideration. To do this, one must first 

understand the various hypotheses as to why SRW migrate to coastlines in the first place (e.g. Norris 1967, 

Brodie 1975, Evans 1987, Corkeron & Connor 1999). Most of these hypotheses include an increased chance of 

survival of offspring either due to a reduced predation pressure (Corkeron & Connor 1999), increased SST which 

increase calf survival (Norris 1967) or energetic benefits for the mother, likely improving maternal investment 

(Brodie 1975). And so, it is possible that unaccompanied SRW adults are likely less obliged to make the 

energetically costly migration to the winter breeding grounds, and as such, if experiencing nutritional stress, 

might not need to migrate all the way to the winter breeding grounds. In stark contrast, female SRW which are 

pregnant will need to make the migration to the calm, sheltered bays on South Africa’s coast to allow their new-

born calves the best chance of survival (Elwen & Best, 2004). Thus, due to the synchronous timing between the 

sharp reduction of SRW unaccompanied adult counts and the increasing calving intervals seen in SRW females, 

it is possible that the unaccompanied SRW adults had provided us with an early warning to changes occurring in 

SRW feeding grounds in the Southern Ocean, as well as the extreme nutritional stress that SRW females would 

soon experience.  

 

Conclusion 

The potential linkages between climate variability, physical oceanography, plankton productivity and ultimately 
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the prevalence of SRWs in the South African breeding ground are complex. The use of yearly mean climate 

indices (ONI, AAO) and single month averages (SASIE, chlorophyll a concentrations) represent a simplified 

attempt at quantifying the linkages mentioned above. As such, this study should serve as a potential starting 

point when investigating climate and biological links for South Africa’s SRWs, allowing for more robust modelling, 

and using more detailed and complete data sets, to provide an undoubtedly more accurate understanding of 

the intricate climatic processes at play in the Southern Ocean, and their eventual impact on SRW.  
 

Main findings 

• Wavelet analysis provides evidence for the presence of a large “bumper-cohort” with a 3-4-year 

cyclicity, evident for most of the cow-calf pair count data.   

• This 3-4-year cyclicity dissipates from 2009 onwards, with strong cycles occurring with a period of 3-5-

years from 2015 onwards. This is due to an increasing length in calving intervals of SRW females.  

• ARIMA time series analyses on data excluding the “crash” in cow-calf pair counts (i.e. excluding 2015-

2018) reveal no significant model performance improvement when including environmental variables. 

• ARIMA time series analyses on data including the “crash” in cow-calf pair counts (i.e. including 2015-

2018) reveal significant model performance improvement through the inclusion of the Oceanic Niño 

Index, the Antarctic Oscillation and chlorophyll a concentration data from one of the three postulated 

SRW feeding grounds. 

• Ultimately, we suggest that the combined effect of several climatic drivers may have led to poor feeding 

conditions in SRW feeding grounds in the Southern Ocean, which is likely to have played a major role 

in the recent reversal in the increasing trend of abundance in SRW cow-calf pair counts along the coast 

of South Africa.  
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Appendix A  

  

Figure A1 Wavelet power spectrum of the various environmental variables. Time series detrended using Local regression 

(LOESS; 30% smoothing span). The null hypothesis of “no periodicity” in these plots is tested with simulation algorithms. 

White contour lines delineate areas of significant periodicity (p<0.1). The shaded area indicates the cone of influence, 

which delimits the region not influenced by edge effects. A) Oceanic Nino Index (1972 – 2018) B) Antarctic Oscillation 

(1980 – 2018) C) September Antarctic sea ice extent (1979 – 2018) D) Mean January chlorophyll a concentration for 

postulated feeding ground A (1998 – 2018) E) Mean January chlorophyll a concentration for postulated feeding ground 

B (1998 – 2018) F) Mean January chlorophyll a concentration for postulated feeding ground C (1998 – 2018). 
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Figure A2 The association between log and detrended cow-calf pair counts, including and excluding the “crash” and the 

September Antarctic sea ice extent. A) Blue line: time series of southern right whale cow-calf pair counts, including the 

“crash” (1979 – 2018); red line: time series of the September Antarctic sea ice extent (1979 – 2018). B) Cross-wavelet 

power plot illustrating the synchrony in the cycles of southern right whale cow-calf pair counts including the “crash” 

(1979 – 2018) and the September Antarctic sea ice extent. C) Cross-wavelet power plot illustrating the synchrony in the 

cycles of southern right whale cow-calf pair counts excluding the “crash” (1979 – 2014) and the September Antarctic sea 

ice extent. Cross-wavelet power plots identify period bands and time intervals within which the cycles of the two time 

series are synchronised. The shaded area indicates the cone of influence, which delimits the region not influenced by 

edge effects. White contour lines border areas of significance. P-values associated with the values within the region 

delineated by the white contour lines are less than 5%.  
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Figure A3 The association between log and detrended cow-calf pair counts, including and excluding the “crash” and the 

mean January chlorophyll a concentration for postulated feeding ground A.  A) Blue line: time series of southern right 

whale cow-calf pair counts, including the “crash” (1998 – 2018); red line: time series of the mean January chlorophyll a 

concentration for postulated feeding ground A (1998 – 2018). B) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts including the “crash” (1998 – 2018) and the mean January 

chlorophyll a concentration for postulated feeding ground A. C) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts excluding the “crash” (1998 – 2014) and the mean January 

chlorophyll a concentration for postulated feeding ground A. Cross-wavelet power plots identify period bands and time 

intervals within which the cycles of the two time series are synchronised. The shaded area indicates the cone of 

influence, which delimits the region not influenced by edge effects. White contour lines border areas of significance. P-

values associated with the values within the region delineated by the white contour lines are less than 5%.  



Do not cite without permission of the authors 

 

26 

 

  

Figure A4 The association between log and detrended cow-calf pair counts, including and excluding the “crash” and the 

mean January chlorophyll a concentration for postulated feeding ground B. A) Blue line: time series of southern right 

whale cow-calf pair counts, including the “crash” (1998 – 2018); red line: time series of the mean January chlorophyll a 

concentration for postulated feeding ground B (1998 – 2018). B) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts including the “crash” (1998 – 2018) and the mean January 

chlorophyll a concentration for postulated feeding ground B. C) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts excluding the “crash” (1998 – 2014) and the mean January 

chlorophyll a concentration for postulated feeding ground B. Cross-wavelet power plots identify period bands and time 

intervals within which the cycles of the two time series are synchronised. The shaded area indicates the cone of 

influence, which delimits the region not influenced by edge effects. White contour lines border areas of significance. P-

values associated with the values within the region delineated by the white contour lines are less than 5%.  
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Figure A5 The association between log and detrended cow-calf pair counts, including and excluding the “crash” and the 

mean January chlorophyll a concentration for postulated feeding ground C. A) Blue line: time series of southern right 

whale cow-calf pair counts, including the “crash” (1998 – 2018); red line: time series of the mean January chlorophyll a 

concentration for postulated feeding ground C (1998 – 2018). B) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts including the “crash” (1998 – 2018) and the mean January 

chlorophyll a concentration for postulated feeding ground C. C) Cross-wavelet power plot illustrating the synchrony in 

the cycles of southern right whale cow-calf pair counts excluding the “crash” (1998 – 2014) and the mean January 

chlorophyll a concentration for postulated feeding ground A. Cross-wavelet power plots identify period bands and time 

intervals within which the cycles of the two time series are synchronised. The shaded area indicates the cone of 

influence, which delimits the region not influenced by edge effects. White contour lines border areas of significance. P-

values associated with the values within the region delineated by the white contour lines are less than 5%.  
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Table A1 ARIMA model results for the first lag incorporation method. Models 1-10: third class of ARIMA models: growth rate anomalies and the ONI, AAO and SASIE; excluding 

the “crash”. Models 11-19: fourth class of ARIMA models: growth rate anomalies and chlorophyll a concentrations from postulated feeding ground A, B and C; excluding the 

“crash”. Significant model performance improvement compared to the original model (excluding predictors) is indicated via * (0.1 significance level) and ** (0.05 significance 

level). 
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Table A2 ARIMA model results for the second lag incorporation method. Models 1-23: third class of ARIMA models: growth rate anomalies and the ONI, AAO and SASIE; excluding 

the “crash”. Significant model performance improvement compared to the original model (excluding predictors) is indicated via * (0.1 significance level) and ** (0.05 significance 

level). 
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