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ABSTRACT  

 

As a key species linking primary producers to the higher tropic levels in the Antarctic ecosystem, the Antarctic 

krill (Euphasia superba) plays an important role in the Antarctic ecosystem. Therefore, knowing the plausible 

spatial distribution of the krill will be useful for the resource management and conservation in this area. Species 

distribution models (SDMs) can help predict the spatial species density by quantifying the relationship between 

the observed species distribution and its influencing factors. In general, although both statistical models and 

machine learning methods can be applied as SDMs, there is a still open question of how the estimation performance 

of those SDMs for the Antarctic krill is. To address this question, we conducted simulation studies for six different 

SDMs under two different survey-designs with zig-zag-shaped and tooth-shaped track lines, in order to assess the 

estimation performance of each model for krill distribution and mean density. As the procedure, we first 

conditioned two different density distribution of krill in this region by using actual krill density observation data. 

Using the assumed true spatial density surfaces, we repeatedly generated simulation data under the two designs, 

and then applied six SDMs, two statistical models and four machine learning methods, to the data. As performance 

measures, the mean squared error of predicted surface (MSE), relative bias and root mean squared error (RMSE) 

for the mean density were used. As a result, machine leaning methods were proven to have higher and more reliable 

prediction abilities than traditional statistical models, especially random forests (RF) and boosted regression trees 

(BRT) were revealed to be the most reliable methods in this study. In addition, the zigzag-shaped and tooth-shaped 

designs are found to have comparable performances, and both of them can be applied in the krill field survey. 
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INTRODUCTION  

The Antarctic krill (Euphasia superba) plays a significant role in the management of the fishery resources in the 

Antarctic Ocean since it links the primary producers with the higher trophic species such as marine mammals. As 

in the cases of other fishery populations, understanding of the abundance level and spatial distribution contributes 

to the management of this species. For this purpose, some field surveys in the Antarctic Ocean are conducted for 

the data collection. However, the costs of these surveys are pretty high, and therefore the development of better 

survey designs are of great interest.  

 

The line transect methods with acoustic observation has been a primary platform for the krill abundance survey. 

Usually a tooth-shaped design of track lines has been used for krill survey while a zigzag-shaped design is used in 

most of cetacean surveys. To arrange the krill survey in conjunction with the cetacean survey, it is questioned if 

the zigzag shaped survey design is also feasible and can produce comparable estimates of spatial density 

distribution as well as mean density over the survey area with those by the tooth shaped design.  

As for the data analyses for estimating spatial density distribution of krill, species distribution models (SDMs) can 

be used to quantify the relationship between the observed species distribution and the influencing factors such as 

sea surface temperature. The model can also predict the potential distribution of this species based on this 

relationship. As traditional statistical techniques, “generalized linear models” (GLMs; McCullagh and Nelder 1989) 

and “generalized additive models” (GAMs; Hastie and Tibshirani 1990) have been used as SDMs and well 

recognized in the field of ecological modeling for their ability to handle a variety of error structures. Recently, a 

wide variety of machine learning methods/techniques have also been applied to species distribution modeling due 

to their ability to handle large quantities of data, to understand the complex relationship between response and 

predictors, and to generate relatively reliable predictions (Moisen et al. 2006). 

In this paper, we conducted simulation studies to provide a comprehensive comparison of the effectiveness of the 



 

 

two survey designs used for the krill resource estimation i.e. tooth and zigzag. We also compared the estimation 

performances between the two traditional statistical models and four machine learning methods which were used 

to predict the spatial density distributions of krill.  

 

MATERIALS AND METHODS 

Here, the region of interest, as well as the response and predictor variables used for developing the SDM are 

described. The six models used in this analysis are described briefly, including GLM, GAM, least absolute 

shrinkage and selection operator (Lasso; Tibshirani (1996), support vector machine (SVM; Basak et al. 2007), 

random forests (RF; Breiman 2001), boosted regression trees (BRT; Friedman 2001). 

Data description 

This section describes the data used in this study. This includes a description of the study region, the response 

variable and the predictor variables used in this analysis.  

Study region 

The study area is located between 53°-65°W and 59°-65°S, to the north of the Antarctic Peninsula, where the 

annual field studies of the U.S. Antarctic Marie Living Resources (U.S. AMLR) are conducted (Fig. 1).  

Response variable (�) 

To develop the SDM for predicting the krill density distribution, we take the density value of krill as the response 

variable, indicated by ��� in this study, which is the objective we try to model by understanding the link with its 

influencing factors, such as the temperature, etc. The krill density is estimated from the acoustic surveys. These 

surveys were conducted by the U.S. AMLR Program in 2011 (mid-January to early March), and averaged over 1-

nmi intervals (Fig. 2). In total, 1439 density values were recorded, with the maximum of 1879.45 g/m2 and mean 

value of 60.91 g/m2. When the log of the observed density values (which come from survey data) are taken, the 

resulting distribution is approximately normal in shape (Fig. 3). 

Predictor variables  

Predictor variables are the factors that may have influence on the variation of the response variable. The single 

models (GLM, GAM, Lasso with GLM, SVM, RF and BRT) are run with eight predictor variables: lon (longitude), 

lat (latitude), SST (sea surface temperature), sal (salinity), chla (the concentration of chlorophyll a), zoo (the 

concentration of zooplankton), depth (depth), and distance (distance from land). All the eight predictors are 

continuous variables. The information for the coordinates (lon and lat), SST, sal, chla and zoo data were collected 

during the AMLR survey, while the depth data was downloaded from https://www.gebco.net/. The distance from 

land data was calculated using the “distm” function in the package ‘geosphere’ in R, with the land edge coordinates 

used. The distance from land values indicate the shortest distance between the sampling stations used in survey 

and lands. 

Models 

The general relationship between the response variable and the predictor variables in this study can be described 

as follows:  

 log (���
��)~ ��� + ��� + ��� +  
�� +  �ℎ�� + ��� +  ����ℎ + ��
����� (1) 

 

where the left side is the modelling objectives, the response variable, while the predictor variables on the right side 

are used to describe the response variable.  

 

The relationship between the spatial density distribution of krill (the response variable) and the predictor variables 

is described using six models: GLM, GAM, Lasso, SVM, RF, BRT. The main features and the details of the settings 



 

 

for running in R are summarized in Table 1. 

 

On the basis of linear regression model, GLM is the extension of the ordinary linear model that allows for response 

variables have various types of error distributions other than a normal distribution. As a traditional statistical 

method, the GLM has been recognized within the scope of ecological modelling e.g. predicting the plant 

distribution in the Spring Mountains of Nevada, USA (Guisan et al. 1999). GAM is the semi-parametric extension 

of GLM (Yee and Mitchell 1991), maintaining the additivity of the modelling approach, and allowing for non-

linear functions in the predictor variables. As a result, GAM has been frequently used in the prediction of species 

distribution because of its ability to handle non-linear relationships. Some examples of its application include the 

explanation of the species distribution with respect to climate (Yee and Mitchell 1991), and predicting the 

occurrence of fern species in New Zealand (Zaniewski et al. 2002). 

 

Machine learning methods have also been applied in the spatial modelling scope recently, with their ability to 

understand the complex relationship between response and predictors been recognized. Lasso has the ability to 

yield sparse models by selecting the meaningful predictors, which can avoid the overfitting and lead to more 

interpretable models. SVM can provide a more tolerable error bound by minimizing the convex objective function, 

a combination of a loss function with a regularization term, to generate more general performance (Basak et al. 

2007). RF is an enhancement technique that collects many deep regression trees using bagging, and averages the 

results of all trees to get a more accurate and stable prediction. BRT is also an enhancement of regression trees, 

with the trees are grown to the residuals in an adaptive manner as opposed to being identically distributed as is in 

RF. The additive procedure of BRT merges all the shallow trees to make a stronger learner.  

Conditioning of models for simulation 

This section details how the simulation of this study was conducted. It consists of two parts: 1) the conditioning 

of the true krill density distribution surface 2) the simulation work of the krill spatial modelling.  

Conditioning of krill density surface 

For the simulation of the krill survey designs, the krill density surface of the overall area is conditioned by using 

actual data. There are six candidate surfaces in total and the best performance models on the conditioning will be 

selected for the conditioning.  

The evaluation measurement for the conditioning ability of each model is the mean value of the residual sum of 

squares (RSS), 

���� ��� = 1� �(log � − log !(x�))#$
�%&

(2) 

 

where � is the row number of the data set used in the corresponding procedure, � indicates the �th density 

observation, !(x�) represents the �th prediction from the single model. All the calculations are performed in log-

scale. 

 

The conditioning performance of each model is evaluated using three different evaluation procedures: fitting the 

models using the total data set, 10-fold cross-validation, spatial cross-validation.  

Fitting using total data set 

For this procedure, the total data set is used to calibrate the models, and the models are evaluated by the same data 

without density value. This procedure provides the most information to the evaluated models compared to the 

previous evaluation procedures and is expected to produce the lowest mean RSS. 

 

10-fold cross-validation 

K-fold cross validation is a resampling approach used to assess the robustness of a model (Van Houwelingen and 

Le Cessie 1990). In this study, the 10-fold cross validation is applied, where the total data set is randomly divided 

into ten independent partitions. Nine of these partitions are used to calibrate the models, and the remaining one 



 

 

partition is used to evaluate the model’s performance. The above procedure is repeated ten times, till each partition 

has been used once as an evaluation set.  

Spatial cross-validation  

Similar to the 10-fold cross-validation, the data set is divided into ten partitions by dividing the study area into 

10*10 spatial grids. The data covered in the randomly sampled (without replacement) ninety spatial grids are used 

as calibration data, which occupies ninety percent of the total data set, while the data in the remaining ten grids 

are used to evaluate the model’s performance. The above procedure is also repeated ten times, till each partition 

has been used once as an evaluation set. 

 

The selection of the “best” models for conditioning is based on the results of RSS in the above procedures. The 

density surfaces conditioned by the best performed models will be considered as the real krill density distributions 

to be used later in the simulation work. 

Generation of simulation data set 

Following the conditioning of the real density distribution surface, the density observations in the simulation data 

sets are generated from the conditioned density surface using the below distribution, with CV values equal to 10%, 

30% and 50% respectively:   

 

log(���
��) ~* +log ! − 12 log(1 + CV#) , log(1 + CV#)/ (3) 

 

One hundred iterations are generated from each distribution with only the CV being different. Thus, in total, three 

hundred iterations are generated from each conditioned density surface for the simulation work outlined below.  

Simulation 

Simulation of two survey designs  

To compare the effectiveness of the zigzag and tooth survey designs for krill resource estimation, the simulation 

work on the study area is conducted by mimicking the real survey situation. Fig. 4 is a graphical representation of 

the survey routes in one iteration. The blue dashed lines indicate the effective survey routes of tooth design, while 

the red dashed lines indicate the effective zigzag survey routes. The intervals among the sample stations and the 

total effective survey efforts of the two designs are set to be roughly equal, with 689 stations set in the zigzag 

design, and 696 for the tooth design. Both the krill density and the information on the predictors are available on 

the sampled stations along the survey routes. In the real situation, the locations of survey routes can be influenced 

by many factors, therefore the locations tend to be unfixed. To mimic the real situation, we simulate the survey by 

randomly set the survey location on the vertical direction for each iteration. The shape of survey routes, sample 

intervals and sample sizes are kept same, with only the location of survey changing.  

Comparison of the predictive abilities of the models 

Following the data collection from the “survey”, the models are calibrated with these data in order to describe the 

relationship between the krill density distribution and the predictor variables. The calibrated models are then 

applied in order to predict the probable krill density distribution in the study area, based on the relationship that 

was found during the calibration process. The predictive abilities of the single models are evaluated using several 

measures including:  

 

1) Mean squared error (MSE): evaluates the pointwise predictions at each prediction point, 

1�2 = 1� �(��3 � − ��3 !(4�))  #$
�%&

(4) 

where � is the number of prediction points in a single model, � indicates the ��ℎ true density value, !(x�) 

represents the ��ℎ predicted density value from a single model. All the calculations are performed in log-scale. 

 



 

 

2) Root mean squared error (RMSE): evaluates the predicted mean density of predicted density distribution 

surface provided by each model, 

�1�2 = 6∑ 8���99999:;<=�  − ���99999>;?<@#$�%& � (2.5) 

where � is the number of predicted density distribution surfaces for each CV value, being equal to 100 in this 

study. ���99999:;<=� indicates the predicted mean density value provided by the �th prediction, ���99999>;?< is a fixed 

value representing the true mean density value from the conditioned density distribution surface from the best 

performing candidate model.  

 

3) Relative bias to the true mean density: evaluates the predicted mean density of predicted density distribution 

surface provided by each model, 

C��
 = 1� � D���99999:;<=�  − ���99999>;?<���99999>;?< E$
�%&

(2.6) 

where the meaning of the symbols in this formula is same as the above descriptions in eq. 2.5. 

RESULTS 

Results of conditioning 

The evaluation results for the conditioning performance are summarized in Figs. 5-8, illustrating the residual sum 

of squares of each model in three evaluating procedures.  

Fitting using total data set 

In the test with total data set, RF provided significantly lower RSS than others (Fig. 5). This can be confirmed by 

checking the following scatter plots (Fig. 6), illustrating the correlations between the fitting results and the density 

observations are plotted in this figure, which shows that the predicted values given by RF were very close to the 

observed values.  

 

10-fold cross-validation  

The boxplot for the RSS of 10-fold cross-validation shows that RF can lead to the most accurate prediction on the 

evaluation data set, while BRT also had good prediction accuracy and stable performance (Fig. 7). The outliers in 

the predictions provided by GAM and SVM suggest the high variation of their performance. 

Spatial cross-validation 

In spatial cross-validation, the RSS has lower variation among the models (Fig. 8), but generally higher RSS values 

were generated compared with 10-fold cross-validation. RF still performed best among the six models according 

to the results, while BRT also can be seen to have good performances. 

 

According to the results described above, it can be seen that RF and BRT can provide robust performances for 

conditioning than other models, suggesting their promising estimations of the krill density distribution. As a 

result, both the simulations on the density surfaces conditioned by RF and BRT were conducted, with each of 

them being considered to be the true density distribution of krill in this region (Fig. 9).  

 

Results of simulation  

To check the predictive accuracy of these models at each prediction point, we compared each prediction and its 

corresponding true density value at each point by calculating the pointwise MSE of each model (Figs. 10 and 

11). GLM and GAM provided higher MSE with some extreme values in the predictions than machine learning 

methods. RF and BRT showed highest predictive accuracies for the density distribution across two conditioned 



 

 

surfaces, two survey designs as well as all CV values according to MSE values. SVM also led to good 

prediction. As for the comparison of two survey designs, the difference between the tooth and zigzag design is 

not significant, except for the prediction provided by GLM and GAM showing the preference for tooth design.  

 

To see if the models can correctly estimate the abundance level in this region by predicting, we took the mean 

density value as an index of the stock abundance in this study. The predicted mean density was compared across 

models with the true mean density value conditioned by RF (Fig. 12) or BRT (Fig. 13) respectively. GLM and 

GAM provided high variant predictions with extreme values (out of the range of this figure), while the results 

demonstrate the comparable predictions on mean density provided by machine learning methods. As for the better 

choice of survey designs, no one of the two showed absolutely advantages than the other, especially when machine 

learning methods were used as the prediction models. 

 

Some evaluation measures of the predictions on mean density value for both RF and BRT surfaces were computed 

and summarized in Tables 2-7. Traditional statistical methods GLM and GAM led to the predictions of mean 

density with high mean relative bias and RMSE, suggesting the extreme values in their predictions, which agrees 

well with the above described results. However, when the median value of the relative bias was taken, GLM and 

GAM also showed comparable performances with the other methods, which can be seen from the simulation 

results of RF surface (Tables 3, 4). Compared to statistical models, machine learning methods were proven to be 

stable through this simulation. In the simulation with RF surface, lasso provided promising performance for the 

estimation of the mean density value, RF, BRT and SVM were found to have competitive performances as well. 

However, in the simulation with BRT surface, statistical models and two of the machine learning methods, lasso 

and SVM were found to have difficulties in predicting the mean density of krill in this area, while RF and BRT 

showed superior performances and generate the predictions with much lower relative biases compared to the others. 

As for the survey designs, in this study, the two survey designs of the track lines showed similar performance in 

the krill spatial modelling, without one of them being significantly better than the other. . As for the possible 

combination, according to Tables 2-7, it can be found that GLM tended to be more accurate when tooth design is 

used, whereas GAM showed the preference for zigzag design. For the machine learning methods, Lasso and SVM 

usually performed better with tooth design compared to the zigzag design, on the contrary the later one worked 

well when BRT was used as the prediction model, while both two designs worked well with RF. 

 

To make the comparison between prediction and true density distribution more intuitive, the predicted density 

distribution surfaces (one iteration randomly selected) provided by each model are depicted in Figs.14-19. 

Generally, RF, SVM, BRT and GAM can catch the main features of the true distribution, whereas Lasso and GLM 

failed to predict the density distribution of krill. The predictions of RF and BRT were smoother compared with 

those of SVM and GAM, with some sharp decreases among hot spots predicted in the prediction of SVM, also on 

the edge of the predictions provided by GAM. 

 

As a result, we can conclude that: 

1) Traditional statistical models GLM, GAM can have competitive performances if the median value is evaluated, 

but the variance of their predictions is high; 

2) Machine learning methods have stable and reliable prediction ability across all the evaluations, especially RF 

and BRT are proven to be the most reliable methods in this study;  

3) Zigzag design and tooth design are revealed to have comparable performance in the krill spatial modelling, 

and both of them can be applied in the krill field survey. 

DISCUSSION 

Known that krill is an important trophic connection in the Antarctic ecosystem, the findings of this study will not 

only be helpful to the estimation and management of the krill resource itself, but also to the other related species 

such as its predators, whales. Given the predation happening between krill and whales, the knowledge of probable 

krill density distribution can provide reliable information to the prediction of potential whale distribution, 

especially when the survey is not able to be conducted because of the expenditure of the surveys and geology 

barriers of the habitats, etc.  

Zigzag design has been widely used in the whale field surveys, where the individual number of whales can be 

counted by the observers along the survey routes, while the survey design in tooth shape has been used in krill 

field survey. To investigate the practicality of incorporating the krill survey into the cetacean survey, this study 

made effort on the comparison of the effectiveness of these two types of survey designs in krill spatial modelling, 



 

 

and the results showed that neither of the design options have clear advantage across the simulation, thus both of 

them can be applied in the krill surveys.   

This study also provided the considerable information of the model prediction ability by doing the comprehensive 

comparison of the statistical methods and machine leaning techniques. In the conditioning process, the superior 

performance of RF showed its promising conditioning ability, which may also cause some concerns about its 

overfitting to the data, however the performance in the two types of cross-validation can provide convincing 

evidence that RF can prevent the overfitting effectively, which may benefit from both the enhancement of the deep 

trees, and the randomness contained in the RF algorithm. In the simulation of the krill spatial modelling, machine 

learning methods, especially BRT and RF provided robust performances across the predictions of both density 

distribution and mean density, whereas the traditional statistical models including GLM, GAM show relatively 

unstable performances. The high variance in the predictions provided by GLM and GAM can be probably 

accounted for their data-based nature, which shows high sensitivity to the simulation data through the iterations. 

In addition, possibly the linear structures of GLMs cause the difficulties in the modelling of the complicated 

relationship between the response and predictor variables. Compared with statistical models, machine learning 

methods tend to have some advantages such as their ability to model non-linear relationships, remain robust despite 

missing data and outliers, reduce overfitting, etc. (Breiman 2001; Friedman and Meulman 2003). 
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Table 1 Main features of the applied methods in this study and details of model settings in R. 

 

 
  

Method Abbreviations Main features Function and settings in R

Generalized linear models GLM

The extension of linear regression model allowing

various types of error distributions for response

variable other than a normal distribution.

Function "glm" with family="gaussian"

Generalized additive models GAM

The semi-parametric extension of GLM

maintaining the additivity of the modelling

approach, and allowing for non-linear functions in

the predictor variables.

Function "gam" in package "gam"

with family="gaussian"

Least absolute shrinkage and

selection operator
Lasso

Allows for the shrinkage and selection of predictor

variables by optimizing the loss function with 1-

norm penalty term.

Function "cv.glmnet" in package

"glmnet" with

family="gaussian",nfolds = 10,

type.measure = "mse"

Support vector machine SVM
Minimizes the loss function with a tolerance

function of the error.

Function "svm" in package "e1071"

with type="eps-regression",

kernel="radial",cost=1,gamma=5

Random forests RF

Enhances many indentically distributed deep

regression trees and averages the results of all trees

to get a more accurate and stable prediction.

Function "randomForest" in package

"randomForest" with

ntree=1000,mtry =6

Boosted regression trees BRT
Enhances the additive shallow trees to the residuals

to make a strong learner.

Function "gbm" in package "gbm"

with shrinkage = 0.005,

distribution = 'gaussian',

cv.folds = 5,n.trees = 5000



 

 

Table 2 Statistics of the predicted mean density of survey area provided by each method when CV=10%. True 

mean density on this area conditioned by RF is 20.189 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
 

 

Table 3 Statistics of the predicted mean density of survey area provided by each method when CV=30%. True 

mean density on this area conditioned by RF is 20.205 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
 

 

Table 4 Statistics of the predicted mean density of survey area provided by each method when CV=50%. True 

mean density on this area conditioned by RF is 20.189 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
  

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 26.058 26.202 25.512 26.533 29.1% 29.8% 26.4% 31.4% 6.319 6.315

GLM 7526.731 396.811 23.397 19.634 37181.7% 1865.5% 15.9% -2.7% 27255.555 1568.199

GAM 30.818 30.61 20.877 20.462 52.6% 51.6% 3.4% 1.4% 27.153 51.152

Lasso 20.027 20.311 20.151 20.23 -0.8% 0.6% -0.2% 0.2% 1.287 0.978

RF 23.09 20.614 20.429 19.946 14.4% 2.1% 1.2% -1.2% 7.895 1.936

BRT 25.437 21.327 20.782 19.32 26.0% 5.6% 2.9% -4.3% 12.678 4.745

SVM 21.029 21.521 20.197 21.777 4.2% 6.6% 0.0% 7.9% 2.285 1.806

RMSE
RELATIVE BIAS

mean median
MEAN MEDIAN

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 25.86 26.04 25.213 26.542 28.0% 28.9% 24.8% 31.4% 6.087 6.121

GLM 6475.887 247.302 21.823 19.866 31951.1% 1124.0% 8.0% -1.7% 35625.613 1185.283

GAM 40.159 75.539 20.296 21.175 98.8% 273.9% 0.5% 4.8% 69.163 431.766

Lasso 19.124 19.448 18.967 19.433 -5.4% -3.7% -6.1% -3.8% 1.65 1.144

RF 22.673 20.249 19.951 19.486 12.2% 0.2% -1.3% -3.6% 7.706 2.358

BRT 26.159 21.095 20.338 19.366 29.5% 4.4% 0.7% -4.2% 14.609 4.411

SVM 20.05 20.564 19.267 20.616 -0.8% 1.8% -4.6% 2.0% 1.986 1.14

MEAN MEDIAN
RELATIVE BIAS

RMSE
mean median

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 25.997 26.116 25.391 26.47 28.8% 29.4% 25.8% 31.1% 6.228 6.209

GLM 6151.296 241.28 22.805 19.229 30368.5% 1095.1% 13.0% -4.8% 29727.476 995.336

GAM 79.398 68.465 19.238 19.22 293.3% 239.1% -4.7% -4.8% 240.383 312.594

Lasso 17.729 18.151 17.584 18.133 -12.2% -10.1% -12.9% -10.2% 2.714 2.237

RF 20.736 18.869 18.473 18.381 2.7% -6.5% -8.5% -9.0% 6.773 2.686

BRT 24.064 19.607 19.082 18.008 19.2% -2.9% -5.5% -10.8% 13.193 5.061

SVM 18.809 19.305 18.072 19.345 -6.8% -4.4% -10.5% -4.2% 2.312 1.326

RMSE
RELATIVE BIAS

mean median
MEAN MEDIAN



 

 

Table 5 Statistics of the predicted mean density of survey area provided by each method when CV=10%. True 

mean density on this area conditioned by BRT is 26.654 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
 

 

Table 6 Statistics of the predicted mean density of survey area provided by each method when CV=30%. True 

mean density on this area conditioned by BRT is 26.613 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
 

 

Table 7 Statistics of the predicted mean density of survey area provided by each method when CV=50%. True 

mean density on this area conditioned by BRT is 26.567 g/m2. Values marked in red indicate the lowest value in 

each of the rows. 

 

 
  

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 30.811 30.738 32.544 32.865 15.6% 15.3% 22.1% 23.3% 6.603 6.064

GLM 1759540.3 152036.41 22.897 23.224 6601321.5% 570308.3% -14.1% -12.9% 8675475.12 803483.42

GAM 25.608 22.443 21.782 21.207 -3.9% -15.8% -18.3% -20.4% 12.203 6.832

Lasso 22.152 22.833 22.822 23.386 -16.9% -14.3% -14.4% -12.3% 4.959 4.239

RF 26.919 26.055 26.21 26.354 1.0% -2.2% -1.7% -1.1% 4.133 3.18

BRT 26.242 25.062 26.375 24.995 -1.5% -6.0% -1.0% -6.2% 2.625 3.044

SVM 23.119 23.585 22.955 24.324 -13.3% -11.5% -13.9% -8.7% 4.646 3.815

RMSE
RELATIVE BIAS

mean median
MEAN MEDIAN

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 29.811 29.803 30.301 31.447 12.0% 12.0% 13.9% 18.2% 6.13 5.668

GLM 826536.63 32606.274 22.764 22.137 3105687.9% 122421.1% -14.5% -16.8% 6471059.03 232061.47

GAM 25.7 21.963 20.559 20.293 -3.4% -17.5% -22.7% -23.7% 14.077 7.597

Lasso 20.819 21.502 21.428 21.742 -21.8% -19.2% -19.5% -18.3% 6.129 5.46

RF 25.636 24.693 24.621 24.965 -3.7% -7.2% -7.5% -6.2% 4.048 3.74

BRT 25.06 24.035 24.786 24.011 -5.8% -9.7% -6.9% -9.8% 3.153 3.69

SVM 22 22.502 21.539 22.996 -17.3% -15.4% -19.1% -13.6% 5.508 4.724

RMSE
RELATIVE BIAS

mean median
MEAN MEDIAN

Methods zz tt zz tt zz tt zz tt zz tt

naive estimator 30.614 30.366 30.294 31 15.2% 14.3% 14.0% 18.6% 6.701 6.066

GLM 437789.243 63010.099 21.355 21 1647750.3% 237071.7% -19.6% -19.2% 2395768.067 468598.522

GAM 23.011 22.153 20.231 19 -13.4% -16.6% -23.9% -27.3% 11.829 9.434

Lasso 19.64 20.161 20.095 21 -26.1% -24.1% -24.4% -21.4% 7.182 6.651

RF 23.864 23.286 23.781 23 -10.2% -12.3% -10.5% -11.8% 4.457 4.43

BRT 23.516 22.622 23.487 22 -11.5% -14.9% -11.6% -15.8% 4.194 4.686

SVM 21.124 21.647 20.826 22 -20.5% -18.5% -21.6% -16.9% 6.113 5.394

MEAN MEDIAN
RELATIVE BIAS

RMSE
mean median



 

 

 
 

Figure 1 Locations of U.S. AMLR Field Stations: Cape Shirreff, Livingston Island; Admiralty Bay (Copacabana), 

King George Island. 

 

 

 

 

 
 

Figure 2 The survey design of AMLR 2010/11 (Leg I/Survey A) in the vicinity of the South Shetland Islands, 

Elephant Island, and the Antarctic Peninsula. Black dots indicate locations of planned oceanographic/biological 

sampling stations and heavy lines indicate planned transects between stations. 

  



 

 

 

 
 

Figure 3 Histograms of observed density (left panel) and observed density in log scale (right panel).  

 

 

 

 

 
 

Figure 4 Simulation of the survey designs of the study area. The blue dashed line indicates the effective survey 

routes of the tooth design, with the red dashed lines indicating the effective zigzag survey routes. In total, 689 

stations are set in the zigzag design, and 696 stations are set for the tooth design. 

  



 

 

 
Figure 5 A histogram illustrating the RSS of the six models for fitting with total data set. All the calculations were 

conducted in the log scale. 

  



 

 

 
Figure 6 Scatter plots of each model for the comparison of fitting results and density observations. Horizontal axis 

indicates the fitting results, and vertical axis indicates the density observations. The density values for both axes 

are in log scale. 



 

 

 
Figure 7 A boxplot illustrating the RSS of the six models for 10-fold cross-validation. The boxes show median 

and 1st and 3rd quartile values. All the calculations are conducted in the log scale. 

 

 

 
Figure 8 A boxplot illustrating the RSS of the six models for spatial cross-validation. The boxes show median and 

1st and 3rd quartile values. All the calculations are conducted in the log scale. 

  



 

 

 
Figure 9 Krill density distribution surfaces conditioned by random forests (left panel) and boosted regression trees 

(right panel) in the study region. Density observations are colored in blue, with the higher density plotted in larger 

size. The predictions are colored in purple, with the deeper color indicating higher predicted density. 

 

 

 

 

  



 

 

 
Figure 10 A box plot illustrating the MSE of the predicted density distribution for RF surface provided by each 

model under the tooth (colored in pink) and zigzag (colored in blue) design with CV=10%, 30% and 50% 

respectively. 

 

 

 
Figure 11 A box plot illustrating the MSE of the predicted density distribution for BRT surface provided by each 

model under the tooth (colored in pink) and zigzag (colored in blue) design with CV=10%, 30% and 50% 

respectively. 



 

 

 
Figure 12 A box plot illustrating the predicted mean density value of the predicted density distribution for RF 

surface provided by each model under the tooth (colored in pink) and zigzag (colored in blue) design with CV=10%, 

30% and 50% respectively. The horizontal lines indicate the true mean density value conditioned by RF. Only the 

results of four methods, BRT, Lasso, RF and SVM are depicted here, while the results of GLM and GAM are out 

of the range of this figure. 

 

 

 

 

 
Figure 13 A box plot illustrating the predicted mean density value of the predicted density distribution for BRT 

surface provided by each model under the tooth (colored in pink) and zigzag (colored in blue) design with CV=10%, 

30% and 50% respectively. The horizontal lines indicate the true mean density value conditioned by BRT. Only 

the results of five methods, BRT, GAM, Lasso, RF and SVM are depicted here, while the results of GLM is out of 

the range of this figure. 

  



 

 

 
Figure 14 Predicted spatial density distribution of krill for RF surface provided by six models with the tooth survey 

design, CV=10%. (a) conditioned true density distribution surface by random forests(RF) (b) predicted density 

distribution by random forests(RF) (c) predicted density distribution by support vector machines(SVM) (d) 

predicted density distribution by boosted regression trees (BRT) (e) predicted density distribution by least absolute 

shrinkage and selection operator (Lasso) (f) predicted density distribution by generalized additive models (GAM) 

(g) predicted density distribution by generalized linear models (GLM). The scale of the legend ranges from 0 to 

300 grams per square meter. 

 

  



 

 

 

 
Figure 15 Predicted spatial density distribution of krill for RF surface provided by six models with the tooth survey 

design, CV=30%.  

 

 

 

 

 
Figure 16 Predicted spatial density distribution of krill for RF surface provided by six models with the tooth survey 

design, CV=50%.  

 

 

 

  



 

 

 
Figure 17 Predicted spatial density distribution of krill for BRT surface provided by six models with the tooth 

survey design, CV=10%. (a) conditioned true density distribution surface by boosted regression trees(BRT) (b) 

predicted density distribution by random forests(RF) (c) predicted density distribution by support vector 

machines(SVM) (d) predicted density distribution by boosted regression trees (BRT) (e) predicted density 

distribution by least absolute shrinkage and selection operator (Lasso) (f) predicted density distribution by 

generalized additive models (GAM) (g) predicted density distribution by generalized linear models (GLM). The 

scale of the legend ranges from 0 to 300 grams per square meter. 

  



 

 

 
Figure 18 Predicted spatial density distribution of krill for BRT surface provided by six models with the tooth 

survey design, CV=30%.  

 

 

 

 

 
Figure 19 Predicted spatial density distribution of krill for BRT surface provided by six models with the tooth 

survey design, CV=50%.  

 


